# COMP2610/COMP6261 - Information Theory Lecture 8: Some Fundamental Inequalities

#### Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University



#### August 13th, 2014

- Decomposability of entropy
- Relative entropy (KL divergence)
- Mutual information

#### Review

Relative entropy (KL divergence):

$$D_{\mathsf{KL}}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

Mutual information:

$$I(X; Y) = D_{KL}(p(X, Y) || p(X) p(Y))$$
  
=  $H(X) + H(Y) - H(X, Y).$ 

Average reduction in uncertainty in X when Y is known
I(X; Y) = 0 when X, Y statistically independent

Conditional mutual information of X, Y given Z:

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

Mutual information chain rule

Jensen's inequality

"Information cannot hurt"

Data processing inequality

# Outline



- 2 Convex Functions
- Jensen's Inequality
  - 4 Gibbs' Inequality
- 5 Information Cannot Hurt
- 6 Data Processing Inequality

#### 7 Wrapping Up

- 2 Convex Functions
- 3 Jensen's Inequality
- Gibbs' Inequality
- 5 Information Cannot Hurt
- Data Processing Inequality
- 7 Wrapping Up

### Recall: Joint Mutual Information

Recall the mutual information between X and Y:

$$I(X; Y) = H(X) + H(Y) - H(X, Y) = I(Y; X).$$

We can also compute the mutual information between  $X_1, \ldots, X_N$  and  $Y_1, \ldots, Y_M$ :

$$I(X_1,...,X_N;Y_1,...,Y_M) = H(X_1,...,X_N) + H(Y_1,...,Y_M) - H(X_1,...,X_N,Y_1,...,Y_M) = I(Y_1,...,Y_M;X_1,...,X_N).$$

Note that  $I(X, Y; Z) \neq I(X; Y, Z)$  in general

 Reduction in uncertainty of X and Y given Z versus uncertainty of X given Y and Z

Let X, Y, Z be r.v. and recall that:

I(X; Y, Z) = I(Y, Z; X) symmetry

Let X, Y, Z be r.v. and recall that:

I(X; Y, Z) = I(Y, Z; X) symmetry = H(Z, Y) - H(Z, Y|X) def. mutual info.

Let X, Y, Z be r.v. and recall that:

$$\begin{split} I(X;Y,Z) &= I(Y,Z;X) \quad \text{symmetry} \\ &= H(Z,Y) - H(Z,Y|X) \quad \text{def. mutual info.} \\ &= H(Z|Y) + H(Y) - H(Z|X,Y) - H(Y|X) \quad \text{entropy's chain rule} \end{split}$$

Let X, Y, Z be r.v. and recall that:

$$\begin{split} I(X; Y, Z) &= I(Y, Z; X) \quad \text{symmetry} \\ &= H(Z, Y) - H(Z, Y|X) \quad \text{def. mutual info.} \\ &= H(Z|Y) + H(Y) - H(Z|X, Y) - H(Y|X) \quad \text{entropy's chain rule} \\ &= \underbrace{H(Y) - H(Y|X)}_{I(Y;X)} + \underbrace{H(Z|Y) - H(Z|X, Y)}_{I(Z;X|Y)} \end{split}$$

Let X, Y, Z be r.v. and recall that:

$$\begin{split} I(X;Y,Z) &= I(Y,Z;X) \quad \text{symmetry} \\ &= H(Z,Y) - H(Z,Y|X) \quad \text{def. mutual info.} \\ &= H(Z|Y) + H(Y) - H(Z|X,Y) - H(Y|X) \quad \text{entropy's chain rule} \\ &= \underbrace{H(Y) - H(Y|X)}_{I(Y;X)} + \underbrace{H(Z|Y) - H(Z|X,Y)}_{I(Z;X|Y)} \\ I(X;Y,Z) &= I(X;Y) + I(X;Z|Y) \quad \text{def. mutual info and cond. mutual info} \end{split}$$

