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Last time

@ Decomposability of entropy
@ Relative entropy (KL divergence)

@ Mutual information
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Review

Relative entropy (KL divergence):

Dia(plla) = 3 plox)log 20)

XEX ( )

Mutual information:

1(X;Y) = Dxw (p(X. Y)llp(X)p(Y))
= H(X) + H(Y) — H(X, Y).

@ Average reduction in uncertainty in X when Y is known
@ /(X;Y) =0 when X, Y statistically independent

Conditional mutual information of X, Y given Z:

I(X; Y|Z) = H(X|Z) — H(X|Y, Z)
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This time

Mutual information chain rule
Jensen’s inequality
“Information cannot hurt”

Data processing inequality
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utline

@ Chain Rule for Mutual Information
© Convex Functions

© Jensen's Inequality

@ Gibbs' Inequality

© Information Cannot Hurt

@ Data Processing Inequality

@ Wrapping Up
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@ Chain Rule for Mutual Information
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Recall: Joint Mutual Information

Recall the mutual information between X and Y

I(X;Y) = H(X) + H(Y) = H(X,Y) = I(Y; X).

We can also compute the mutual information between Xi, ..., Xy and
Yl, ey YMZ

I(Xy, .o X Ya, oY) = HXa, - Xn) + H(Ya, oY) —
H(X1, ..., Xns Ya, oY)
=1(Y1, ..., Y X, ..., Xn).

Note that /(X,Y;Z) # I(X;Y,Z) in general

@ Reduction in uncertainty of X and Y given Z versus uncertainty of X given
Y and Z
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Chain Rule for Mutual Information

Let X, Y, Z be r.v. and recall that:

/(X, Y,Z):I(Y,Z,X) symmetry
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Chain Rule for Mutual Information

Let X, Y, Z be r.v. and recall that:

/(X, Y,Z):I(Y,Z,X) symmetry
== H(Z, Y) - H(Z7 YlX) def. mutual info.
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Chain Rule for Mutual Information

Let X, Y, Z be r.v. and recall that:

/(X, Y,Z):I(Y,Z,X) symmetry
== H(Z, Y) - H(Z7 YlX) def. mutual info.
== H(Z’Y) + H(Y) — H(Zl)(7 Y) — H(Y’X) entropy's chain rule
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Chain Rule for Mutual Information

Let X, Y, Z be r.v. and recall that:

I(X; Y, Z)=1(Y,Z; X)  smmetry
=H(Z,Y)—H(Z,Y|X) def mutual info.
=H(Z|Y)+ H(Y) = H(Z|IX,Y) = H(Y|X) entropy's chain rule
=H(Y)—-H(Y|X)+H(Z|Y)—- H(Z|X, YZ

1(YX) I(Z:X]Y)

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theon Semester 2 8 /37



Chain Rule for Mutual Information

Let X, Y, Z be r.v. and recall that:

(XY, Z) = (Y, Z;X)  symmety
=H(Z,Y)—H(Z,Y|X) def mutual info.
= H(Z|Y) + H(Y) = H(Z|X,Y) = H(Y|X)  cntropy's chain e
= H(Y) — H(Y|X) + H(Z|Y) — H(Z|X.Y)
1(Y-X) 1(Z:X]Y)
/(X; Y, Z) = /(X; Y) + /(X; Zl Y) def. mutual info and cond. mutual info
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Chain Rule for Mutual Information

Let X, Y, Z be r.v. and recall that:

(XY, Z) = (Y, Z;X)  symmety
=H(Z,Y)—H(Z,Y|X) def mutual info.
= H(Z|Y) + H(Y) = H(Z|X,Y) = H(Y|X)  cntropy's chain e
= H(Y) — H(Y|X) + H(Z|Y) — H(Z|X.Y)
1(Y-X) 1(Z:X]Y)
/(X; Y, Z) = /(X; Y) + /(X; Zl Y) def. mutual info and cond. mutual info

Similarly, by symmetry:

I(X:Y,Z) = 1(X; Z)+ I(X; Y|Z)
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Chain Rule for Mutual Information

General form

For any collection of random variables Xi,..., Xy and Y:

(X1, ..., XN Y) =

M-

i=1

I
.MZ

i=1

I(Xi; Y| X, . ..

