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Last time

Information content and entropy: definition and computation

Entropy and average code length

Entropy and minimum expected number of binary questions

Joint and conditional entropies, chain rule
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Information Content: Review

Let X be a random variable with outcomes in X

Let p(x) denote the probability of the outcome x ∈ X

The (Shannon) information content of outcome x is

h(x) = log2
1

p(x)

As p(x)→ 0, h(x)→ +∞ (rare outcomes are more informative)
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Entropy: Review

The entropy is the average information content of all outcomes:

H(X ) =
∑
x

p(x)log2
1

p(x)

Entropy is minimised if p is peaked, and maximized if p is uniform:

0 ≤ H(X ) ≤ log|X |

Entropy is related to minimal number of bits needed to describe a random
variable
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This time

The decomposability property of entropy

Relative entropy and divergences

Mutual information
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Outline

1 Decomposability of Entropy

2 Relative Entropy / KL Divergence

3 Mutual Information
Definition
Joint and Conditional Mutual Information

4 Wrapping up

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 6 / 31



Decomposability of Entropy
Example 1 (Mackay, 2003)

Let X ∈ {0, 1, 2} be a r.v. created by the following process:

1 Flip a fair coin to determine whether X = 0

2 If X 6= 0 flip another fair coin to determine whether X = 1 or X = 2

The probability distribution of X is given by:

p(X = 0) =

1
2

p(X = 1) =

1
4

p(X = 2) =

1
4
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Decomposability of Entropy
Example 1 (Mackay, 2003) — Cont’d

By definition,

H(X ) =
1

2
log 2 +

1

4
log 4 +

1

4
log 4 = 1.5 bits.

But imagine learning the value of X gradually:

1 First we learn whether X = 0:
I Binary variable with p(1) = ( 1

2 ,
1
2 )

I Hence H(1/2, 1/2) = log2 2 = 1 bit.
2 If X 6= 0 we learn the the value of the second coin flip:

I Also binary variable with p(2) = ( 1
2 ,

1
2 )

I Therefore H(1/2, 1/2) = 1 bit.

However, the second revelation only happens half of the time:

H(X ) = H(1/2, 1/2) +
1

2
H(1/2, 1/2) = 1.5 bits.
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Decomposability of Entropy
Generalization

For a r.v. with probability distribution p = (p1, . . . , p|X |):

H(p) = H(p1, 1− p1) + (1− p1)H

(
p2

1− p1
, . . . ,

p|X |
1− p1

)

H(p1, 1− p1) = entropy for a random variable corresponding to “Is
X = x0?”

H
(

p2
1−p1 , . . . ,

p|X|
1−p1

)
= entropy for a random variable corresponding to

outcomes when X 6= x0

(1− p1) = probability of X 6= x0
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Decomposability of Entropy
Generalization

In general, we have that for any m:

H(p) =H

 m∑
i=1

pi ,

|X |∑
i=m+1

pi


+

(
m∑
i=1

pi

)
H

(
p1∑m
i=1 pi

, . . . ,
pm∑m
i=1 pi

)

+

 |X |∑
i=m+1

pi

H

(
pm+1∑|X |
i=m+1 pi

, . . . ,
p|X |∑|X |

i=m+1 pi

)

Apply this formula with m = 1, |X | = 3, p = (p1, p2, p3) = (1/2, 1/4, 1/4)
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Entropy in Information Theory

If a random variable has distribution p, there exists an encoding with an
average length of

H(p) bits

and this is the “best” possible encoding

What happens if we use a “wrong” encoding?

e.g. because we make an incorrect assumption on the probability distribution

If the true distribution is p, but we assume it is q, it turns out we will need
to use

H(p) + DKL(p‖q) bits

where DKL(p‖q) is some measure of “distance” between p and q
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Relative Entropy

Definition

The relative entropy or Kullback-Leibler (KL) divergence between two
probability distributions p(X ) and q(X ) is defined as:

DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep(X )

[
log

p(X )

q(X )

]
.