Let X, Y, Z be r.v. and recall that:

$$\begin{split} I(X;Y,Z) &= I(Y,Z;X) \quad \text{symmetry} \\ &= H(Z,Y) - H(Z,Y|X) \quad \text{def. mutual info.} \\ &= H(Z|Y) + H(Y) - H(Z|X,Y) - H(Y|X) \quad \text{entropy's chain rule} \\ &= \underbrace{H(Y) - H(Y|X)}_{I(Y;X)} + \underbrace{H(Z|Y) - H(Z|X,Y)}_{I(Z;X|Y)} \\ I(X;Y,Z) &= I(X;Y) + I(X;Z|Y) \quad \text{def. mutual info and cond. mutual info} \end{split}$$

Similarly, by symmetry:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

For any collection of random variables  $X_1, \ldots, X_N$  and Y:

$$I(X_1,...,X_N;Y) = \sum_{i=1}^N I(X_i;Y|X_1,...,X_{i-1})$$
  
=  $\sum_{i=1}^N I(Y;X_i|X_1,...,X_{i-1}).$ 

#### 2 Convex Functions

- 3 Jensen's Inequality
- Gibbs' Inequality
- 5 Information Cannot Hurt
- Data Processing Inequality

#### Wrapping Up

# Convex Functions:

#### Introduction



A function is convex  $\smile\,$  if every cord of the function lies above the function

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory

Semester 2 11 / 37

#### Definition

A function f(x) is convex  $\smile$  over (a, b) if for all  $x_1, x_2 \in (a, b)$  and  $0 \le \lambda \le 1$ :

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

We say f is strictly convex  $\smile$  if for all  $x_1, x_2 \in (a, b)$  the equality holds only for  $\lambda = 0$  and  $\lambda = 1$ .

Similarly, a function f is concave  $\frown$  if -f is convex  $\smile$ , i.e. if every cord of the function lies below the function.

#### Examples of Convex and Concave Functions



#### Theorem (Cover & Thomas, Th 2.6.1)

If a function f has a second derivative that is non-negative (positive) over an interval, the function is convex  $\smile$ (strictly convex  $\smile$ ) over that interval.

This allows us to verify convexity or concavity.

Examples:

• 
$$x^2$$
:  $\frac{d}{dx}\left(\frac{d}{dx}(x^2)\right) = \frac{d}{dx}(2x) = 2$   
•  $e^x$ :  $\frac{d}{dx}\left(\frac{d}{dx}(e^x)\right) = \frac{d}{dx}(e^x) = e^x$   
•  $\sqrt{x}, x > 0$ :  $\frac{d}{dx}\left(\frac{d}{dx}(\sqrt{x})\right) = \frac{1}{2}\frac{d}{dx}\left(\frac{1}{\sqrt{x}}\right) = -\frac{1}{4}\frac{1}{\sqrt{x^3}}$ 

# Convexity, Concavity and Optimization

If f(x) is concave  $\frown$  and there exists a point at which

$$\frac{df}{dx} = 0,$$

then f(x) has a maximum at that point.

If f(x) is concave  $\frown$  and there exists a point at which

$$\frac{df}{dx} = 0$$

then f(x) has a maximum at that point.

Note: the converse does not hold: if a concave  $\frown f(x)$  is maximized at some x, it is not necessarily true that the derivative is zero there.

f(x) = -|x|: is maximized at x = 0 where its derivative is undefined
f(p) = log p with 0 ≤ p ≤ 1, is maximized at p = 1 where df/dp = 1

If f(x) is concave  $\frown$  and there exists a point at which

$$\frac{df}{dx} = 0$$

then f(x) has a maximum at that point.

Note: the converse does not hold: if a concave  $\frown f(x)$  is maximized at some x, it is not necessarily true that the derivative is zero there.

