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Codes: A Review

Notation:
o If Ais a finite set then AN is the set of all strings of length N.
o At =Jy AN is the set of all finite strings
Examples:
e {0,1}® = {000, 001,010,011, 100,101,110,111}
e {0,1}* =1{0,1,00,01,10,11,000,001,010,...}
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o If Ais a finite set then AN is the set of all strings of length N.
o At =Jy AN is the set of all finite strings
Examples:
e {0,1}® = {000, 001,010,011, 100,101,110,111}
e {0,1}* =1{0,1,00,01,10,11,000,001,010,...}

Binary Symbol Code

Let X be an ensemble with Ax = {a1,...,a/}.
A function ¢ : Ax — {0,1}" is a code for X.

@ The binary string c(x) is the codeword for x € Ax
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Notation:
o If Ais a finite set then AN is the set of all strings of length N.
o At =Jy AN is the set of all finite strings
Examples:
e {0,1}® = {000, 001,010,011, 100,101,110,111}
e {0,1}* =1{0,1,00,01,10,11,000,001,010,...}

Binary Symbol Code

Let X be an ensemble with Ax = {a1,...,a/}.
A function ¢ : Ax — {0,1}" is a code for X.

@ The binary string c(x) is the codeword for x € Ax

@ The length of the codeword for for x is denoted ¢(x).
Shorthand: ¢; = ¢(a;) fori=1...,1.
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Codes: A Review

Notation:
o If Ais a finite set then AN is the set of all strings of length N.
o At =Jy AN is the set of all finite strings
Examples:
e {0,1}® = {000, 001,010,011, 100,101,110,111}
e {0,1}* =1{0,1,00,01,10,11,000,001,010,...}

Binary Symbol Code

Let X be an ensemble with Ax = {a1,...,a/}.
A function ¢ : Ax — {0,1}" is a code for X.

@ The binary string c(x) is the codeword for x € Ax

@ The length of the codeword for for x is denoted ¢(x).
Shorthand: ¢; = ¢(a;) fori=1...,1.

@ The extension of ¢ assigns codewords to any sequence xixo ... Xy
from A" by c(xq...xn) = c(x1) ... c(xn)

v
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Codes: A Review

Examples

X is an ensemble with Ax = {a, b, c,d}

Example 1 (Uniform Code):
o Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
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Examples

X is an ensemble with Ax = {a, b, c,d}

Example 1 (Uniform Code):
o Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
e Shorthand: C; = {0001, 0010, 0100, 1000}
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Example 1 (Uniform Code):
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@ Shorthand: ¢; = {0001, 0010,0100, 1000}
@ All codewords have length 4. Thatis, {1 =4y ={l3 =¥, =4
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Codes: A Review

Examples

X is an ensemble with Ax = {a, b, c,d}

Example 1 (Uniform Code):
o Let c¢(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
@ Shorthand: ¢; = {0001, 0010,0100, 1000}
@ All codewords have length 4. Thatis, {1 =4y ={l3 =¥, =4
@ The extension of ¢ maps aba € .A} C .A; to 000100100001

Example 2 (Variable-Length Code):
e Let c(a) =0, ¢(b) =10, c¢(c) =110, ¢(d) = 111
e Shorthand: G, ={0,10,110,111}
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Codes: A Review

Examples

X is an ensemble with Ax = {a, b, c,d}

Example 1 (Uniform Code):
o Let c¢(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
@ Shorthand: ¢; = {0001, 0010,0100, 1000}
@ All codewords have length 4. Thatis, {1 =4y ={l3 =¥, =4
@ The extension of ¢ maps aba € .A} C .A; to 000100100001

Example 2 (Variable-Length Code):
e Let c(a) =0, ¢(b) =10, c¢(c) =110, ¢(d) = 111
e Shorthand: G, ={0,10,110,111}
@ Inthiscase {1 =1, 0, =2, 03=44=3
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Codes: A Review

Examples

X is an ensemble with Ax = {a, b, c,d}

Example 1 (Uniform Code):
o Let c¢(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
@ Shorthand: ¢; = {0001, 0010,0100, 1000}
@ All codewords have length 4. Thatis, {1 =4y ={l3 =¥, =4
@ The extension of ¢ maps aba € .A} C .A; to 000100100001

