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Last time

Examples of joint, marginal and conditional distributions

When can we say that X ,Y do not influence each other?

What, if anything, does p(X = x |Y = y) tell us about
p(Y = y |X = x)?
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Review Exercise

Suppose we have random variables X ,Y such that

p(X = 1) = 0.6

p(Y = 1|X = 0) = 0.7

p(Y = 1|X = 1) = 0.8

Then,

p(X = 1|Y = 1) =

p(Y = 1|X = 1)p(X = 1)

p(Y = 1)
Bayes’ rule

=
p(Y = 1|X = 1)p(X = 1)

p(Y = 1|X = 1)p(X = 1) + p(Y = 1|X = 0)p(X = 0)

=
(0.8)(0.6)

(0.8)(0.6) + (0.7)(0.4)

≈ 0.63
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This time

More examples on Bayes’ theorem:
I Eating hamburgers
I Detecting terrorists
I The Monty Hall problem
I Document modelling

Are there notions of probability beyond frequency counting?
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Outline

1 Bayes’ Rule: Examples
Eating Hamburgers
Detecting Terrorists
An Example from Machine Learning
The Monty Hall Problem

2 The meaning of Probability

3 Wrapping Up
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Bayesian Inference:
Example 1 (Barber, BRML, 2011)

90% of people with McD syndrome are frequent hamburger eaters

Probability of someone having McD syndrome: 1/10000

Proportion of hamburger eaters is about 50%

What is the probability that a hamburger eater will have McD syndrome?
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Bayesian Inference:
Example 1: Formalization

Let McD ∈ {0, 1} be the variable denoting having the McD syndrome and
H ∈ {0, 1} be the variable denoting a hamburger eater. Therefore:

p(H = 1|McD = 1) = 9/10 p(McD = 1) = 10−4

p(H = 1) = 1/2

We need to compute p(McD = 1|H = 1), the probability of a hamburger
eater having McD syndrome.

Any ballpark estimates of this probability?
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Bayesian Inference:
Example 1: Solution

p(McD = 1|H = 1) =
p(H = 1|McD = 1)p(McD = 1)

p(H = 1)

= 1.8× 10−4

Repeat the above computation if the proportion of hamburger eaters is
rather small: (say in France) 0.001.
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Example 2: Detecting Terrorists:
From understandinguncertainty.org

Scanner detects true terrorists with 95% accuracy

Scanner detects upstanding citizens with 95% accuracy

There is 1 terrorist on your plane with 100 passengers aboard

The shifty looking man sitting next to you tests positive

What are the chances of this main being a terrorist?
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Example 2: Detecting Terrorists:
Simple Solution Using “Natural Frequencies” (David Spiegelhalter)

Figure: Figure reproduced from understandinguncertainty.org

The chances of the man being a terrorist are ≈ 1
6

Relation to disease example

Consequences when catching criminals
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Example 2: Detecting Terrorists:
Formalization with Actual Probabilities

Let T ∈ {0, 1} denote the variable regarding whether the person is a
terrorist and S ∈ {0, 1} denote the outcome of the scanner.

p(S = 1|T = 1) = 0.95 p(S = 0|T = 1) = 0.05

p(S = 0|T = 0) = 0.95 p(S = 1|T = 0) = 0.05

p(T = 1) = 0.01 p(T = 0) = 0.99

We want to compute p(T = 1|S = 1), the probability of the man being a
terrorist given that he has tested positive.
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Example 2: Detecting Terrorists:
Solution with Bayes’ Rule

p(T = 1|S = 1) =
p(S = 1|T = 1)p(T = 1)

p(S = 1|T = 1)p(T = 1) + p(S = 1|T = 0)p(T = 0)

=
(0.95)(0.01)

(0.95)(0.01) + (0.05)(0.99)

≈ 0.16

The probability of the man being a terrorist is ≈ 1
6
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Example 2: Detecting Terrorists:
Posterior Versus Prior Belief

While the man has a low probability of being a terrorist, our belief has
increased compared to our prior:

p(T = 1|S = 1)

p(T = 1)
=

0.16

0.01
= 16

i.e. our belief in him being a terrorist has gone up by a factor of 16

Since terrorists are so rare, a factor of 16 does not result in a very high
(absolute) probability or belief

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 14 / 32



Example 3: Document Classification
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Example 3: Document Classification:
Document Modelling

Bag-of-words: Describe a document as a D-dimensional binary vector x,
indicating the presence/absence of a word in a vocabulary V.

Example: consider the following tiny vocabulary:

V = {football, defence, strategy, goal, office}

Then, a document
x = (1, 0, 0, 1, 1)

contains only the words “football”, “goal”, and “office”

We do not care about the order of the words
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Example 3: Document Classification:
Binary Classification

We want to classify documents as being about sports (C1) or politics (C2).