- f(x) = -|x|: is maximized at x = 0 where its derivative is undefined
- $f(p) = \log p$  with  $0 \le p \le 1$ , is maximized at p = 1 where  $\frac{df}{dp} = 1$
- Similarly for minimisation of convex functions

- D Chain Rule for Mutual Information
- 2 Convex Functions
- Jensen's Inequality
  - Gibbs' Inequality
  - 5 Information Cannot Hurt
  - Data Processing Inequality
  - Wrapping Up

# Jensen's Inequality for Convex Functions

#### Theorem: Jensen's Inequality

If f is a convex  $\smile$  function and X is a random variable then:

 $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$ 

Moreover, if f is strictly convex  $\smile$ , the equality implies that  $X = \mathbb{E}[X]$  with probability 1, i.e X is a constant.

In other words, for a probability vector **p**,

$$f\left(\sum_{i=1}^{N}p_ix_i\right)\leq \sum_{i=1}^{N}p_if(x_i).$$

Similarly for a concave  $\frown$  function:  $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$  .

#### (1) K = 2:

- Two-state random variable  $X \in \{x_1, x_2\}$
- With  $\mathbf{p} = (p_1, p_2) = (p_1, 1 p_1)$
- ▶ 0 ≤ p ≤ 1

we simply follow the definition of convexity:

$$\underbrace{p_1f(x_1) + p_2f(x_2)}_{\mathbb{E}[f(X)]} \ge f(\underbrace{p_1x_1 + p_2x_2}_{\mathbb{E}[X]})$$

(2)  $(K-1) \rightarrow K$ : Assuming the theorem is true for distributions with K-1 states, and writing:  $p'_i = p_i/(1-p_K)$  for i = 1, ..., K-1:

$$\sum_{i=1}^{K} p_i f(x_i) = p_{\mathcal{K}} f(x_{\mathcal{K}}) + (1 - p_{\mathcal{K}}) \sum_{i=1}^{K-1} p'_i f(x_i)$$

(2)  $(K-1) \rightarrow K$ : Assuming the theorem is true for distributions with K-1 states, and writing:  $p'_i = p_i/(1-p_K)$  for i = 1, ..., K-1:

$$\sum_{i=1}^{K} p_i f(x_i) = p_K f(x_K) + (1 - p_K) \sum_{i=1}^{K-1} p'_i f(x_i)$$
  
 $\geq p_K f(x_K) + (1 - p_K) f\left(\sum_{i=1}^{K-1} p'_i x_i\right)$  Indu

Induction hypothesis

(2)  $(K-1) \rightarrow K$ : Assuming the theorem is true for distributions with K-1 states, and writing:  $p'_i = p_i/(1-p_K)$  for i = 1, ..., K-1:

$$\sum_{i=1}^{K} p_i f(x_i) = p_K f(x_K) + (1 - p_K) \sum_{i=1}^{K-1} p'_i f(x_i)$$

$$\geq p_K f(x_K) + (1 - p_K) f\left(\sum_{i=1}^{K-1} p'_i x_i\right) \quad \text{Induction hypothesis}$$

$$\geq f\left(p_K x_K + (1 - p_K) \sum_{i=1}^{K-1} p'_i x_i\right) \quad \text{definition of convexity}$$

$$\sum_{i=1}^{K} p_i x_i$$

(2)  $(K-1) \rightarrow K$ : Assuming the theorem is true for distributions with K-1 states, and writing:  $p'_i = p_i/(1-p_K)$  for i = 1, ..., K-1:

$$\sum_{i=1}^{K} p_i f(x_i) = p_K f(x_K) + (1 - p_K) \sum_{i=1}^{K-1} p'_i f(x_i)$$

$$\geq p_K f(x_K) + (1 - p_K) f\left(\sum_{i=1}^{K-1} p'_i x_i\right) \quad \text{Induction hypothesis}$$

$$\geq f\left(p_K x_K + (1 - p_K) \sum_{i=1}^{K-1} p'_i x_i\right) \quad \text{definition of convexity}$$

$$\sum_{i=1}^{K} p_i f(x_i) \geq f\left(\sum_{i=1}^{K} p_i x_i\right) \Rightarrow \mathbb{E}[f(X)] \geq f(\mathbb{E}[x]) \quad \text{equality case?}$$

