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Last time

Decomposability of entropy

Relative entropy (KL divergence)

Mutual information
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Review

Relative entropy (KL divergence):

DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)

Mutual information:

I (X ;Y ) = DKL (p(X ,Y )‖p(X )p(Y ))

= H(X ) + H(Y )− H(X ,Y ).

Average reduction in uncertainty in X when Y is known

I (X ;Y ) = 0 when X ,Y statistically independent

Conditional mutual information of X ,Y given Z :

I (X ;Y |Z ) = H(X |Z )− H(X |Y ,Z )
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This time

Mutual information chain rule

Jensen’s inequality

“Information cannot hurt”

Data processing inequality
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Outline

1 Chain Rule for Mutual Information

2 Convex Functions

3 Jensen’s Inequality

4 Gibbs’ Inequality

5 Information Cannot Hurt

6 Data Processing Inequality

7 Wrapping Up
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Recall: Joint Mutual Information

Recall the mutual information between X and Y :

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y ) = I (Y ;X ).

We can also compute the mutual information between X1, . . . ,XN and
Y1, . . . ,YM :

I (X1, . . . ,XN ;Y1, . . . ,YM) = H(X1, . . . ,XN) + H(Y1, . . . ,YM)−
H(X1, . . . ,XN ,Y1, . . . ,YM)

= I (Y1, . . . ,YM ;X1, . . . ,XN).

Note that I (X ,Y ;Z ) 6= I (X ;Y ,Z ) in general

Reduction in uncertainty of X and Y given Z versus uncertainty of X given
Y and Z
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Chain Rule for Mutual Information

Let X ,Y ,Z be r.v. and recall that:

I (X ;Y ,Z ) = I (Y ,Z ;X ) symmetry

= H(Z ,Y )− H(Z ,Y |X ) def. mutual info.

= H(Z |Y ) + H(Y )− H(Z |X ,Y )− H(Y |X ) entropy’s chain rule

= H(Y )− H(Y |X )︸ ︷︷ ︸
I (Y ;X )

+H(Z |Y )− H(Z |X ,Y )︸ ︷︷ ︸
I (Z ;X |Y )

I (X ;Y ,Z ) = I (X ;Y ) + I (X ;Z |Y ) def. mutual info and cond. mutual info

Similarly, by symmetry:

I (X ;Y ,Z ) = I (X ;Z ) + I (X ;Y |Z )
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Chain Rule for Mutual Information
General form

For any collection of random variables X1, . . . ,XN and Y :

I (X1, . . . ,XN ;Y ) =
N∑
i=1

I (Xi ;Y |X1, . . . ,Xi−1)

=
N∑
i=1

I (Y ;Xi |X1, . . . ,Xi−1).
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2 Convex Functions
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Convex Functions:
Introduction

x1 x2x� = �x1 + (1� �)x2f(x�)�f(x1) + (1� �)f(x2)
0 ≤ λ ≤ 1 (Figure from Mackay, 2003)

A function is convex ^ if every cord of the function lies above the function
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Convex and Concave Functions
Definitions

Definition

A function f (x) is convex ^ over (a, b) if for all x1, x2 ∈ (a, b) and
0 ≤ λ ≤ 1:

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

We say f is strictly convex ^ if for all x1, x2 ∈ (a, b) the equality holds
only for λ = 0 and λ = 1.

Similarly, a function f is concave _ if −f is convex ^, i.e. if every cord of
the function lies below the function.

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 12 / 37



Examples of Convex and Concave Functions
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Verifying Convexity

Theorem (Cover & Thomas, Th 2.6.1)

If a function f has a second derivative that is non-negative (positive) over
an interval, the function is convex ^(strictly convex ^) over that interval.

This allows us to verify convexity or concavity.

Examples:
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Convexity, Concavity and Optimization

If f (x) is concave _ and there exists a point at which

df

dx
= 0,

then f (x) has a maximum at that point.

Note: the converse does not hold: if a concave _ f (x) is maximized at
some x , it is not necessarily true that the derivative is zero there.

f (x) = −|x |: is maximized at x = 0 where its derivative is undefined

f (p) = log p with 0 ≤ p ≤ 1, is maximized at p = 1 where df
dp = 1

Similarly for minimisation of convex functions
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Jensen’s Inequality for Convex Functions

Theorem: Jensen’s Inequality

If f is a convex ^ function and X is a random variable then:

f (E[X ]) ≤ E[f (X )].

Moreover, if f is strictly convex ^, the equality implies that X = E[X ]
with probability 1, i.e X is a constant.

In other words, for a probability vector p,

f

(
N∑
i=1

pixi

)
≤

N∑
i=1

pi f (xi ).

