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Huffman Coding: Advantages and Disadvantages

Advantages:

Huffman Codes are provably optimal

Algorithm is simple and efficient

Disadvantages:

Assumes a fixed distribution of symbols

The extra bit in the SCT
I If H(X ) is large – not a problem
I If H(X ) is small (e.g., ∼ 1 bit for English) codes are 2× optimal

Huffman codes are the best possible symbol code
but symbol coding is not always the best type of code
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A Guessing Game

Let’s play!
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An Idealised Guessing Game

Encoding: Given message x and guesser G :
For i from 1 to |x|:

1 Set count ni = 1
2 While G guesses xi incorrectly:

1 ni ← ni + 1

3 Output ni

Decoding: Given counts n and guesser G :
For i from 1 to |n| and guesser G :

1 While G has made fewer than ni guesses:
1 xi ← next guess from G

2 Output xi
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An Idealised Guesser

If the guesser G is deterministic (i.e., its next output depends only on the
history of values it has seen), the same guesser can be used to encode and
decode.

Advantages

Scheme works regardless of how the sequence x was generated

Only need to compute codes for observed sequence
(not all possible blocks of some size)

How can we use this?

Have the guesser guess distributions rather than symbols (repeatedly)

Use bits instead of counts (with fewer bits for lower counts)

Define a clever guesser (one that “learns”)

Prove that this scheme is close to optimal
(at least, not much worse than Huffman on probabilistic sources)
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Real Numbers in Binary

Real numbers are commonly expressed in decimal:

1210 → 1× 101 + 2× 100

3.710 → 3× 100 + 7× 10−1

0.9410 → + 9× 10−1 + 4× 10−2

Some real numbers have infinite, repeating decimal expansions:

1
3 = 0.33333 . . .10 = 0.310 and 22

7 = 3.14285714 . . .10 = 3.14285710

Real numbers can also be similarly expressed in binary:

112 → 1× 21 + 1× 20

1.12 → 1× 20 + 1× 2−1

0.012 → + 0× 2−1 + 1× 2−2

1
3 = 0.010101 . . .2 = 1.012 and 22

7 = 11.001001 . . .2 = 11.0012

Question: 1) What is 0.10112 in decimal? 2) What is 7
5 in binary?
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Intervals in Binary

An interval [a, b) is the set of all the numbers at least as big as a but
smaller than b. That is,

[a, b) = {x : a ≤ x < b}.

Examples: [0, 1), [0.3, 0.6), [0.2, 0.4).

The set of numbers in [0, 1) that start with a given sequence of bits b =
b1 . . . bn form the interval [0.b1 . . . bn, 0.(b1 . . . bn + 1)).

1→ [0.1, 1.0) [0.5, 1]10

01→ [0.01, 0.10) [0.25, 0.5)10

1101→ [0.1101, 0.1110) [0.8125, 0.875)10

If b′ is a prefix of b the interval for b is contained in the interval for b′.

b′ = 01 is prefix of b = 0101 so [0.0101, 0.0110)︸ ︷︷ ︸
[0.3125,0.375)10

⊂ [0.01, 0.10)︸ ︷︷ ︸
[0.25,0.5)10
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Cumulative Distribution

Suppose p = (p1, . . . , pK ) is a distribution over A = {a1, . . . , aK}.

Assume the alphabet A is ordered and define ai ≤ aj to mean i ≤ j .
Consider F the cumulative distribution for p:

F (a) = P(x ≤ a) =
∑
ai≤a

pi

Each symbol ai ∈ A is associated with the interval [F (ai−1),F (ai )).
(The value of F (a0) = 0).

Example:
A = {r , g , b} =⇒ a1 = r , a2 = g , a3 = b =⇒ r ≤ b since 1 ≤ 3.
If p = (12 ,

1
4 ,

1
4) then F (r) = 1

2 , F (g) = 3
4 , F (b) = 1.
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Cumulative Distribution
Example

F(ai)

F(ai-1)

F(ai)-½pi

a1 a2 a3 a4

a1

a2

a3

a4

0

1

110

100

01000

0001

Cumulative distribution for p = (29 ,
1
9 ,

1
3 ,

1
3)
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Shannon-Fano-Elias Coding

F(ai)

F(ai-1)

F(ai)-½pi

a1 a2 a3 a4

a1

a2

a3

a4

0

1

110

100

01000

0001

[0, 29)10 [0, 0.001110)2

[29 ,
1
3)10 [0.001110, 0.01)2

[13 ,
2
3)10 [0.01, 0.10)2

[23 , 1)10 [0.10, 1)2

Define the midpoint F̄ (ai ) = F (ai )− 1
2pi and length `(ai ) =

⌈
log2

1
pi

⌉
+ 1.

Code x ∈ A using first `(x) bits of F̄ (x).

x p(x) F (x) F̄ (x) F̄ (x)2 `(x) Code

a1 2/9 2/9 1/9 0.0001112 4 0001
a2 1/9 1/3 5/18 0.010001112 5 01000
a3 1/3 2/3 1/2 0.12 3 100
a4 1/3 1 5/6 0.1102 3 110

Example: Sequence x = a3a3a1 coded as 100 100 0001.
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Shannon-Fano-Elias Decoding

Let p = {29 ,
1
9 ,

1
3 ,

1
3}. Suppose we want to decode 01000:

Find symbol whose interval contains interval for 01000

a1

a2

a3

a4

0

1

[0,0.5)

0

[0.25,0.5)

01

[0.25,0.375)

010

[0.25,0.3125)

0100

[0.25,0.2815)

010000.22

0.33

Note: We did not need to know all the codewords in C .
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Expected Code Length of SFE Code

The extra bit for the code lengths is because we code pi
2 and

log2
2

pi
= log2

1

pi
+ log2 2 = log2

1

pi
+ 1

What is the expected length of a SFE code C for ensemble X with
probabilities p?

L(C ,X ) =
K∑
i=1

pi`(ai ) =
K∑
i=1

pi

(⌈
log2

1

pi

⌉
+ 1

)

≤
K∑
i=1

pi

(
log2

1

pi
+ 2

)
= H(X ) + 2

Similarly, H(X ) + 1 ≤ L(C ,X ) for the SFE codes.
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What does the extra bit buy us?

Let X be an ensemble, CSFE be a Shannon-Fano-Elias code for X and CH

be a Huffman code for X .

H(X ) ≤ L(CH ,X ) ≤ H(X ) + 1︸ ︷︷ ︸
Source Coding Theorem

≤ L(CSFE ,X ) ≤ H(X ) + 2

The extra bit guarantees that the interval for each code word lies entirely
within the interval for each symbol. [Why?]

Example: SFE Code for p = {29 ,
1
9 ,

1
3 ,

1
3} is C = {0001, 01000, 100, 110}.

Intervals for p are

[0, 0.22), [0.22, 0.33), [0.33, 0.66), [0.66, 1)

Intervals for {000, 0100, 10, 11} are

[0, 0.125), [0.25, 0.3125), [0.5, 0.75), [0.75, 1)
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Summary and Reading

Main points:

Problems with Huffman coding

Guessing game for coding without assuming fixed symbol distribution

Binary strings to/from intervals in [0, 1]

Shannon-Fano-Elias Coding:
I Code C via cumulative distribution function for p
I H(X ) + 1 ≤ L(C ,X ) ≤ H(X ) + 2

Extra bit guarantees interval containment

Reading:

Guessing game and interval coding: MacKay §6.1 and §6.2

Shannon-Fano-Elias Coding: Cover & Thomas §5.9

Next time:

Extending SFE Coding to sequences of symbols
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