Note:
I Both p(X ) and q(X ) are defined over the same alphabet X

Conventions:

0 log
0

0
def
= 0 0 log

0

q
def
= 0 p log

p

0
def
=∞
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Relative Entropy
Properties

DKL(p‖q) ≥ 0

DKL(p‖q) = 0⇔ p = q

DKL(p‖q) 6= DKL(q‖p)

I Not a true distance since is not symmetric and does not satisfy the
triangle inequality

I Hence, “KL divergence” rather than “KL distance”
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Relative Entropy
Uniform q

Let q correspond to a uniform distribution: q(x) = 1
|X |

Relative entropy between p and q:

DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)

=
∑
x∈X

p(x) · (log p(x) + log |X |)

= −H(X ) +
∑
x∈X

p(x) · log |X |

= −H(X ) + log |X |.

Matches intuition as penalty on number of bits for encoding
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Relative Entropy
Example (from Cover & Thomas, 2006)

Let X ∈ {0, 1} and consider the distributions p(X ) and q(X ) such that:

p(X = 1) = θp p(X = 0) = 1− θp
q(X = 1) = θq q(X = 0) = 1− θq

What distributions are these?

Compute DKL(p‖q) and DKL(q‖p) with θp = 1
2 and θq = 1

4
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Relative Entropy
Example (from Cover & Thomas, 2006) — Cont’d

DKL(p‖q) = θp log
θp
θq

+ (1− θp) log
1− θp
1− θq

=
1

2
log

1
2
1
4

+
1

2
log

1
2
3
4

= 1− 1

2
log 3 ≈ 0.2075 bits

DKL(q‖p) = θq log
θq
θp

+ (1− θq) log
1− θq
1− θp

=
1

4
log

1
4
1
2

+
3

4
log

3
4
1
2

= −1 +
3

4
log 3 ≈ 0.1887 bits
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Mutual Information
Definition

Let X ,Y be two r.v. with joint distribution p(X ,Y ) and marginals p(X )
and p(Y ):

Definition

The mutual information I (X ;Y ) is the relative entropy between the joint
distribution p(X ,Y ) and the product distribution p(X )p(Y ):

I (X ;Y ) = DKL (p(X ,Y )‖p(X )p(Y ))

=
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)

Intuitively, how much information, on average, X conveys about Y .
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Relationship between Entropy and Mutual Information

We can re-write the definition of mutual information as:

I (X ;Y ) =
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)

=
∑
x∈X

∑
y∈Y

p(x , y) log
p(x |y)

p(x)

= −
∑
x∈X

log p(x)
∑
y∈Y

p(x , y)−

−∑
x∈X

∑
y∈Y

p(x , y) log p(x |y)


= H(X )− H(X |Y )

The average reduction in uncertainty of X due to the knowledge of Y .
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Mutual Information:
Properties

Mutual Information is non-negative:

I (X ;Y ) ≥ 0 why?

We have seen that: H(Y )− H(Y |X ) = H(X )− H(X |Y ), therefore:

I (X ;Y ) = I (Y ;X )

Since H(X ,Y ) = H(X ) + H(Y |X ) we have that:

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

Finally:

I (X ;X ) = H(X )− H(X |X ) = H(X )

Sometimes the entropy is referred to as self-information
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Breakdown of Joint Entropy

H(X|Y ) H(Y |X)I(X; Y )

H(X) H(Y )

H(X, Y )
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Mutual Information
Example 1 (from Mackay, 2003)

Let X ,Y ,Z be r.v. with X ,Y ∈ {0, 1}, X ⊥⊥ Y and:

p(X = 0) = p p(X = 1) = 1− p

p(Y = 0) = q p(Y = 1) = 1− q

Z = (X + Y ) mod 2

(a) if q = 1/2 what is P(Z = 0)? P(Z = 1)? I (Z ;X )?

(b) For general p and q what is P(Z = 0)? P(Z = 1)? I (Z ;X )?

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 23 / 31



Mutual Information
Example 1 (from Mackay, 2003)

Let X ,Y ,Z be r.v. with X ,Y ∈ {0, 1}, X ⊥⊥ Y and:

p(X = 0) = p p(X = 1) = 1− p

p(Y = 0) = q p(Y = 1) = 1− q

Z = (X + Y ) mod 2

(a) if q = 1/2 what is P(Z = 0)? P(Z = 1)? I (Z ;X )?

(b) For general p and q what is P(Z = 0)? P(Z = 1)? I (Z ;X )?