Recall that for a concave  $\frown$  function:  $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$ .

$$\frac{1}{N}\sum_{i=1}^{N}\log x_i \leq \log\left(\frac{1}{N}\sum_{i=1}^{N}x_i\right)$$

Recall that for a concave  $\frown$  function:  $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$ .

$$rac{1}{N}\sum_{i=1}^N \log x_i \leq \log\left(rac{1}{N}\sum_{i=1}^N x_i
ight) \ \log\left(\prod_{i=1}^N x_i
ight)^rac{1}{N} \leq \log\left(rac{1}{N}\sum_{i=1}^N x_i
ight)$$

Recall that for a concave  $\frown$  function:  $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$ .

$$egin{aligned} &rac{1}{N}\sum_{i=1}^{N}\log x_i \leq \log\left(rac{1}{N}\sum_{i=1}^{N}x_i
ight) \ &\log\left(\prod_{i=1}^{N}x_i
ight)^{rac{1}{N}} \leq \log\left(rac{1}{N}\sum_{i=1}^{N}x_i
ight) \ &\left(\prod_{i=1}^{N}x_i
ight)^{rac{1}{N}} \leq rac{1}{N}\sum_{i=1}^{N}x_i \end{aligned}$$

Recall that for a concave  $\frown$  function:  $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$ .

$$\frac{1}{N} \sum_{i=1}^{N} \log x_i \le \log \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)$$
$$\log \left(\prod_{i=1}^{N} x_i\right)^{\frac{1}{N}} \le \log \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)$$
$$\left(\prod_{i=1}^{N} x_i\right)^{\frac{1}{N}} \le \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$\sqrt[N]{x_1 x_2 \dots x_N} \le \frac{x_1 + x_2 \dots + x_N}{N}$$

- D Chain Rule for Mutual Information
- 2 Convex Functions
- 3 Jensen's Inequality
- ④ Gibbs' Inequality
- 5 Information Cannot Hurt
- Data Processing Inequality
- Wrapping Up

#### Theorem

The relative entropy (or KL divergence) between two distributions p(X) and q(X) with  $X \in \mathcal{X}$  is non-negative:

 $D_{\mathsf{KL}}(p\|q) \geq 0$ 

with equality if and only if p(x) = q(x) for all x.

Recall that: 
$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[ \log \frac{p(X)}{q(X)} \right]$$
  
Let  $\mathcal{A} = \{x : p(x) > 0\}$ . Then:

Recall that: 
$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[ \log \frac{p(X)}{q(X)} \right]$$
  
Let  $\mathcal{A} = \{x : p(x) > 0\}$ . Then:

$$-D_{\mathsf{KL}}(p\|q) = \sum_{x \in \mathcal{A}} p(x) \log \frac{q(x)}{p(x)}$$

Recall that: 
$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[ \log \frac{p(X)}{q(X)} \right]$$
  
Let  $\mathcal{A} = \{x : p(x) > 0\}$ . Then:

$$egin{aligned} &-D_{\mathsf{KL}}(p\|q) = \sum_{x\in\mathcal{A}} p(x)\lograc{q(x)}{p(x)}\ &\leq \log\sum_{x\in\mathcal{A}} p(x)rac{q(x)}{p(x)} \end{aligned}$$

Jensen's inequality

Recall that: 
$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[ \log \frac{p(X)}{q(X)} \right]$$
  
Let  $\mathcal{A} = \{x : p(x) > 0\}$ . Then:  
 $- D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{A}} p(x) \log \frac{q(x)}{p(x)}$ 

Jensen's inequality

$$egin{aligned} \mathcal{D}_{\mathsf{KL}}(p\|q) &= \sum_{x\in\mathcal{A}} p(x)\lograc{q(x)}{p(x)}\ &\leq \log\sum_{x\in\mathcal{A}} p(x)rac{q(x)}{p(x)}\ &\leq \log\sum_{x\in\mathcal{X}} q(x) \end{aligned}$$

Recall that: 
$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[ \log \frac{p(X)}{q(X)} \right]$$
  
