COMP2610/COMP6261 - Information Theory Lecture 10: Typicality and Approximate Equipartition

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

August 20th, 2014

Markov's inequality

Chebyshev's inequality

Law of large numbers

- Ensembles and sequences
- Typical sets
- Approximation Equipartition (AEP)

Counting Types of Sequences

3 Asymptotic Equipartition (AEP)

Wrapping Up

Ensemble

An ensemble X is a triple (x, A_X, P_X) ; x is a random variable taking values in $A_X = \{a_1, a_2, ..., a_I\}$ with probabilities $P_X = \{p_1, p_2, ..., p_I\}$.

We will call \mathcal{A}_X the alphabet of the ensemble

Let X be an ensemble with outcomes h for *heads* with probability 0.9 and t for *tails* with probability 0.1.

- The outcome set is $A_X = \{h, t\}$
- The probabilities are $\mathcal{P}_X = \{p_h = 0.9, p_t = 0.1\}$

We can also consider blocks of outcomes, which will be useful to describe sequences:

```
Example (Coin Flips):
```

 $(6 \times 2 \text{ outcome blocks})$

- $(4 \times 3 \text{ outcome blocks})$
- $(3 \times 4 \text{ outcome blocks})$

We can also consider blocks of outcomes, which will be useful to describe sequences:

```
Example (Coin Flips):
```

Extended Ensemble

Let X be a single ensemble. The **extended ensemble** of blocks of size N is denoted X^N . Outcomes from X^N are denoted $\mathbf{x} = (x_1, x_2, \dots, x_N)$. The **probability** of \mathbf{x} is defined to be $P(\mathbf{x}) = P(x_1)P(x_2) \dots P(x_N)$.

Extended Ensembles

Example: Bent Coin

Let X be an ensemble with outcomes $\mathcal{A}_X = \{h, t\}$ with $p_h = 0.9$ and $p_t = 0.1$.

Consider X^4 – i.e., 4 flips of the coin.

 $\mathcal{A}_{X^4} = \{\texttt{hhhh}, \texttt{hhht}, \texttt{hhth}, \dots, \texttt{tttt}\}$

Extended Ensembles

Example: Bent Coin

Let X be an ensemble with outcomes $\mathcal{A}_X = \{\mathtt{h}, \mathtt{t}\}$ with $p_{\mathtt{h}} = 0.9$ and $p_{\mathtt{t}} = 0.1$.

Consider X^4 – i.e., 4 flips of the coin.

 $\mathcal{A}_{X^4} = \{\texttt{hhhh}, \texttt{hhht}, \texttt{hhth}, \dots, \texttt{tttt}\}$

$$egin{aligned} P(\mathrm{hhhh}) &= (0.9)^4 pprox 0.6561 \ P(\mathtt{ttt}) &= (0.1)^4 = 0.0001 \ P(\mathrm{hthh}) &= (0.9)^3 (0.1) pprox 0.0729 \ P(\mathrm{htht}) &= (0.9)^2 (0.1)^2 pprox 0.0081. \end{aligned}$$

We can view X^4 as comprising 4 independent random variables, based on the ensemble X

Entropy is additive for independent random variables

Thus,

$$H(X^4) = 4H(X) = 4. (-0.9 \log_2 0.9 - 0.1 \log_2 0.1) = 1.88$$
bits.

More generally,

$$H(X^N) = NH(X).$$

In the bent coin example,

$$(0.9)^2(0.1)^2 = P(hhtt)$$

= $P(htht)$
= $P(htht)$
= $P(thht)$
= $P(thht)$
= $P(thht)$
= $P(thth)$.

The order of outcomes in the sequence is irrelevant

Let X be an ensemble with alphabet $A_X = \{a_1, \ldots, a_l\}$

For a sequence $\mathbf{x} = x_1, x_2, \dots, x_N$, let $n_i = \#$ of times symbol a_i appears in \mathbf{x}

Given the n_i 's, we can compute the probability of seeing **x**:

$$P(\mathbf{x}) = P(x_1).P(x_2)...P(x_N) = P(a_1)^{n_1}.P(a_2)^{n_2}...P(a_I)^{n_I}$$

Each unique choice of $(n_1, n_2, ..., n_l)$ gives a different type of sequence • 4 heads, (3 heads, 1 tail), (2 heads, 2 tails), ...

For a given type of sequence how many sequences are there with these symbol counts?

of sequences with
$$n_i$$
 copies of $a_i = \frac{N!}{n_1!n_2!\dots n_l!}$

Each sequence of type $(n_a, n_b, n_c) = (2, 1, 3)$ has length 6 and probability $(0.2)^2(0.3)^1(0.5)^3 = 0.0015$.