Example 2 (Variable-Length Code):
e Let c(a) =0, ¢(b) =10, c¢(c) =110, ¢(d) = 111
e Shorthand: G, ={0,10,110,111}
@ Inthiscase {1 =1, 0, =2, 03=44=3
o The extension of ¢ maps aba € A} C .A; to 0100
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Unique Decodeability

Unique Decodeability

A code c for X is uniquely decodeable if no two strings from A; have
the same codeword. That is, for all x,y € A;

x£y — cx) £ c(y)
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Unique Decodeability

A code c for X is uniquely decodeable if no two strings from A; have
the same codeword. That is, for all x,y € A;

x£y — cx) £ c(y)

Examples:
e (; ={0001,0010,0100,1000} is uniquely decodeable why

Mark Reid and Aditya Menon (ANU) COMP2610/6261 — Information Theory September 2nd, 2014 6 /14



Unique Decodeability

Unique Decodeability

A code c for X is uniquely decodeable if no two strings from A; have
the same codeword. That is, for all x,y € A;

x£y — cx) £ c(y)

Examples:
e (; ={0001,0010,0100,1000} is uniquely decodeable why
e ¢, ={0,10,110,111} is uniquely decodeable
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Unique Decodeability

Unique Decodeability

A code c for X is uniquely decodeable if no two strings from A; have
the same codeword. That is, for all x,y € A;

x£y — cx) £ c(y)

Examples:
e (; ={0001,0010,0100,1000} is uniquely decodeable why
e ¢, ={0,10,110,111} is uniquely decodeable
e €} =1{1,10,110,111} is not uniquely decodeable because

c(aaa) = ¢(d) =111 and c(ab) = ¢(c) =110
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Unique Decodeability

Unique Decodeability

A code c for X is uniquely decodeable if no two strings from A; have
the same codeword. That is, for all x,y € A;

x£y — cx) £ c(y)

Examples:
e (; ={0001,0010,0100,1000} is uniquely decodeable why
e ¢, ={0,10,110,111} is uniquely decodeable
e €} =1{1,10,110,111} is not uniquely decodeable because

c(aaa) = ¢(d) =111 and c(ab) = ¢(c) =110

Why is unique decodeability useful for compression?
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}7 is said to be a prefix of another codeword
¢’ €{0,1}" if there exists a string t € {0,1}" such that ¢’ = ct.
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}7 is said to be a prefix of another codeword
¢’ €{0,1}" if there exists a string t € {0,1}" such that ¢’ = ct.

Example: 01101 has prefixes 0, 01, 011, 0110.
Prefix Codes

A code C ={c1,..., ¢} is a prefix code if for every codeword ¢; € C
there is no prefix of ¢; in C.
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}" is said to be a prefix of another codeword
¢’ €{0,1}" if there exists a string t € {0,1}" such that ¢’ = ct.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code C ={c1,..., ¢} is a prefix code if for every codeword ¢; € C
there is no prefix of ¢; in C.

Examples:
o C = {0001,0010,0100,1000} is prefix-free
e (; ={0,10,110,111} is prefix-free
e €} ={1,10,110,111} is not prefix free since cz = 110 = ci1»
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}" is said to be a prefix of another codeword
¢’ €{0,1}" if there exists a string t € {0,1}" such that ¢’ = ct.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code C ={c1,..., ¢} is a prefix code if for every codeword ¢; € C
there is no prefix of ¢; in C.

Examples:
e (; ={0001,0010,0100,1000} is prefix-free
e (; ={0,10,110,111} is prefix-free
e €} ={1,10,110,111} is not prefix free since cz = 110 = ci1»
e CJ/={1,01,110,111} is not prefix free since ¢z = 110 = ¢;10
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Prefix Codes as Trees

C; = {0001, 0010,0100, 1000}

00

000

0000

0001

001

0010

0011

01

010

0101

oo |

011

0110
0111

10

100

1001

1000 |

101

1010
1011

11

110

1100
1101

111

1110

1111
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Prefix Codes as Trees

G, = {0,10,110, 111}

0000
000 0001
00
0010
001
0011
0
0100
010
0101
01
0110
011
0111
1000
100
1001
10
1010
101
1011
1
1100
110
11 1101
1110
111
1111
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Prefix Codes as Trees

