COMP2610/6261 — Information Theory

Lecture 13: Symbol Codes for Lossless Compression

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

September 2nd, 2014

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

The Kraft Inequality

Summary

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

The Kraft Inequality

Summary

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

Examples:

- $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\bullet \ \{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

Examples:

- $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\bullet \ \{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \dots, a_I\}$.

A function $c: A_X \to \{0,1\}^+$ is a **code** for X.

• The binary string c(x) is the **codeword** for $x \in A_X$

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

Examples:

- $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \ldots, a_I\}$.

A function $c: A_X \to \{0,1\}^+$ is a **code** for X.

- The binary string c(x) is the **codeword** for $x \in A_X$
- The **length** of the codeword for for x is denoted $\ell(x)$. Shorthand: $\ell_i = \ell(a_i)$ for i = 1, ..., I.

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

Examples:

- $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \ldots, a_I\}$.

A function $c: A_X \to \{0,1\}^+$ is a **code** for X.

- The binary string c(x) is the **codeword** for $x \in A_X$
- The **length** of the codeword for for x is denoted $\ell(x)$. Shorthand: $\ell_i = \ell(a_i)$ for $i = 1 \dots, I$.
- The **extension** of c assigns codewords to any sequence $x_1x_2...x_N$ from \mathcal{A}^+ by $c(x_1...x_N) = c(x_1)...c(x_N)$

Examples

X is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

• Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$

Examples

X is an ensemble with $A_X = \{a, b, c, d\}$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have length 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Examples

X is an ensemble with $A_X = \{a, b, c, d\}$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have length 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have length 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 (Variable-Length Code):

• Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have length 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 (Variable-Length Code):

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have length 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 (Variable-Length Code):

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$
- In this case $\ell_1 = 1$, $\ell_2 = 2$, $\ell_3 = \ell_4 = 3$

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have length 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 (Variable-Length Code):

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$
- In this case $\ell_1 = 1$, $\ell_2 = 2$, $\ell_3 = \ell_4 = 3$
- ullet The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 0100

Unique Decodeability

A code c for X is **uniquely decodeable** if no two strings from \mathcal{A}_X^+ have the same codeword. That is, for all $\mathbf{x}, \mathbf{y} \in \mathcal{A}_X^+$

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

Unique Decodeability

A code c for X is **uniquely decodeable** if no two strings from \mathcal{A}_X^+ have the same codeword. That is, for all $\mathbf{x}, \mathbf{y} \in \mathcal{A}_X^+$

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

Examples:

• $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodeable why?

Unique Decodeability

A code c for X is **uniquely decodeable** if no two strings from \mathcal{A}_X^+ have the same codeword. That is, for all $\mathbf{x}, \mathbf{y} \in \mathcal{A}_X^+$

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

Examples:

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodeable why?
- $C_2 = \{0, 10, 110, 111\}$ is uniquely decodeable

Unique Decodeability

A code c for X is **uniquely decodeable** if no two strings from \mathcal{A}_X^+ have the same codeword. That is, for all $\mathbf{x}, \mathbf{y} \in \mathcal{A}_X^+$

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

Examples:

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodeable why?
- $C_2 = \{0, 10, 110, 111\}$ is uniquely decodeable
- $C_2' = \{1, 10, 110, 111\}$ is not uniquely decodeable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

Unique Decodeability

A code c for X is **uniquely decodeable** if no two strings from \mathcal{A}_X^+ have the same codeword. That is, for all $\mathbf{x}, \mathbf{y} \in \mathcal{A}_X^+$

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

Examples:

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodeable why?
- $C_2 = \{0, 10, 110, 111\}$ is uniquely decodeable
- $C_2' = \{1, 10, 110, 111\}$ is not uniquely decodeable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

Why is unique decodeability useful for compression?

a.k.a *prefix-free* or *instantaneous* codes

There is an simple property of codes that guarantees unique decodeability.

Prefix

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

a.k.a *prefix-free* or *instantaneous* codes

There is an simple property of codes that guarantees unique decodeability.

Prefix

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

Example: 01101 has prefixes 0, 01, 011, 0110.