1Y Xi|Xq, ...
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© Convex Functions
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Convex Functions:

Introduction

Af(z1) + (1= X)f(22)
L _

Zl?"l ﬁ 2
" =1+ (1 — Nae
0 S )\ S ]. (Figure from Mackay, 2003)

A function is convex — if every cord of the function lies above the function
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Convex and Concave Functions

Definitions

Definition

A function f(x) is convex — over (a, b) if for all x1,x € (a, b) and
0< <1

f()\Xl aF (1 = )\)Xz) < )\f(Xl) aF (1 = )\)f(Xz)

We say f is strictly convex — if for all x1, x> € (a, b) the equality holds
only for A=0and A = 1.

v

Similarly, a function f is concave —~ if —f is convex —, i.e. if every cord of
the function lies below the function.
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Examples of Convex and Concave Functions
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Verifying Convexity

Theorem (Cover & Thomas, Th 2.6.1)

If a function f has a second derivative that is non-negative (positive) over
an interval, the function is convex —(strictly convex —) over that interval.

This allows us to verify convexity or concavity.

Examples:
d (d d
2. 9 (A 2y _ 9 _
ox.dx(dx(x)) d(2x) 2
X . d d X — d . X
”-a(a(e)) al€) e

oo g Gn) s ()=
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Convexity, Concavity and Optimization

If f(x) is concave —~ and there exists a point at which

df
&—Oy

then f(x) has a maximum at that point.
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Convexity, Concavity and Optimization

If f(x) is concave —~ and there exists a point at which
df
& — 01

then f(x) has a maximum at that point.

Note: the converse does not hold: if a concave —~ f(x) is maximized at
some x, it is not necessarily true that the derivative is zero there.

o f(x) = —|x|: is maximized at x = 0 where its derivative is undefined
o f(p) =logp with 0 < p <1, is maximized at p = 1 where ;j,’—; =1
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Convexity, Concavity and Optimization

If f(x) is concave —~ and there exists a point at which
df
& — 01

then f(x) has a maximum at that point.

Note: the converse does not hold: if a concave —~ f(x) is maximized at
some x, it is not necessarily true that the derivative is zero there.

o f(x) = —|x|: is maximized at x = 0 where its derivative is undefined
o f(p) =logp with 0 < p <1, is maximized at p = 1 where g’—; =1

@ Similarly for minimisation of convex functions
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© Jensen's Inequality
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Jensen’s Inequality for Convex Functions

Theorem: Jensen’s Inequality

If fis a convex — function and X is a random variable then:
F(E[X]) <E[f(X)].

Moreover, if f is strictly convex —, the equality implies that X = E[X]
with probability 1, i.e X is a constant.

In other words, for a probability vector p,

N N
f (Z Pixi> < Zpif(xi)-
i—1 i—1

Similarly for a concave —~ function: E[f(X)] < f(E[X]) .
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Jensen’s Inequality for Convex Functions

Proof by Induction

(1) K=2:
» Two-state random variable X € {xy, x2}

» With p = (p1, p2) = (p1,1 — p1)
»0<p<l1

we simply follow the definition of convexity:

pif(x1) + p2f(x2) > f(prxa + p2x2)
—————
E[f(X)] E[X]
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Jensen’s Inequality for Convex Functions

Proof by Induction — Cont'd

(2) (K —1) — K: Assuming the theorem is true for distributions with
K — 1 states, and writing: p: = p;/(1 — px) fori=1,...,K -1

Zp,f(X,)—pKf(XK (1-pk) Zpl x;)
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Jensen’s Inequality for Convex Functions

Proof by Induction — Cont'd

(2) (K —1) — K: Assuming the theorem is true for distributions with
K — 1 states, and writing: p: = p;/(1 — px) fori=1,...,K -1

ZP:f(X:)—PKf(XK 1—PK prf Xl

> PKf(XK) 1 — pK f (Z p,X,> Induction hypothesis
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Jensen’s Inequality for Convex Functions

Proof by Induction — Cont'd

(2) (K —1) — K: Assuming the theorem is true for distributions with
K — 1 states, and writing: p: = p;/(1 — px) fori=1,...,K -1

ZP:f(X:)—PKf(XK 1—PK prf Xl
> PK f(XK) 1 — pK f (Z p;X,) Induction hypothesis

K-1
> f <pKXK + (1 — pK) Z p;X,) definition of convexity

i=1

-~

Z,K:l PiXi
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Jensen’s Inequality for Convex Functions