J = {1,10,110,111}

0000
000
0001
00
0010
001
0011
0
0100
010 0101
01
0110
011
0111
1000
100 1001
10
1010
101
! 1011
1100
110
1 1101
1110
111
1111
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Prefix Codes are Uniquely Decodeable

0000
0001

o o o If £* = max{/{1,...,¢;} then symbol is
0 ” i decodeable after seeing at most £* bits
L N BT e Consider G, = {0, 10,110,111}
- o » If ¢(x) =0...then x; = a
0 o If ¢(x)=1...then x; € {b,c,d}

101
1011

1100
1101
1110
1111

110

v vy
=
9}
—_~
X
—— —
Il

10...then x; =b
=11... then x; € {c,d}

1
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Prefix Codes are Uniquely Decodeable

0000

o x o o If £* = max{/{1,...,¢;} then symbol is
0 ” i decodeable after seeing at most £* bits
L N BT e Consider G, = {o, 10,110,111}
o o » If ¢(x) =0...then x; = a
10 o » If ¢(x)=1...then x; € {b,c,d}
, - o » If ¢(x) =10... then x; = b
N 1o o » If c(x) =11... then x; € {c,d}

1110
1111

1

However, not all uniquely decodeable codes are prefix codes
C3 ={0,01,011,111} — Not prefix-free but uniquely decodeable wny>
Hint: Notice c3(bdca) = 011110110 and ¢p(acdb) = 011011110
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© The Kraft Inequality
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o L1 ={4,44,4}
L, ={1,2,3,3}
L3 ={2,2,3,4,4}
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

000

010
01

011

100

101

110

111

Mark Reid and Aditya Menon (ANU) COMP2610/6261 — Information Theory September 2nd, 2014 11 /14



Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — G, = {0001,0010,0100,1000}
o L, ={1,2,3,3}
o [3=1{2,2,3,44}
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1o 1100
1 1101
1110
1111

000

00

001

010
01

011

100

101

111
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — G, = {0001,0010,0100,1000}
o [, ={1,2,3,3} — ¢, ={0,10,110,111}
o [3=1{2,2,3,44}
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
m 1100
1 1101
1110
1111

000

001

010
01

011

100

101

111
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — G, = {0001,0010,0100,1000}
o [, ={1,2,3,3} — ¢, ={0,10,110,111}
o [3={2,23,44} — G =1{00, , , }
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

000

001

010
01

011

100

101

110

111
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — G, = {0001,0010,0100,1000}
o [, ={1,2,3,3} — ¢, ={0,10,110,111}
o [3={2,2,3,4,4} — C3=1{00,01, , }
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
111

000

00

001

010
01

011

100

101

110

111
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — G, = {0001,0010,0100,1000}
o [, ={1,2,3,3} — ¢, ={0,10,110,111}
o [3=1{2,2,3,4,4} — C3 =1{00,01, 100, , }
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
111

000

00

001

010
01

011

100

101

110

111
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — G, = {0001,0010,0100,1000}
e [, =1{1,2,3,3} — C ={0,10,110,111}
o [3={2,2,3,4,4} — G3 ={00,01,100, 1010, }
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
111

000

00

001

010
01

011

100

101

110

111
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — G, = {0001,0010,0100,1000}
o [, ={1,2,3,3} — ¢, ={0,10,110,111}
o [3={2,2,3,4,4} — G ={00,01,100,1010,1011}
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
000 0001
00
0010
001
0011
0
0100
010 0101
01
0110
011
0111
1000
100 1001
10
1010
101
! 1011
1100
110
1 1101
1110
111
1111
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — C; = {0001,0010,0100, 1000}
e [, =1{1,2,3,3} — C ={0,10,110,111}
o L3=1{2,2,3,4,4} — G = {00,01,100,1010,1011}
e L, =1{1,3,3,3,3,4} — Impossible!
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
000 0001
00
0010
001
0011
0
0100
010 0101
01
0110
011
o111
1000
100 1001
10
1010
101
1011
1
1100
110
1 1101
1110
11
1111
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

” o @ 2 x 2-bit codewords: {00,01}

001
0011

0100
0101
0110
ottt
1000
1001

010

on

1010
1011
1100
1101
110

i
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

w o —t @ 2 x 2-bit codewords: {00,01}
R N @ 4 x 3-bit codewords: {000,001,010,011}
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