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

Prefix

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code $C = \{c_1, \dots, c_l\}$ is a **prefix code** if for every codeword $c_i \in C$ there is no prefix of c_i in C.

a.k.a *prefix-free* or *instantaneous* codes

There is an simple property of codes that guarantees unique decodeability.

Prefix

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code $C = \{c_1, ..., c_l\}$ is a **prefix code** if for every codeword $c_i \in C$ there is no prefix of c_i in C.

Examples:

- $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix-free
- $C_2 = \{0, 10, 110, 111\}$ is prefix-free
- $C_2' = \{1, 10, 110, 111\}$ is *not* prefix free since $c_3 = 110 = c_1c_2$

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

Prefix

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code $C = \{c_1, ..., c_l\}$ is a **prefix code** if for every codeword $c_i \in C$ there is no prefix of c_i in C.

Examples:

- $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix-free
- $C_2 = \{0, 10, 110, 111\}$ is prefix-free
- $C_2' = \{1, 10, 110, 111\}$ is *not* prefix free since $c_3 = 110 = c_1c_2$
- $C_2'' = \{1, 01, 110, 111\}$ is not prefix free since $c_3 = 110 = c_110$

Prefix Codes as Trees

$$C_1 = \{0001, 0010, 0100, 1000\}$$

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
			0111
		100	1000
	10		1001
	10	101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
			1111

Prefix Codes as Trees

$$\textit{C}_2 = \{0, 10, 110, 111\}$$

		000 0000 0001 001 0010 011 0100	0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100 1001	1000
	10		1001
		101	1010
1		101	1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

Prefix Codes as Trees

$$C_2' = \{1, 10, 110, 111\}$$

	0000	0000
00	000	0001
00	001	0010
	001	0011
	010	0100
01	010	0101
01	011	0110
	011	0111
	1000	1000
10	100	1001
10	101	1010
	101	1011
	110	1100
11	110	1101
11	111	1110
	111	1111
	00 01 10	00 001 01 010 011 100 101 110

Prefix Codes are Uniquely Decodeable

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
0			0100
	01	010	0101
	01	011	0110
			0111
	10	400	1000
		010 0100 0101 011 0110	100
	10		1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- If $\ell^* = \max\{\ell_1, \dots, \ell_I\}$ then symbol is decodeable after seeing at most ℓ^* bits
- Consider $C_2 = \{0, 10, 110, 111\}$
 - ▶ If c(x) = 0... then $x_1 = a$
 - If $c(\mathbf{x}) = 1 \dots$ then $x_1 \in \{b, c, d\}$
 - ▶ If c(x) = 10... then $x_1 = b$
 - ▶ If c(x) = 11... then $x_1 \in \{c, d\}$

Prefix Codes are Uniquely Decodeable

	00	000	0000
			0001
	00	001	0010
0		001	0011
U		0100	0100
	01	010	0101
	01	011	0110
		011	0111
		011 0111 100 1000 1001 101 1010	1000
	10		1001
	10		1010
1			1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- If $\ell^* = \max\{\ell_1, \dots, \ell_I\}$ then symbol is decodeable after seeing at most ℓ^* bits
- Consider $C_2 = \{0, 10, 110, 111\}$
 - ▶ If c(x) = 0... then $x_1 = a$
 - If $c(\mathbf{x}) = 1 \dots$ then $x_1 \in \{b, c, d\}$
 - ▶ If c(x) = 10... then $x_1 = b$
 - ▶ If $c(\mathbf{x}) = 11...$ then $x_1 \in \{c, d\}$

However, not all uniquely decodeable codes are prefix codes

Code (0.01, 0.11, 1.11)

Not prefix free but uniquely decodeable

 $C_3 = \{0, 01, 011, 111\}$ — Not prefix-free but uniquely decodeable why?

