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Ensembles

Ensemble

An ensemble X is a triple (x ,AX ,PX ); x is a random variable taking
values in AX = {a1, a2, . . . , aI} with probabilities PX = {p1, p2, . . . , pI}.

We will call AX the alphabet of the ensemble
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Ensembles
Example: Bent Coin

Let X be an ensemble with outcomes h for
heads with probability 0.9 and t for tails
with probability 0.1.

The outcome set is AX = {h, t}
The probabilities are
PX = {ph = 0.9, pt = 0.1}
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Extended Ensembles

We can also consider blocks of outcomes, which will be useful to describe
sequences:

Example (Coin Flips):

hhhhthhththh→ hh hh th ht ht hh (6 × 2 outcome blocks)

→ hhh hth hth thh (4 × 3 outcome blocks)

→ hhhh thht hthh (3 × 4 outcome blocks)

Extended Ensemble

Let X be a single ensemble. The extended ensemble of blocks of size N
is denoted XN . Outcomes from XN are denoted x = (x1, x2, . . . , xN). The
probability of x is defined to be P(x) = P(x1)P(x2) . . .P(xN).
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Extended Ensembles
Example: Bent Coin

Let X be an ensemble with outcomes
AX = {h, t} with ph = 0.9 and pt = 0.1.

Consider X 4 – i.e., 4 flips of the coin.

AX 4 = {hhhh, hhht, hhth, . . . , tttt}

P(hhhh) = (0.9)4 ≈ 0.6561

P(tttt) = (0.1)4 = 0.0001

P(hthh) = (0.9)3(0.1) ≈ 0.0729

P(htht) = (0.9)2(0.1)2 ≈ 0.0081.
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Extended Ensembles
Example: Bent Coin

We can view X 4 as comprising 4 independent random variables, based on
the ensemble X

Entropy is additive for independent random variables

Thus,

H(X 4) = 4H(X ) = 4. (−0.9 log2 0.9− 0.1 log2 0.1) = 1.88bits.

More generally,
H(XN) = NH(X ).
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Counting Types of Sequences

In the bent coin example,

(0.9)2(0.1)2 = P(hhtt)

= P(htht)

= P(htth)

= P(thht)

= P(thth)

= P(tthh).

The order of outcomes in the sequence is irrelevant
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Counting Types of Sequences

Let X be an ensemble with alphabet AX = {a1, . . . , aI}

For a sequence x = x1, x2, . . . , xN , let ni = # of times symbol ai appears
in x

Given the ni ’s, we can compute the probability of seeing x:

P(x) = P(x1).P(x2) . . .P(xN)

= P(a1)n1 .P(a2)n2 . . .P(aI )
nI
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Counting Types of Sequences
Sequence Types

Each unique choice of (n1, n2, . . . , nI ) gives a different type of sequence

4 heads, (3 heads, 1 tail), (2 heads, 2 tails), ...

For a given type of sequence how many sequences are there with these
symbol counts?

# of sequences with ni copies of ai =
N!

n1!n2! . . . nI !
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Counting Types of Sequences
Example

Let A = {a, b, c} with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

Each sequence of type (na, nb, nc) = (2, 1, 3) has length 6 and probability
(0.2)2(0.3)1(0.5)3 = 0.0015.

There are 6!
2!1!3! = 60 such sequences.

The probability x is of type (2, 1, 3) is (0.0015) · 60 = 0.09.
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Extended Ensembles
Example

With ph = 0.75, what are the probabilities for XN?

Table:
N = 2

x P(x)

hh 0.5625
ht 0.1875
th 0.1875
tt 0.0625

Table:
N = 3

x P(x)

hhh 0.4219
hht 0.1406
hth 0.1406
thh 0.1406
htt 0.0469
tht 0.0469
tth 0.0469
ttt 0.0156

Table: N = 4

x P(x) x P(x)

hhhh 0.3164 thht 0.0352
hhht 0.1055 thth 0.0352
hhth 0.1055 tthh 0.0352
hthh 0.1055 httt 0.0117
thhh 0.1055 thtt 0.0117
htht 0.0352 ttht 0.0117
htth 0.0352 ttth 0.0117
hhtt 0.0352 tttt 0.0039
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Observations

As N increases, there is an increasing spread of probabilities

The most likely single sequence will always be the all h’s

However, for N = 4, the most likely sequence type is 3 h’s and 1 t
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Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence x from XN?

Intuitively, we would expect to see

ai roughly ni ≈ N.pi times in sequence of length N.

So P(x) = P(a1)n1P(a2)n2 . . .P(aI )
nI ≈ pp1N1 pp2N2 . . . ppINI

So the information content − log2 P(x) of that sequence is approximately

−p1N log2 p1 − . . .− pIN log2 pI = −N
I∑

i=1

pi log2 pi = NH(X )

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 17 / 30



Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence x from XN?

Intuitively, we would expect to see

ai roughly ni ≈ N.pi times in sequence of length N.

So P(x) = P(a1)n1P(a2)n2 . . .P(aI )
nI ≈ pp1N1 pp2N2 . . . ppINI

So the information content − log2 P(x) of that sequence is approximately

−p1N log2 p1 − . . .− pIN log2 pI = −N
I∑

i=1

pi log2 pi = NH(X )

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 17 / 30



Symbol Frequency in Long Sequences

A natural question to ask is:

How often will each symbol appear in a sequence x from XN?

Intuitively, we would expect to see

ai roughly ni ≈ N.pi times in sequence of length N.