Each sequence of type $(n_a, n_b, n_c) = (2, 1, 3)$ has length 6 and probability $(0.2)^2(0.3)^1(0.5)^3 = 0.0015$.

There are $\frac{6!}{2!1!3!} = 60$ such sequences.

Each sequence of type $(n_a, n_b, n_c) = (2, 1, 3)$ has length 6 and probability $(0.2)^2(0.3)^1(0.5)^3 = 0.0015$.

There are $\frac{6!}{2!1!3!} = 60$ such sequences.

The probability **x** is of type (2, 1, 3) is $(0.0015) \cdot 60 = 0.09$.

1 Ensembles and sequences

• Counting Types of Sequences

2 Typical sets

3 Asymptotic Equipartition (AEP)

4) Wrapping Up

With $p_{\rm h} = 0.75$, what are the probabilities for X^N ?

Table: $N = 2$	
х	$P(\mathbf{x})$
hh	0.5625
ht	0.1875
th	0.1875
tt	0.0625

With $p_{\rm h} = 0.75$, what are the probabilities for X^N ?

Table	:	Table:	
N = 2	2	<i>N</i> = 3	
x	$P(\mathbf{x})$	x	$P(\mathbf{x})$
hh	0.5625	hhh	0.4219
ht	0.1875	hht	0.1406
th	0.1875	hth	0.1406
tt	0.0625	thh	0.1406
		htt	0.0469
		tht	0.0469
		tth	0.0469
		ttt	0.0156

With $p_{\rm h} = 0.75$, what are the probabilities for X^N ?

Table: Table:			Table: $N = 4$				
N = 2	2	<i>N</i> = 3		x	$P(\mathbf{x})$	x	$P(\mathbf{x})$
х	$P(\mathbf{x})$	x	$P(\mathbf{x})$	hhhh	0.3164	thht	0.0352
hh	0.5625	hhh	0.4219	hhht	0.1055	thth	0.0352
ht	0.1875	hht	0.1406	hhth	0.1055	tthh	0.0352
\mathtt{th}	0.1875	hth	0.1406	hthh	0.1055	httt	0.0117
tt	0.0625	thh	0.1406	thhh	0.1055	thtt	0.0117
		htt	0.0469	htht	0.0352	ttht	0.0117
		tht	0.0469	htth	0.0352	ttth	0.0117
		tth	0.0469	hhtt	0.0352	tttt	0.0039
		ttt	0.0156			1	

As N increases, there is an increasing spread of probabilities

The most likely single sequence will always be the all h's

However, for N = 4, the most likely sequence type is 3 h's and 1 t

Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence **x** from X^N ?

Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence x from X^N ? Intuitively, we would expect to see

 a_i roughly $n_i \approx N.p_i$ times in sequence of length N.

So $P(\mathbf{x}) = P(a_1)^{n_1} P(a_2)^{n_2} \dots P(a_l)^{n_l} \approx p_1^{p_1 N} p_2^{p_2 N} \dots p_l^{p_l N}$

A natural question to ask is:

How often will each symbol appear in a sequence x from X^N ? Intuitively, we would expect to see

 a_i roughly $n_i \approx N.p_i$ times in sequence of length N.

So $P(\mathbf{x}) = P(a_1)^{n_1} P(a_2)^{n_2} \dots P(a_l)^{n_l} \approx p_1^{p_1 N} p_2^{p_2 N} \dots p_l^{p_l N}$

So the information content $-\log_2 P(\mathbf{x})$ of that sequence is approximately

$$-p_1 N \log_2 p_1 - \ldots - p_l N \log_2 p_l = -N \sum_{i=1}^l p_i \log_2 p_i = NH(X)$$

We want to consider elements **x** that have $\log_2 P(\mathbf{x})$ "close" to -NH(X)

Typical Set For "closeness" $\beta > 0$ the typical set $T_{N\beta}$ for X^N is $T_{N\beta} \stackrel{\text{def}}{=} \left\{ \mathbf{x} : \left| -\frac{1}{N} \log_2 P(\mathbf{x}) - H(X) \right| < \beta \right\}$

We want to consider elements **x** that have $\log_2 P(\mathbf{x})$ "close" to -NH(X)

Typical Set

For "closeness" $\beta > 0$ the typical set $T_{N\beta}$ for X^N is

$$T_{N\beta} \stackrel{\text{\tiny def}}{=} \left\{ \mathbf{x} : \left| -\frac{1}{N} \log_2 P(\mathbf{x}) - H(X) \right| < \beta \right\}$$