" @ 2 x 2-bit codewords: {00,01}
"o B e 4x 3-bit codewords: {000,001,010,011}
= e 8 x 4-bit codewords: {0000,0001,...,0111}

1001

1010
1011
1100
1101
110

i
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

" ? @ 2 x 2-bit codewords: {00,01}
' R — @ 4 x 3-bit codewords: {000,001,010,011}
o @ 8 x 4-bit codewords: {0000,0001,...,0111}
. e W @ In general, an /-bit codeword excludes
" ot 2k=t % k-bit codewords
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

" ? @ 2 x 2-bit codewords: {00,01}
' R — @ 4 x 3-bit codewords: {000,001,010,011}
o @ 8 x 4-bit codewords: {0000,0001,...,0111}
. e W @ In general, an /-bit codeword excludes
" ot 2k=t % k-bit codewords

For lengths L = {{1,...,¢;} and £* = max{{1,...,¢;}, there will be

/

Z 25* —4;

i=1

excluded ¢*-bit codewords.
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

0000

0001
G010
0011

0100
0101
0110

ot

1000
1001

1010
1011
1100
1101
110

i

For lengths L = {/1, ..

@ 2 x 2-bit codewords: {00,01}
@ 4 x 3-bit codewords: {000,001,010,011}
@ 8 x 4-bit codewords: {0000,0001,...,0111}

@ In general, an /-bit codeword excludes
2k x k-bit codewords

41} and 0 = max{/{y,...,¢,}, there will be

!
1 *
o2 2 <1
i=1

excluded ¢*-bit codewords. But there are only 2" possible £*-bit codewords
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

0000

0 g @ 2 x 2-bit codewords: {00,01}
' R == @ 4 x 3-bit codewords: {000,001,010,011}
o @ 8 x 4-bit codewords: {0000,0001,...,0111}
. R W @ In general, an /-bit codeword excludes
" ot 2k=t % k-bit codewords

For lengths L = {{1,...,¢;} and £* = max{{1,...,¢;}, there will be

/
22—& <1
i=1

excluded ¢*-bit codewords. But there are only 2" possible £*-bit codewords
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The Kraft Inequality

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths {¢1,..., ¢} satisfy

Zz—ff <1 (1)

Conversely, if the set {1, ..., ¢} satisfy (1) then there exists a prefix code
C with those codeword lengths.

V.
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The Kraft Inequality

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths {¢1,..., ¢} satisfy

)
Y oti<u (1)
i=1

Conversely, if the set {1, ..., ¢} satisfy (1) then there exists a prefix code
C with those codeword lengths.

V.

Examples:
@ G = {0001,0010,0100,1000} is prefix and Zf}:l 274 = % <1
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The Kraft Inequality
a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths {¢1,..., ¢} satisfy

Zz—ff <1 (1)

Conversely, if the set {1, ..., ¢} satisfy (1) then there exists a prefix code
C with those codeword lengths.

V.

Examples:
O G = {0001,0010,0100,1000} is prefix and 37 274 =1 <1
@ G ={0,10,110,111} is prefix and 3°7 ;2 =1 + 1 4+ 2 =1
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The Kraft Inequality
a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths {¢1,..., ¢} satisfy

Zz—ff <1 (1)

Conversely, if the set {1, ..., ¢} satisfy (1) then there exists a prefix code
C with those codeword lengths.

V.

Examples:
@ G = {0001,0010,0100,1000} is prefix and Z, 1274 = % <1
Q@ G ={0,10,110,111} is prefix and z, 12 hi=1l4142=1
@ Lengths {1,2,2,3} give Zi:l 2l = § + Z + g > 1 so no prefix code
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Key ideas from this lecture:
o Prefix and Uniquely Decodeable variable-length codes
@ Prefix codes are tree-like

o Every Prefix code is Uniquely Decodeable but not vice versa
@ The Kraft Inequality:

» Code lengths satisfying 2;24" < 1 implies Prefix/U.D. code exists
» Prefix/U.D. code implies >>,27% <1

Relevant Reading Material:
@ MacKay: §5.1 and §5.2
@ Cover & Thomas: §5.1, §5.2, and §5.5
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