Let  $\mathcal{A} = \{x : p(x) > 0\}$ . Then:  
 $- D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{A}} p(x) \log \frac{q(x)}{p(x)}$   
 $\leq \log \sum_{x \in \mathcal{A}} p(x) \frac{q(x)}{p(x)}$  Jensen's inequality  
 $\leq \log \sum_{x \in \mathcal{X}} q(x)$   
 $= \log 1$ 

Recall that: 
$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[ \log \frac{p(X)}{q(X)} \right]$$
  
Let  $\mathcal{A} = \{x : p(x) > 0\}$ . Then:  
 $-D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{A}} p(x) \log \frac{q(x)}{p(x)}$   
 $\leq \log \sum_{x \in \mathcal{A}} p(x) \frac{q(x)}{p(x)}$  Jensen's inequality  
 $\leq \log \sum_{x \in \mathcal{X}} q(x)$   
 $= \log 1$   
 $= 0$ 

Recall that: 
$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[ \log \frac{p(X)}{q(X)} \right]$$
  
Let  $\mathcal{A} = \{x : p(x) > 0\}$ . Then:  
 $- D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{A}} p(x) \log \frac{q(x)}{p(x)}$   
 $\leq \log \sum_{x \in \mathcal{A}} p(x) \frac{q(x)}{p(x)}$  Jensen's inequality  
 $\leq \log \sum_{x \in \mathcal{X}} q(x)$   
 $= \log 1$   
 $= 0$   
 $D_{\mathsf{KL}}(p||q) \geq 0.$ 

Since log *u* is strictly convex we have equality if  $\frac{q(x)}{p(x)} = c$  for all *x*. Then:

$$\sum_{x\in\mathcal{A}}q(x)=c\sum_{x\in\mathcal{A}}p(x)=c$$

Also, the last inequality in the previous slide becomes equality only if:

$$\sum_{x\in\mathcal{A}}q(x)=\sum_{x\in\mathcal{X}}q(x).$$

Therefore c = 1 and  $D_{\mathsf{KL}}(p \| q) = 0 \Leftrightarrow p(x) = q(x)$  for all x.

Alternative proof: Use the fact that  $\log x \le x - 1$ .

#### Corollary

For any two random variables X, Y:

 $I(X;Y) \geq 0$ ,

with equality if and only if X and Y are statistically independent.

**Proof**: We simply use the definition of mutual information and Gibbs' inequality:

$$I(X;Y) = D_{\mathsf{KL}}(p(X,Y) \| p(X)p(Y)) \ge 0,$$

with equality if and only if p(X, Y) = p(X)p(Y), i.e. X and Y are independent.

- D Chain Rule for Mutual Information
- 2 Convex Functions
- 3 Jensen's Inequality
- Gibbs' Inequality
- 5 Information Cannot Hurt
  - Data Processing Inequality

#### Wrapping Up

Information Cannot Hurt — Proof

#### Theorem

For any two random variables X, Y,

 $H(X|Y) \leq H(X),$ 

with equality if and only if X and Y are independent.

Information Cannot Hurt — Proof

#### Theorem

For any two random variables X, Y,

 $H(X|Y) \leq H(X),$ 

with equality if and only if X and Y are independent.

Proof: We simply use the non-negativity of mutual information:

$$egin{aligned} & I(X;Y) \geq 0 \ & H(X) - H(X|Y) \geq 0 \ & H(X|Y) \leq H(X) \end{aligned}$$

with equality if and only if p(X, Y) = p(X)p(Y), i.e X and Y are independent.

Data are helpful, they don't increase uncertainty on average.