Proof by Induction — Cont'd

(2) (K —1) — K: Assuming the theorem is true for distributions with
K — 1 states, and writing: p: = p;/(1 — px) fori=1,...,K -1

ZP:f(X:)—PKf(XK 1—PK prf Xl
> PK f(XK) 1 — pK f (Z p;X,) Induction hypothesis
K-1
> f <pKXK + (1 — pK) Z p;X,) definition of convexity

i=1

-~

Z,K:l PiXi

K K
S pif(x) = f (Z p,-X,-) = E[f(X)] > F(E[X]) et o
i=1 i=1

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theon Semester 2

19/



Jensen's Inequality Example: The AM-GM Inequality

Recall that for a concave — function: E[f(X)] < f(E[X]).
Consider X € {x1,...,xn}, X > 0 with uniform probability distribution

p=(%,..., %) and the strictly concave ~ function f(x) = log x:
1 o 1 o
N Z log x; < log (N Zx,-)
i=1 i=1
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Jensen's Inequality Example: The AM-GM Inequality

Recall that for a concave — function: E[f(X)] < f(E[X]).

Consider X € {x1,...,xn}, X > 0 with uniform probability distribution

p=(%,..., %) and the strictly concave ~ function f(x) = log x:

1< 1<

— logx; <log | — X;
N
i=1 i=1
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Jensen's Inequality Example: The AM-GM Inequality

Recall that for a concave — function: E[f(X)] < f(E[X]).

Consider X € {x1,...,xn}, X > 0 with uniform probability distribution

p=(%,..., %) and the strictly concave ~ function f(x) = log x:

1< 1<
— logx; <log | — X;

(f1) < 53

=
AN
o
(0]
VR
=~
=
X
~—

=
=2

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theon Semester 2 20 / 37



Jensen's Inequality Example: The AM-GM Inequality

Recall that for a concave — function: E[f(X)] < f(E[X]).

Consider X € {x1,...,xn}, X > 0 with uniform probability distribution
p=(%,..., %) and the strictly concave ~ function f(x) = log x:

1 1
1

o
o
~—
—=
X
~—
=
IN
o
(0]
VR
=~
=
X
~—

N———
=
(VAN
=~
I'Mz
X
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@ Gibbs' Inequality
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Gibbs' Inequality

The relative entropy (or KL divergence) between two distributions p(X)
and q(X) with X € X is non-negative:

DkL(pllg) >0

with equality if and only if p(x) = q(x) for all x.
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Gibbs' Inequality

Proof (1 of 2)

X
Recall that: Dk (p|lq) = Z p(x)log P9 =Epx) [Iog
= q(x)

Let A= {x: p(x) > 0}. Then:

260
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Gibbs' Inequality

Proof (1 of 2)

X X
Recall that: Dy (p||q) = X;(p(x) log % — Epx) [Iog ZEXH
Let A= {x: p(x) > 0}. Then:
q(x)

— Dui(pllg) = Y p(x) log ===

= p(x)
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Gibbs' Inequality

Proof (1 of 2)

X X
Recall that: Dy (p||q) = X;(p(x) log % — Epx) [Iog ZEXH
Let A= {x: p(x) > 0}. Then:
— Dri(pllg) = Z;p()() log %
< Iog;p(x)% Jensen's inequality
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Gibbs' Inequality

Proof (1 of 2)

X X
Recall that: Dy (p||q) = X;(p(x) log % — Epx) [Iog ZEXH
Let A= {x: p(x) > 0}. Then:
— Dri(pllg) = Z;p()() log %
< Iog;p(x)% Jensen's inequality
<log > q(x)
xXeEX
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Gibbs' Inequality

Proof (1 of 2)

X
Recall that: Dk (p|lq) = Z p(x)log P9 =Epx) [Iog
= q(x)

260

Let A= {x: p(x) > 0}. Then:

— Dri(pllg) = Y p(x)log alx)

= p(x)

S |Og Z p(X)M Jensen's inequality
= rk)

<log > q(x)
XEX

=logl
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Gibbs' Inequality

Proof (1 of 2)

Recall that: Dk (p|lq) = XGZXP(X) log ? =Epx) [Iog Z( )]

Let A= {x: p(x) > 0}. Then:

~ Da(plla) = 3 p(x)log 5 S

/\/‘\
\_/

xeA
< |Og Z X) Jensen's inequality
xeA
<log > q(x)
xeX
=logl
=0
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Gibbs' Inequality

Proof (1 of 2)

X X
Recall that: Dk (p||q) = g{p(X) log % =Epx) ['Og ZEXH

Let A= {x: p(x) > 0}. Then:

— Dku(pllg) = ) p(x)log %

x€eA ( )
q(x)
S |Og Z p(X) Jensen's inequality
= rk)
<log > q(x)
XEX
=logl
=0
Dki(pllg) = 0.
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Gibbs' Inequality

Proof (2 of 2)

q(x)

Since log u is strictly convex we have equality if —— = ¢ for all x. Then:

p(x)
dalx)=c)Y p(x)=c

x€eA x€EA

Also, the last inequality in the previous slide becomes equality only if:

> a() =" ax).

xeA xeX

Therefore ¢ =1 and Dk(pl/lg) =0 < p(x) = g(x) forall x .

Alternative proof: Use the fact that logx < x — 1.
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Non-Negativity of Mutual Information

For any two random variables X, Y:
I(X;Y) >0,

with equality if and only if X and Y are statistically independent.

Proof: We simply use the definition of mutual information and Gibbs’
inequality:
I(X;Y) = Du(p(X, Y)[[p(X)p(Y)) = 0,

with equality if and only if p(X,Y) = p(X)p(Y), i.e. X and Y are
independent.
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© Information Cannot Hurt
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Conditioning Reduces Entropy

Information Cannot Hurt — Proof

For any two random variables X, Y,
H(X|Y) < H(X),

with equality if and only if X and Y are independent.
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Conditioning Reduces Entropy

Information Cannot Hurt — Proof

For any two random variables X, Y,
H(X|Y) < H(X),

with equality if and only if X and Y are independent.

Proof: We simply use the non-negativity of mutual information:
I(X;Y)>0
H(X)—H(X|Y)>0
H(X]Y) < H(X)

with equality if and only if p(X,Y) = p(X)p(Y), i.e X and Y are
independent.

Data are helpful, they don't increase uncertainty on average.
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Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

p(X,Y) X
1 2
v 1 0 3/4
2 1/8 1/8
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Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

p(X) = (1/8,7/8)
P X p(Y) = (3/4,1/4)

v 1 0 3/4 p(X[Y =1)=(0,1)
> |18 18 p(X|Y = 2) = (1/2,1/2)
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Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

p(X) = (1/8,7/8)
P X p(Y) = (3/4,1/4)
v 1 0 3/4 p(X[Y =1)=(0,1)
> |1/8 1/8 p(X|Y = 2) = (1/2,1/2)
H(X) ~ 0.544 bits H(X|Y = 1) = 0 bits H(X|Y = 2) = 1 bit
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Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

p(X) = (1/8,7/8)
P X p(Y) = (3/4,1/4)
v 1 0 3/4 p(X[Y =1)=(0,1)
> |18 18 p(X|Y = 2) = (1/2,1/2)
H(X) =~ 0.544 bits H(X|Y =1) =0 bits H(X|Y =2) =1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).
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Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

p(X) = (1/8,7/8)
P X p(Y) = (3/4,1/4)
v 1 0 3/4 p(X[Y =1)=(0,1)
> |18 18 p(X|Y = 2) = (1/2,1/2)
H(X) =~ 0.544 bits H(X|Y =1) =0 bits H(X|Y =2) =1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).

However, H(X|Y) = Y p(y)H(X|Y =y) = % = 0.25 bits < H(X)
ye{1,2}
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Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

p(X) = (1/8,7/8)
P X p(Y) = (3/4,1/4)
v 1 0 3/4 p(X[Y =1)=(0,1)
> |18 18 p(X|Y = 2) = (1/2,1/2)
H(X) =~ 0.544 bits H(X|Y =1) =0 bits H(X|Y =2) =1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).