Hint: Notice $c_3(bdca) = 011110110$ and $c_2(acdb) = 011011110$

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

The Kraft Inequality

Summary

Suppose someone said "I want codes with codewords lengths":

- $L_1 = \{4, 4, 4, 4\}$
- $L_2 = \{1, 2, 3, 3\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011 0110	0110
			0111
		100 1000 1001 1010	1000
	10		1001
	10		1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

- $L_1 = \{4, 4, 4, 4\} C_1 = \{0001, 0010, 0100, 1000\}$
- $L_2 = \{1, 2, 3, 3\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

	00	000	0000
			0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011 0110	0110
			0111
		100 1000 1001 101 1010 1011	1000
	10		1001
	10		1010
1			1011
		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

- $L_1 = \{4, 4, 4, 4\} C_1 = \{0001, 0010, 0100, 1000\}$
- $L_2 = \{1, 2, 3, 3\}$ $C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

	00	000	0000
			0001
	00	001	0010
0		001	0011
U			0100
	01	010	0101
	01	011 0111	0110
			0111
	10	100	1000
			1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

•
$$L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}$$

•
$$L_2 = \{1, 2, 3, 3\}$$
 — $C_2 = \{0, 10, 110, 111\}$

•
$$L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, , , \}$$

•
$$L_4 = \{1, 3, 3, 3, 3, 4\}$$

	00	000	0000
			0001
	00	001	0010
0		001	0011
U			0100
	01	010	0101
	01	011 0110	0110
			0111
		100 1000 1001 1010	1000
	10		1001
	10		1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

- $L_1 = \{4, 4, 4, 4\} C_1 = \{0001, 0010, 0100, 1000\}$
- $L_2 = \{1, 2, 3, 3\}$ $C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\} C_3 = \{00, 01, , \}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000
		000	0001
	00	001	0010
		001	0011
0			0100
	01	010	0101
	01	011	0110
		011	0111
	10	100	1000
			1001
		101	1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

- $L_1 = \{4, 4, 4, 4\} C_1 = \{0001, 0010, 0100, 1000\}$
- $L_2 = \{1, 2, 3, 3\}$ $C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\}$ $C_3 = \{00, 01, 100, \}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000
		000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		011	0111
	10	100	1000
			1001
		101	1010
1			1011
I		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

•
$$L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}$$

•
$$L_2 = \{1, 2, 3, 3\}$$
 — $C_2 = \{0, 10, 110, 111\}$

•
$$L_3 = \{2, 2, 3, 4, 4\}$$
 — $C_3 = \{00, 01, 100, 1010$

•
$$L_4 = \{1, 3, 3, 3, 3, 4\}$$

			0000
		000	
	00		0001
		001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		011	0111
	10	100	1000
			1001
		101	1010
1			1011
1		110	1100
	11	110	1101
	"	111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

•
$$L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}$$

•
$$L_2 = \{1, 2, 3, 3\}$$
 — $C_2 = \{0, 10, 110, 111\}$

•
$$L_3 = \{2, 2, 3, 4, 4\}$$
 — $C_3 = \{00, 01, 100, 1010, 1011\}$

•
$$L_4 = \{1, 3, 3, 3, 3, 4\}$$

	00	000	0000
		000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		011	0111
	10	100	1000
			1001
		101	1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want codes with codewords lengths":

•
$$L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}$$

•
$$L_2 = \{1, 2, 3, 3\}$$
 — $C_2 = \{0, 10, 110, 111\}$

•
$$L_3 = \{2, 2, 3, 4, 4\}$$
 — $C_3 = \{00, 01, 100, 1010, 1011\}$

•
$$L_4 = \{1, 3, 3, 3, 3, 4\}$$
 — Impossible!

	00	000	0000
			0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
			0111
	10	100	1000
			1001
		101	1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

		000	0000
	00	000	0001
		001	0010
0		001	0011
U			0100
	01	010	0101
	01	011	0110
		UII	0111
	10	100	1000
			1001
		101	1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

• 2 x 2-bit codewords: {00, 01}

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000
	00	000	0001
	00	001	0010
0		001	0011
			0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
		101	1010
1			1011
,		110	1100
	11	1 110	1101
		111	1110
			1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}

Choosing a prefix codeword of length 1 - e.g., c(a) = 0 - excludes:

			0000
	00	000	0001
		001	0010
0		001	0011
Ů			0100
	01	010	0101
	01	011	0110
			0111
	10	100	1000
			1001
		101	1010
1			1011
		110	1100
	11	110	1101
		111	1110
	l	.111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

		000	0000
	00		0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	01	011	0110
			0111
	10	100	1000
			1001
		101	1010
1		101	1011
1		110	1100
	11	110	1101
		111	1110
	1	111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ -bit codeword excludes $2^{k-\ell} \times k$ -bit codewords

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

		000	0000
	00		0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	01	011	0110
			0111
	10	100	1000
			1001
		101	1010
1		101	1011
1		110	1100
	11	110	1101
		111	1110
	1	111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ -bit codeword excludes $2^{k-\ell} \times k$ -bit codewords

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000
	00	000	0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	01	011	0110
		OII	0111
	100	100	1000
			1001
			1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ -bit codeword excludes $2^{k-\ell} \times k$ -bit codewords

For lengths $L=\{\ell_1,\ldots,\ell_I\}$ and $\ell^*=\max\{\ell_1,\ldots,\ell_I\}$, there will be

$$\sum_{i=1}^{l} 2^{\ell^* - \ell_i}$$

excluded ℓ^* -bit codewords.

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000
	00	000	0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	٠.	011	0110
			0111
	10	100	1000
			1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ -bit codeword excludes $2^{k-\ell} \times k$ -bit codewords

For lengths $L=\{\ell_1,\ldots,\ell_I\}$ and $\ell^*=\max\{\ell_1,\ldots,\ell_I\}$, there will be

$$\sum_{i=1}^{I} 2^{\ell^* - \ell_i} \le 2^{\ell^*}$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

	00 000	000	0000
			0001
		001	0010
			0011
0		010	0100
		010	0101
		011	0110
			0111
10 100 101 111 1110 1111	10	100	1000
			1001
		101	1010
			1011
	110	1100	
	11	110	1101
		111	1110
			1111

- 2 x 2-bit codewords: {00, 01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ -bit codeword excludes $2^{k-\ell} \times k$ -bit codewords

For lengths $L=\{\ell_1,\ldots,\ell_I\}$ and $\ell^*=\max\{\ell_1,\ldots,\ell_I\}$, there will be

$$\frac{1}{2^{\ell^*}} \sum_{i=1}^{I} 2^{\ell^* - \ell_i} \le 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

	00	000	0000
			0001
		001	0010
			0011
		010	0100
			0101
		011	0110
			0111
10	10	100	1000
			1001
	101	1010	
		101	1011
	110	1100	
		110	1101
		111	1110
			1111

- 2 x 2-bit codewords: {00, 01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ -bit codeword excludes $2^{k-\ell} \times k$ -bit codewords

For lengths $L=\{\ell_1,\ldots,\ell_I\}$ and $\ell^*=\max\{\ell_1,\ldots,\ell_I\}$, there will be

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_I\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_I\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_I\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_I\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples:

1 $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_I\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_I\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples:

- **1** $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$
- ② $C_2 = \{0, 10, 110, 111\}$ is prefix and $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} = 1$

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_I\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1,\ldots,\ell_I\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples:

- **1** $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$
- ② $C_2 = \{0, 10, 110, 111\}$ is prefix and $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} = 1$
- **1** Lengths $\{1,2,2,3\}$ give $\sum_{i=1}^{4} 2^{-\ell_i} = \frac{1}{2} + \frac{2}{4} + \frac{1}{8} > 1$ so no prefix code

Summary

Key ideas from this lecture:

- Prefix and Uniquely Decodeable variable-length codes
- Prefix codes are tree-like
- Every Prefix code is Uniquely Decodeable but not vice versa
- The Kraft Inequality:
 - ▶ Code lengths satisfying $\sum_{i} 2^{-\ell_i} \le 1$ implies Prefix/U.D. code exists
 - Prefix/U.D. code implies $\sum_{i} 2^{-\ell_i} \le 1$

Relevant Reading Material:

- MacKay: §5.1 and §5.2
- Cover & Thomas: §5.1, §5.2, and §5.5