A simple model for p(x|Cj) is:

p(x|Cj) =
D∏
i=1

p(xi |Cj)

This is called Naive Bayes due to its unrealistic assumption of conditional
independence of words given the class label
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Example 3: Document Classification:
Conditional Probability Tables

Assume the vocabulary:

V = {football, defence, strategy, goal, office}

and the conditional probability tables (CPTs) are given by:

p(C1) = 0.5 p(C2) = 0.5
p(f = 1|C1) = 0.8 p(f = 1|C2) = 0.1
p(d = 1|C1) = 0.7 p(d = 1|C2) = 0.7
p(s = 1|C1) = 0.2 p(s = 1|C2) = 0.8
p(g = 1|C1) = 0.7 p(g = 1|C2) = 0.3
p(o = 1|C1) = 0.2 p(o = 1|C2) = 0.7

A new document arrives and is described by x = (0, 1, 1, 1, 0).

What is the probability of this document being about sports?
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Example 3: Document Classification:
Solution

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=

∏D
d=1 p(xd |C1) · p(C1)∏D

d=1 p(xd |C1) · p(C1) +
∏D

d=1 p(xd |C2) · p(C2)

=

∏D
d=1 p(xd |C1)∏D

d=1 p(xd |C1) +
∏D

d=1 p(xd |C2)

=
(0.2)(0.7)(0.2)(0.7)(0.8)

(0.2)(0.7)(0.2)(0.7)(0.8) + (0.9)(0.7)(0.8)(0.3)(0.3)

≈ 0.26.

We would classify this document as politics as p(C2|x) ≈ 0.74.
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(0.2)(0.7)(0.2)(0.7)(0.8) + (0.9)(0.7)(0.8)(0.3)(0.3)

≈ 0.26.

We would classify this document as politics as p(C2|x) ≈ 0.74.
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Example 4: The Monty Hall Problem
Problem Statement

Three boxes, one with a prize and the other two are empty

Each box has equal probability of having the prize

Your goal is to pick up the box with the prize in it

You select one of the boxes

The host, who knows the location of the prize, opens the empty box
out of the other two boxes

Should you switch to the other box? Would that increase your chances of
winning the prize?
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Example 4: The Monty Hall Problem:
Formalization

Let C ∈ {r , g , b} denote the box that contains the prize where r , g , b refer
to the identity of each box.

WLOG assume the following:

You have selected box r

Denote the event: “the host opens box b” with H=b

P(C = r) =
1

3
p(C = g) =

1

3
p(C = b) =

1

3

p(H = b|C = r) =
1

2
p(H = b|C = g) = 1 p(H = b|C = b) = 0

We want to compute p(C = r |H = b) and p(C = g |H = b) to decide if
we should switch from our initial choice.
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Example 4: The Monty Hall Problem:
Solution

We have that:

p(H = b) =
∑

c∈{r ,g ,b}

p(H = b|C = c)p(C = c)

= (1/2) (1/3) + (1) (1/3) + (0) (1/3)

= 1/2

Therefore:

p(C = r |H = b) =
p(H = b|C = r)p(C = r)

p(H = b)
=

(1/2)(1/3)

(1/2)
= 1/3

Similarly, p(C = g |H = b) = 2/3.

You should switch from your initial choice to the other box in order to
increase your chances of winning the prize!
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Example 4: The Monty Hall Problem:
Illustration of the Solution

Figure: Illustration of the solution when you have initially selected box r.
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Example 4: The Monty Hall Problem:
Another Perspective

Switching is bad if, and only if, we initially picked the prize box (because if
not, the other remaining box must contain the prize)

We picked the prize box with probability 1/3. This is independent of the
host’s action

Hence, with probability 2/3, switching will reveal the prize box
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Example 4: The Monty Hall Problem:
Variants to Ponder

Would switching be rational if:

The host only revealed a box when he knew we picked the right one?

The host only revealed a box when he knew we picked the wrong one?

The host is himself unaware of the prize box, and reveals a box at
random, which by chance does not have the prize?
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1 Bayes’ Rule: Examples
Eating Hamburgers
Detecting Terrorists
An Example from Machine Learning
The Monty Hall Problem

2 The meaning of Probability

3 Wrapping Up
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The meaning of Probability

Frequentist : Frequencies of random repeatable experiments

E.g. Prob. of biased coin landing “Heads”

Bayesian : Degrees of Belief

E.g. Prob. of Tasmanian Devil disappearing by the end
of this decade

Cox Axioms

Given B(x), B(x̄), B(x , y), B(x |y), B(y):

1 Degrees of belief can be ordered

2 B(x) = f [B(x̄)]

3 B(x , y) = g [B(x |y),B(y)]

If a set of Beliefs satisfy these axioms they can be mapped onto
probabilities satisfying the rules of probability.
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Frequentists versus Bayesians: Round I

Image from http://xkcd.com/1132/
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Frequentists versus Bayesians: Round II

Image from
http://normaldeviate.wordpress.com/2012/11/09/anti-xkcd/
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Summary

Examples of application of Bayes’ rule
I Formalization
I Solution by applying Bayes’ theorem

Intuition is usually helpful although it may sometimes deceive us

Interesting application to document classification

Frequentist v Bayesian probabilities

Cox axioms
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Next time

Working through some useful probability distributions

More on Bayesian inference

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 32 / 32


	Bayes' Rule: Examples
	Eating Hamburgers
	Detecting Terrorists
	An Example from Machine Learning
	The Monty Hall Problem

	The meaning of Probability
	Wrapping Up