Similarly for a concave _ function: E[f (X )] ≤ f (E[X ]) .
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Jensen’s Inequality for Convex Functions
Proof by Induction

(1) K = 2:
I Two-state random variable X ∈ {x1, x2}
I With p = (p1, p2) = (p1, 1− p1)
I 0 ≤ p ≤ 1

we simply follow the definition of convexity:

p1f (x1) + p2f (x2)︸ ︷︷ ︸
E[f (X )]

≥ f (p1x1 + p2x2︸ ︷︷ ︸
E[X ]

)
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Jensen’s Inequality for Convex Functions
Proof by Induction — Cont’d

(2) (K − 1)→ K : Assuming the theorem is true for distributions with
K − 1 states, and writing: p′i = pi/(1− pK ) for i = 1, . . . ,K − 1:

K∑
i=1

pi f (xi ) = pK f (xK ) + (1− pK )
K−1∑
i=1

p′i f (xi )

≥ pK f (xK ) + (1− pK )f

(
K−1∑
i=1

p′ixi

)
Induction hypothesis

≥ f

(
pKxK + (1− pK )

K−1∑
i=1

p′ixi

)
︸ ︷︷ ︸∑K

i=1 pixi

definition of convexity

K∑
i=1

pi f (xi ) ≥ f

(
K∑
i=1

pixi

)
⇒ E[f (X )] ≥ f (E[x ]) equality case?
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Jensen’s Inequality Example: The AM-GM Inequality

Recall that for a concave _ function: E[f (X )] ≤ f (E[X ]).

Consider X ∈ {x1, . . . , xN}, X ≥ 0 with uniform probability distribution
p = ( 1

N , . . . ,
1
N ) and the strictly concave _ function f (x) = log x :

1

N

N∑
i=1

log xi ≤ log

(
1

N

N∑
i=1

xi

)

log

(
N∏
i=1

xi

) 1
N

≤ log

(
1

N

N∑
i=1

xi

)
(

N∏
i=1

xi

) 1
N

≤ 1

N

N∑
i=1

xi

N
√
x1x2 . . . xN ≤

x1 + x2 . . .+ xN
N
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Gibbs’ Inequality

Theorem

The relative entropy (or KL divergence) between two distributions p(X )
and q(X ) with X ∈ X is non-negative:

DKL(p‖q) ≥ 0

with equality if and only if p(x) = q(x) for all x.
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Gibbs’ Inequality
Proof (1 of 2)

Recall that: DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep(X )

[
log

p(X )

q(X )

]
Let A = {x : p(x) > 0}. Then:

− DKL(p‖q) =
∑
x∈A

p(x) log
q(x)

p(x)

≤ log
∑
x∈A

p(x)
q(x)

p(x)
Jensen’s inequality

≤ log
∑
x∈X

q(x)

= log 1

= 0

DKL(p‖q) ≥ 0.

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 23 / 37



Gibbs’ Inequality
Proof (1 of 2)

Recall that: DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep(X )

[
log

p(X )

q(X )

]
Let A = {x : p(x) > 0}. Then:

− DKL(p‖q) =
∑
x∈A

p(x) log
q(x)

p(x)

≤ log
∑
x∈A

p(x)
q(x)

p(x)
Jensen’s inequality

≤ log
∑
x∈X

q(x)

= log 1

= 0

DKL(p‖q) ≥ 0.

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 23 / 37



Gibbs’ Inequality
Proof (1 of 2)

Recall that: DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep(X )

[
log

p(X )

q(X )

]
Let A = {x : p(x) > 0}. Then:

− DKL(p‖q) =
∑
x∈A

p(x) log
q(x)

p(x)

≤ log
∑
x∈A

p(x)
q(x)

p(x)
Jensen’s inequality

≤ log
∑
x∈X

q(x)

= log 1

= 0

DKL(p‖q) ≥ 0.

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 23 / 37



Gibbs’ Inequality
Proof (1 of 2)

Recall that: DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep(X )

[
log

p(X )

q(X )

]
Let A = {x : p(x) > 0}. Then:

− DKL(p‖q) =
∑
x∈A

p(x) log
q(x)

p(x)

≤ log
∑
x∈A

p(x)
q(x)

p(x)
Jensen’s inequality

≤ log
∑
x∈X

q(x)

= log 1

= 0

DKL(p‖q) ≥ 0.
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Gibbs’ Inequality
Proof (2 of 2)

Since log u is strictly convex we have equality if
q(x)

p(x)
= c for all x . Then:

∑
x∈A

q(x) = c
∑
x∈A

p(x) = c

Also, the last inequality in the previous slide becomes equality only if:∑
x∈A

q(x) =
∑
x∈X

q(x).

Therefore c = 1 and DKL(p‖q) = 0⇔ p(x) = q(x) for all x .