So P(x) = P(a1)n1P(a2)n2 . . .P(aI )
nI ≈ pp1N1 pp2N2 . . . ppINI

So the information content − log2 P(x) of that sequence is approximately

−p1N log2 p1 − . . .− pIN log2 pI = −N
I∑

i=1

pi log2 pi = NH(X )

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 17 / 30



Typical Sets

We want to consider elements x that have log2 P(x) “close” to −NH(X )

Typical Set

For “closeness” β > 0 the typical set TNβ for XN is

TNβ
def
=

{
x :

∣∣∣∣− 1

N
log2 P(x)− H(X )

∣∣∣∣ < β

}
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Typical Sets

The name “typical” is used since x ∈ TNβ will have roughly p1N
occurences of symbol a1, p2N of a2, . . ., pKN of aK .

x log2(P (x))

...1...................1.....1....1.1.......1........1...........1.....................1.......11... −50.1

......................1.....1.....1.......1....1.........1.....................................1.... −37.3

........1....1..1...1....11..1.1.........11.........................1...1.1..1...1................1. −65.9
1.1...1................1.......................11.1..1............................1.....1..1.11..... −56.4
...11...........1...1.....1.1......1..........1....1...1.....1............1......................... −53.2
..............1......1.........1.1.......1..........1............1...1......................1....... −43.7
.....1........1.......1...1............1............1...........1......1..11........................ −46.8
.....1..1..1...............111...................1...............1.........1.1...1...1.............1 −56.4
.........1..........1.....1......1..........1....1..............................................1... −37.3
......1........................1..............1.....1..1.1.1..1...................................1. −43.7
1.......................1..........1...1...................1....1....1........1..11..1.1...1........ −56.4
...........11.1.........1................1......1.....................1............................. −37.3
.1..........1...1.1.............1.......11...........1.1...1..............1.............11.......... −56.4
......1...1..1.....1..11.1.1.1...1.....................1............1.............1..1.............. −59.5
............11.1......1....1..1............................1.......1..............1.......1......... −46.8

.................................................................................................... −15.2
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 −332.1

Figure: Randomly drawn sequences for P(1) = 0.1. Note: H(X ) ≈ 0.47
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Typical Sets
Properties

Typical sequences are nearly equiprobable: Every x ∈ TNβ has

2−N(H(X )+β) ≤ P(x) ≤ 2−N(H(X )−β).

Number of sequences in the typical set: For any N, β,

|TNβ| ≤ 2N(H(X )+β).
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Typical Sets
Proof of Cardinality Bound

For every x ∈ TNβ,

p(x) ≥ 2−N(H(X )−β).

Thus,

1 =
∑
x

p(x)

≥
∑

x∈TNβ

p(x)

≥
∑

x∈TNβ

2−N(H(X )−β)

= 2−N(H(X )−β) · |TNβ|.

Thus
|TNβ| ≤ 2N(H(X )+β)
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Typical Sets
Most Likely Sequence

The most likely sequence may not belong to the typical set

e.g. with ph = 0.75, we have

−1

4
log2 P(hhhh) = 0.4150

whereas H(X ) = 0.8113

The most likely single sequence → hhhh

The most likely single sequence type → {hhtt, htht, . . .}
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Typical Sets
Most Likely Sequence

Probability of most likely sequence decays like θN

Sequences with Nθ heads contain much more total probability mass
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Asymptotic︸ ︷︷ ︸
Eventually

Equipartition︸ ︷︷ ︸
Equally Divided

Property

Informally

Asymptotic Equipartition Property (Informal)

As N →∞, log2 P(x1, . . . , xN) is close to −NH(X ) with high probability.

For large block sizes “almost all sequences are typical” (i.e., in TNβ)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.4: Typicality 79

Figure 4.11. Anatomy of the typical set T . For p1 = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P (x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P (x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of log2 P (x)
also shows by a dotted line the mean value of log2 P (x) = −NH2(p1), which equals −46.9
when N = 100 and −469 when N = 1000. The typical set includes only the strings that
have log2 P (x) close to this value. The range marked T shows the set TNβ (as defined in
section 4.4) for N = 100 and β = 0.29 (left) and N = 1000, β = 0.09 (right).
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Figure: Probability sequence x has r 1s for N = 100 (left) and N = 1000 (right)
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Asymptotic Equipartition Property
Formally

Asymptotic Equipartition Property

If x1, x2, . . . are i.i.d. with distribution P then, in probability,

− 1

N
log2 P(x1, . . . , xN)→ H(X )

Defn: For i.i.d. v1, v2, . . . we say vN → v in probability if for all ε > 0
limN→∞ P(|vN − v | > ε) = 0
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Asymptotic Equipartition Property
Proof

Since x1, . . . , xN are independent,

− 1

N
log p(x1, . . . , xN) = −1

n
log

N∏
n=1

p(xi )

= − 1

N

N∑
n=1

log p(xi ).

Let Y = − log p(X ) and yn = − log p(xn). Then, yn ∼ Y , and

E[Y ] = H(X ).

But then by the law of large numbers,

(∀ε > 0) lim
N→∞

p(| 1
N

N∑
n=1

yi − H(X )| > ε) = 0.
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Asymptotic Equipartition Property
Comments

For an ensemble with binary outcomes, and low entropy,

|TNβ| ≤ 2NH(X )+β � 2N

i.e. the typical set is a small fraction of all possible sequences

AEP says that for N sufficiently large, we are virtually guaranteed to draw
a sequence from this small set
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