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 23 / 31



Mutual Information
Example 1 (from Mackay, 2003)

Let X ,Y ,Z be r.v. with X ,Y ∈ {0, 1}, X ⊥⊥ Y and:

p(X = 0) = p p(X = 1) = 1− p

p(Y = 0) = q p(Y = 1) = 1− q

Z = (X + Y ) mod 2

(a) if q = 1/2 what is P(Z = 0)? P(Z = 1)? I (Z ;X )?

(b) For general p and q what is P(Z = 0)? P(Z = 1)? I (Z ;X )?

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 23 / 31



Mutual Information
Example 1 (from Mackay, 2003) — Solution (a)

(a) As X ⊥⊥ Y and q = 1/2 the noise will flip the input with probability
q = 0.5 regardless of the original input distribution. Therefore:

p(Z = 1) = E[Z = 1] = 1/2 p(Z = 0) = 1/2

Hence:
I (X ;Z ) = H(Z )− H(Z |X ) = 1− 1 = 0

Indeed for q = 1/2 we see that Z ⊥⊥ X

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 24 / 31



Mutual Information
Example 1 (from Mackay, 2003) — Solution (a)

(a) As X ⊥⊥ Y and q = 1/2 the noise will flip the input with probability
q = 0.5 regardless of the original input distribution. Therefore:

p(Z = 1) = E[Z = 1] = 1/2 p(Z = 0) = 1/2

Hence:
I (X ;Z ) = H(Z )− H(Z |X ) = 1− 1 = 0

Indeed for q = 1/2 we see that Z ⊥⊥ X

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 24 / 31



Mutual Information
Example 1 (from Mackay, 2003) — Solution (a)

(a) As X ⊥⊥ Y and q = 1/2 the noise will flip the input with probability
q = 0.5 regardless of the original input distribution. Therefore:

p(Z = 1) = E[Z = 1] = 1/2 p(Z = 0) = 1/2

Hence:
I (X ;Z ) = H(Z )− H(Z |X ) = 1− 1 = 0

Indeed for q = 1/2 we see that Z ⊥⊥ X

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 24 / 31



Mutual Information
Example 1 (from Mackay, 2003) — Solution (b)

(b)

`
def
= p(Z = 0) = p(X = 0)× p(no flip) + p(X = 1)× p(flip)

= pq + (1− p)(1− q)

= 1 + 2pq − q − p

Similarly:

p(Z = 1) = p(X = 1)× p(no flip) + p(X = 0)× p(flip)

= (1− p)q + p(1− q)

= q + p − 2pq

and:

I (Z ;X ) = H(Z )− H(Z |X )

= H(`, 1− `)− H(q, 1− q) why?
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1 Decomposability of Entropy

2 Relative Entropy / KL Divergence

3 Mutual Information
Definition
Joint and Conditional Mutual Information

4 Wrapping up
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Joint Mutual Information

Recall that for random variables X ,Y ,

I (X ;Y ) = H(X )− H(X |Y )

Reduction in uncertainty in X due to knowledge of Y

More generally, for random variables X1, . . . ,Xn,Y1, . . . ,Ym,

I (X1, . . . ,Xn;Y1, . . . ,Ym) = H(X1, . . . ,Xn)− H(X1, . . . ,Xn|Y1, . . . ,Ym)

Reduction in uncertainty in X1, . . . ,Xn due to knowledge of Y1, . . . ,Ym

Symmetry also generalises:

I (X1, . . . ,Xn;Y1, . . . ,Ym) = I (Y1, . . . ,Ym;X1, . . . ,Xn)

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 27 / 31



Conditional Mutual Information

The conditional mutual information between X and Y given Z = zk :

I (X ;Y |Z = zk) = H(X |Z = zk)− H(X |Y ,Z = zk).

Averaging over Z we obtain:

The conditional mutual information between X and Y given Z :

I (X ;Y |Z ) = H(X |Z )− H(X |Y ,Z )

= Ep(X ,Y ,Z) log
p(X ,Y |Z )

p(X |Z )p(Y |Z )

The reduction in the uncertainty of X due to the knowledge of Y when Z
is given.

Note that I (X ;Y ;Z ), I (X |Y ;Z ) are illegal terms while
e.g. I (A,B;C ,D|E ,F ) is legal.
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Summary

Decomposability of entropy

Relative entropy

Mutual information

Reading: Mackay §2.5, Ch 8; Cover & Thomas §2.3 to §2.5
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Next time

Mutual information chain rule

Jensen’s inequality

“Information cannot hurt”

Data processing inequality
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