Alternative proof: Use the fact that log x ≤ x − 1.
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Non-Negativity of Mutual Information

Corollary

For any two random variables X ,Y :

I (X ;Y ) ≥ 0,

with equality if and only if X and Y are statistically independent.

Proof: We simply use the definition of mutual information and Gibbs’
inequality:

I (X ;Y ) = DKL(p(X ,Y )‖p(X )p(Y )) ≥ 0,

with equality if and only if p(X ,Y ) = p(X )p(Y ), i.e. X and Y are
independent.
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Conditioning Reduces Entropy
Information Cannot Hurt — Proof

Theorem

For any two random variables X ,Y ,

H(X |Y ) ≤ H(X ),

with equality if and only if X and Y are independent.

Proof: We simply use the non-negativity of mutual information:

I (X ;Y ) ≥ 0

H(X )− H(X |Y ) ≥ 0

H(X |Y ) ≤ H(X )

with equality if and only if p(X ,Y ) = p(X )p(Y ), i.e X and Y are
independent.

Data are helpful, they don’t increase uncertainty on average.
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Conditioning Reduces Entropy
Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X ,Y have the following joint distribution:

p(X ,Y ) X
1 2

Y
1 0 3/4
2 1/8 1/8

p(X ) = (1/8, 7/8)

p(Y ) = (3/4, 1/4)

p(X |Y = 1) = (0, 1)

p(X |Y = 2) = (1/2, 1/2)

H(X ) ≈ 0.544 bits H(X |Y = 1) = 0 bits H(X |Y = 2) = 1 bit

We see that in this case H(X |Y = 1) < H(X ), H(X |Y = 2) > H(X ).

However, H(X |Y ) =
∑

y∈{1,2}

p(y)H(X |Y = y) =
1

4
= 0.25 bits < H(X )

H(X |Y = yk) may be greater than H(X ) but the average: H(X |Y ) is
always less or equal to H(X ).

Information cannot hurt on average
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Markov Chain

X" Y" Z"

Definition

Random variables X ,Y ,Z are said to form a Markov chain in that order
(denoted by X → Y → Z ) if their joint probability distribution can be
written as:

p(X ,Y ,Z ) = p(X )p(Y |X )p(Z |Y )

Consequences:

X → Y → Z if and only if X and Z are conditionally independent
given Y .

X → Y → Z implies that Z → Y → X .

If Z = f (Y ), then X → Y → Z
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Data-Processing Inequality
Definition

Theorem

if X → Y → Z then: I (X ;Y ) ≥ I (X ;Z )

X is the state of the world, Y is the data gathered and Z is the
processed data

No “clever” manipulation of the data can improve the inferences that
can be made from the data

No processing of Y , deterministic or random, can increase the
information that Y contains about X
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Data-Processing Inequality
Proof

Recall that the chain rule for mutual information states that:

I (X ;Y ,Z ) = I (X ;Y ) + I (X ;Z |Y )

= I (X ;Z ) + I (X ;Y |Z )

Therefore:

I (X ;Y ) + I (X ;Z |Y )︸ ︷︷ ︸
0

= I (X ;Z ) + I (X ;Y |Z ) Markov chain assumption

I (X ;Y ) = I (X ;Z ) + I (X ;Y |Z ) but I (X ; Y |Z) ≥ 0

I (X ;Y ) ≥ I (X ;Z )
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Data-Processing Inequality
Functions of the Data

Corollary

In particular, if Z = g(Y ) we have that:

I (X ;Y ) ≥ I (X ; g(Y ))

Proof: X → Y → g(Y ) forms a Markov chain.

Functions of the data Y cannot increase the information about X
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Data-Processing Inequality
Observation of a “Downstream” Variable

Corollary

If X → Y → Z then I (X ;Y |Z ) ≤ I (X ;Y )

Proof: We use again the chain rule for mutual information:

I (X ;Y ,Z ) = I (X ;Y ) + I (X ;Z |Y )

= I (X ;Z ) + I (X ;Y |Z )

Therefore:

I (X ;Y ) + I (X ;Z |Y )︸ ︷︷ ︸
0

= I (X ;Z ) + I (X ;Y |Z ) Markov chain assumption

I (X ;Y |Z ) = I (X ;Y )− I (X ;Z ) but I (X ; Z) ≥ 0

I (X ;Y |Z ) ≤ I (X ;Y )

The dependence between X and Y cannot be increased by the observation
of a “downstream” variable.
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Summary & Conclusions

Chain rule for mutual information

Convex Functions

Jensen’s inequality, Gibbs’ inequality

Important inequalities regarding information, inference and data
processing

Reading: Mackay §2.6 to §2.10, Cover & Thomas §2.5 to §2.8
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Next time

Law of large numbers

Markov’s inequality

Chebychev’s inequality
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