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

$$\begin{array}{c|cccc}
p(X,Y) & X \\
\hline
 & 1 & 2 \\
\hline
Y & 1 & 0 & 3/4 \\
\hline
 & 2 & 1/8 & 1/8 \\
\end{array}$$

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

|   | p(X, Y) | X   |     |  |
|---|---------|-----|-----|--|
|   |         | 1   | 2   |  |
| V | 1       | 0   | 3/4 |  |
| ' | 2       | 1/8 | 1/8 |  |

$$p(X) = (1/8, 7/8)$$
$$p(Y) = (3/4, 1/4)$$
$$p(X|Y = 1) = (0, 1)$$
$$p(X|Y = 2) = (1/2, 1/2)$$

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

|   | p(X   Y)     | ×   |     | $\mathbf{p}(X) = (1/8, 7/8)$     |
|---|--------------|-----|-----|----------------------------------|
|   | ρ(, (, , , ) | 1   | 2   | p(Y) = (3/4, 1/4)                |
| V | 1            | 0   | 3/4 | $\mathbf{p}(X Y=1)=(0,1)$        |
| Ŷ | 2            | 1/8 | 1/8 | $\mathbf{p}(X Y=2) = (1/2, 1/2)$ |

( . . .

 $H(X) \approx 0.544$  bits H(X|Y=1) = 0 bits H(X|Y=2) = 1 bit

- (0)

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

|   | n(X   Y) |     |     | $\mathbf{p}(X) = (1/8, 7/8)$     |
|---|----------|-----|-----|----------------------------------|
|   | p(X, T)  | 1   | 2   | p(Y) = (3/4, 1/4)                |
| V | 1        | 0   | 3/4 | $\mathbf{p}(X Y=1)=(0,1)$        |
| Ŷ | 2        | 1/8 | 1/8 | $\mathbf{p}(X Y=2) = (1/2, 1/2)$ |

( . . .

 $H(X) \approx 0.544$  bits H(X|Y=1) = 0 bits H(X|Y=2) = 1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

$$p(X, Y)$$
X $p(X) = (1/8, 7/8)$ 12 $p(Y) = (3/4, 1/4)$ Y1021/8 $p(X|Y=1) = (0, 1)$  $p(X|Y=2) = (1/2, 1/2)$ 

( . . .

 $H(X) \approx 0.544$  bits H(X|Y=1) = 0 bits H(X|Y=2) = 1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).

However, 
$$H(X|Y) = \sum_{y \in \{1,2\}} p(y)H(X|Y=y) = \frac{1}{4} = 0.25$$
 bits <  $H(X)$ 

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

$$p(X, Y)$$
X $p(X) = (1/8, 7/8)$ 12 $p(Y) = (3/4, 1/4)$ Y1021/8 $p(Y) = 1) = (0, 1)$  $p(X|Y=1) = (0, 1)$  $p(X|Y=2) = (1/2, 1/2)$ 

 $H(X) \approx 0.544$  bits H(X|Y=1) = 0 bits H(X|Y=2) = 1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).

However, 
$$H(X|Y) = \sum_{y \in \{1,2\}} p(y)H(X|Y=y) = \frac{1}{4} = 0.25$$
 bits  $< H(X)$ 

 $H(X|Y = y_k)$  may be greater than H(X) but the average: H(X|Y) is always less or equal to H(X).

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let X, Y have the following joint distribution:

|   | p(X, Y) |     |     | $\mathbf{p}(X) = (1/8, 7/8)$     |
|---|---------|-----|-----|----------------------------------|
|   | p(X, T) | 1   | 2   | p(Y) = (3/4, 1/4)                |
| V | 1       | 0   | 3/4 | $\mathbf{p}(X Y=1)=(0,1)$        |
| Ŷ | 2       | 1/8 | 1/8 | $\mathbf{p}(X Y=2) = (1/2, 1/2)$ |

 $H(X) \approx 0.544$  bits H(X|Y=1) = 0 bits H(X|Y=2) = 1 bit

We see that in this case H(X|Y = 1) < H(X), H(X|Y = 2) > H(X).

However, 
$$H(X|Y) = \sum_{y \in \{1,2\}} p(y)H(X|Y=y) = \frac{1}{4} = 0.25$$
 bits  $< H(X)$ 

 $H(X|Y = y_k)$  may be greater than H(X) but the average: H(X|Y) is always less or equal to H(X).