1
However, H(X|Y) = Y p(y)H(X|Y =y) = 2 = 0:25 bits < H(X)
ye{1,2}
H(X|Y = yx) may be greater than H(X) but the average: H(X|Y) is
always less or equal to H(X).
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Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

p(X) = (1/8,7/8)
P X p(Y) = (3/4,1/4)
v 1 0 3/4 p(X[Y =1)=(0,1)
> |18 18 p(X|Y = 2) = (1/2,1/2)
H(X) =~ 0.544 bits H(X|Y =1) =0 bits H(X|Y =2) =1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).
1
However, H(X|Y) = Y p(y)H(X|Y =y) = 2 = 0:25 bits < H(X)
ye{1,2}

H(X|Y = yx) may be greater than H(X) but the average: H(X|Y) is
always less or equal to H(X).

Information cannot hurt on average
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@ Data Processing Inequality
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Markov Chain

Random variables X, Y, Z are said to form a Markov chain in that order
(denoted by X — Y — Z) if their joint probability distribution can be
written as:

Definition

p(X, Y, Z) = p(X)p(Y|X)p(Z|Y)
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Markov Chain

Random variables X, Y, Z are said to form a Markov chain in that order
(denoted by X — Y — Z) if their joint probability distribution can be
written as:

Definition

p(X, Y, Z) = p(X)p(Y|X)p(Z|Y)

Consequences:
@ X =Y — Zifand only if X and Z are conditionally independent
given Y.
o X > Y — Zimplies that Z — Y — X.
o If Z=1f(Y), then X —-Y > Z
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Data-Processing Inequality

Definition

if X = Y — Z then: I(X;Y) > I(X; 2)

@ X is the state of the world, Y is the data gathered and Z is the
processed data

@ No “clever’” manipulation of the data can improve the inferences that
can be made from the data

@ No processing of Y, deterministic or random, can increase the
information that Y contains about X
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Data-Processing Inequality

Proof

Recall that the chain rule for mutual information states that:

I(X:Y,Z) = 1(X;Y)+ I(X; Z|Y)
=1(X; Z)+ I(X; Y|2)

Therefore:
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Data-Processing Inequality

Proof

Recall that the chain rule for mutual information states that:

I(X:Y,Z) = 1(X;Y)+ I(X; Z|Y)
=1(X; Z)+ I(X; Y|2)

Therefore:

I(X, Y) + I(X, Z‘Y) == I(X, Z) + I(X, Y|Z) Markov chain assumption
0
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Data-Processing Inequality

Proof

Recall that the chain rule for mutual information states that:
(XY, Z)=1(X;Y)+ I(X; Z]Y)
=1(X;Z)+ 1(X;Y]|2)
Therefore:
I(X, Y) + I(X, Z‘ Y) == I(X, Z) + I(X, Y|Z) Markov chain assumption
—_——

0
(X Y)=1(X;2)+ I(X;Y|Z) buwixivizy=o
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Data-Processing Inequality

Proof

Recall that the chain rule for mutual information states that:

I(X:Y,Z) = 1(X;Y)+ I(X; Z|Y)
=1(X; Z)+ I(X; Y|2)

Therefore:

I(X, Y) + I(X, Z‘Y) == I(X, Z) + I(X, Y|Z) Markov chain assumption
0
(X Y)=1(X;2)+ I(X;Y|Z) buwixivizy=o
1(X;Y) > I(X; 2)
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Data-Processing Inequality

Functions of the Data

In particular, if Z = g(Y') we have that:

1(X;Y)>1(X;g(Y))

Proof: X — Y — g(Y') forms a Markov chain.

Functions of the data Y cannot increase the information about X
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Data-Processing Inequality

Observation of a “Downstream” Variable

If X = Y — Z then I(X; Y|Z) < I(X;Y)

Proof: We use again the chain rule for mutual information:
(XY, Z)=1(X;Y)+ I(X; Z]Y)
=1(X;Z2)+ 1(X;Y|2)
Therefore:
(X Y)Y+ 1(X;Z1Y)=1(X; Z) + 1(X; Y|Z)  Markov chain assumption
\T_z
I(X;Y1Z)=1(X;Y)=1(X;Z) buixz)=o
I(X;Y]Z) < I(X;Y)

The dependence between X and Y cannot be increased by the observation
of a “downstream” variable.
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@ Wrapping Up
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Summary & Conclusions

Chain rule for mutual information
Convex Functions

Jensen's inequality, Gibbs' inequality

Important inequalities regarding information, inference and data
processing

Reading: Mackay §2.6 to §2.10, Cover & Thomas §2.5 to §2.8
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Next time

@ Law of large numbers
o Markov's inequality

@ Chebychev's inequality
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