Typical Sets

The name "typical" is used since $\mathbf{x} \in T_{N\beta}$ will have roughly p_1N occurences of symbol a_1 , p_2N of a_2 , ..., p_KN of a_K .

x lo	$g_2(P(\mathbf{x}))$
1	-50.1
	-37.3
11111111.111	-65.9
1.11	-56.4
11	-53.2
	-43.7
1	-46.8
111	-56.4
1	-37.3
1	-43.7
11	-56.4
	-37.3
.11	-56.4
111111.1.1.1.11	-59.5
	-46.8
	-15.2
*****	-332.1

Figure: Randomly drawn sequences for P(1) = 0.1. Note: $H(X) \approx 0.47$

Typical sequences are nearly equiprobable: Every $\mathbf{x} \in T_{N\beta}$ has

$$2^{-N(H(X)+\beta)} \le P(\mathbf{x}) \le 2^{-N(H(X)-\beta)}$$

Number of sequences in the typical set: For any N, β ,

$$|T_{N\beta}| \leq 2^{N(H(X)+\beta)}$$

Typical Sets Proof of Cardinality Bound

For every $\mathbf{x} \in T_{N\beta}$,

$$p(\mathbf{x}) \geq 2^{-N(H(X)-\beta)}.$$

Thus,

$$1 = \sum_{\mathbf{x}} p(\mathbf{x})$$

$$\geq \sum_{\mathbf{x} \in T_{N\beta}} p(\mathbf{x})$$

$$\geq \sum_{\mathbf{x} \in T_{N\beta}} 2^{-N(H(X)-\beta)}$$

$$= 2^{-N(H(X)-\beta)} \cdot |T_{N\beta}|.$$

Thus

$$|T_{N\beta}| \leq 2^{N(H(X)+\beta)}$$

The most likely sequence may not belong to the typical set

e.g. with $p_{\rm h}=0.75$, we have

$$-rac{1}{4}\log_2 P(hhhh) = 0.4150$$

whereas H(X) = 0.8113

The most likely single sequence \rightarrow hhhh

The most likely single sequence type \rightarrow {hhtt, htht,...}

Probability of most likely sequence decays like θ^N

Sequences with $N\theta$ heads contain much more total probability mass

Counting Types of Sequences

Typical sets

3 Asymptotic Equipartition (AEP)

Wrapping Up

Asymptotic Equipartition Property (Informal)

As $N \to \infty$, $\log_2 P(x_1, \ldots, x_N)$ is close to -NH(X) with high probability.

For large block sizes "almost all sequences are typical" (i.e., in $T_{N\beta}$)

Figure: Probability sequence x has r 1s for N = 100 (left) and N = 1000 (right)

Asymptotic Equipartition Property

If x_1, x_2, \ldots are i.i.d. with distribution *P* then, in probability,

$$-\frac{1}{N}\log_2 P(x_1,\ldots,x_N) \to H(X)$$

Asymptotic Equipartition Property

If x_1, x_2, \ldots are i.i.d. with distribution *P* then, in probability,

$$-\frac{1}{N}\log_2 P(x_1,\ldots,x_N) \to H(X)$$

Defn: For i.i.d. v_1, v_2, \ldots we say $v_N \to v$ in probability if for all $\epsilon > 0$ $\lim_{N\to\infty} P(|v_N - v| > \epsilon) = 0$

Asymptotic Equipartition Property Proof

Since x_1, \ldots, x_N are independent,

$$-\frac{1}{N}\log p(x_1,\ldots,x_N) = -\frac{1}{n}\log\prod_{n=1}^N p(x_i)$$
$$= -\frac{1}{N}\sum_{n=1}^N\log p(x_i).$$

Let $Y = -\log p(X)$ and $y_n = -\log p(x_n)$. Then, $y_n \sim Y$, and $\mathbb{E}[Y] = H(X)$.

But then by the law of large numbers,

$$(\forall \epsilon > 0) \lim_{N \to \infty} p(|\frac{1}{N} \sum_{n=1}^{N} y_i - H(X)| > \epsilon) = 0.$$

For an ensemble with binary outcomes, and low entropy,

$$|T_{N\beta}| \le 2^{NH(X)+\beta} \ll 2^N$$

i.e. the typical set is a small fraction of all possible sequences

AEP says that for N sufficiently large, we are virtually guaranteed to draw a sequence from this small set

1 Ensembles and sequences

- Counting Types of Sequences
- 2 Typical sets

3 Asymptotic Equipartition (AEP)

Wrapping Up

- Ensembles and sequences
- Typical sets
- Approximation Equipartition (AEP)