#### Information cannot hurt on average

- Chain Rule for Mutual Information
- 2 Convex Functions
- 3 Jensen's Inequality
- Gibbs' Inequality
- 5 Information Cannot Hurt
- 6 Data Processing Inequality

#### Wrapping Up



#### Definition

Random variables X, Y, Z are said to form a Markov chain in that order (denoted by  $X \to Y \to Z$ ) if their joint probability distribution can be written as:

$$p(X, Y, Z) = p(X)p(Y|X)p(Z|Y)$$



#### Definition

Random variables X, Y, Z are said to form a Markov chain in that order (denoted by  $X \to Y \to Z$ ) if their joint probability distribution can be written as:

$$p(X, Y, Z) = p(X)p(Y|X)p(Z|Y)$$

#### Consequences:

- $X \to Y \to Z$  if and only if X and Z are conditionally independent given Y.
- $X \to Y \to Z$  implies that  $Z \to Y \to X$ .

• If 
$$Z = f(Y)$$
, then  $X \to Y \to Z$ 

#### Theorem

#### if $X \to Y \to Z$ then: $I(X; Y) \ge I(X; Z)$

- X is the state of the world, Y is the data gathered and Z is the processed data
- No "clever" manipulation of the data can improve the inferences that can be made from the data
- No processing of Y, deterministic or random, can increase the information that Y contains about X

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y) = I(X; Z) + I(X; Y|Z)$$

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y) = I(X; Z) + I(X; Y|Z)$$

$$I(X; Y) + \underbrace{I(X; Z|Y)}_{0} = I(X; Z) + I(X; Y|Z)$$
 Markov chain assumption

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y) = I(X; Z) + I(X; Y|Z)$$

$$I(X;Y) + \underbrace{I(X;Z|Y)}_{0} = I(X;Z) + I(X;Y|Z) \quad \text{Markov chain assumption}$$
$$I(X;Y) = I(X;Z) + I(X;Y|Z) \quad \text{but } I(X;Y|Z) \ge 0$$

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y) = I(X; Z) + I(X; Y|Z)$$

$$I(X;Y) + \underbrace{I(X;Z|Y)}_{0} = I(X;Z) + I(X;Y|Z) \quad \text{Markov chain assumption}$$
$$I(X;Y) = I(X;Z) + I(X;Y|Z) \quad \text{but } I(X;Y|Z) \ge 0$$
$$I(X;Y) \ge I(X;Z)$$

#### Corollary

In particular, if Z = g(Y) we have that:

 $I(X; Y) \geq I(X; g(Y))$ 

**Proof**:  $X \to Y \to g(Y)$  forms a Markov chain.

Functions of the data Y cannot increase the information about X

# Data-Processing Inequality

Observation of a "Downstream" Variable

#### Corollary

If 
$$X \to Y \to Z$$
 then  $I(X; Y|Z) \le I(X; Y)$ 

Proof: We use again the chain rule for mutual information:

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y) = I(X; Z) + I(X; Y|Z)$$

Therefore:

$$I(X;Y) + \underbrace{I(X;Z|Y)}_{0} = I(X;Z) + I(X;Y|Z) \quad \text{Markov chain assumption}$$
$$I(X;Y|Z) = I(X;Y) - I(X;Z) \quad \text{but } I(X;Z) \ge 0$$
$$I(X;Y|Z) \le I(X;Y)$$

The dependence between X and Y cannot be increased by the observation of a "downstream" variable.

- D Chain Rule for Mutual Information
- 2 Convex Functions
- 3 Jensen's Inequality
- 4 Gibbs' Inequality
- 5 Information Cannot Hurt
- Data Processing Inequality



- Chain rule for mutual information
- Convex Functions
- Jensen's inequality, Gibbs' inequality
- Important inequalities regarding information, inference and data processing
- Reading: Mackay §2.6 to §2.10, Cover & Thomas §2.5 to §2.8

- Law of large numbers
- Markov's inequality
- Chebychev's inequality