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© Interval Coding
@ Shannon-Fano-Elias Coding
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Huffman Coding: Advantages and Disadvantages

Advantages:
@ Huffman Codes are provably optimal

@ Algorithm is simple and efficient
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Huffman Coding: Advantages and Disadvantages

Advantages:
@ Huffman Codes are provably optimal

@ Algorithm is simple and efficient

Disadvantages:

@ Assumes a fixed distribution of symbols
@ The extra bit in the SCT

» If H(X) is large — not a problem
» If H(X) is small (e.g., ~ 1 bit for English) codes are 2x optimal

Huffman codes are the best possible symbol code
but symbol coding is not always the best type of code
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© Guessing Game
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A Guessing Game

Let’s play!
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An Idealised Guessing Game

Encoding: Given message x and guesser G:
For i from 1 to |x|:

@ Setcount nj =1

@ While G guesses x; incorrectly:
@ ni<n+l

© Output n;
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An Idealised Guessing Game

Encoding: Given message x and guesser G:
For i from 1 to |x|:
@ Setcount nj =1
@ While G guesses x; incorrectly:
@ ni<n+1
© Output n;

Decoding: Given counts n and guesser G:
For i from 1 to |n| and guesser G:
@ While G has made fewer than n; guesses:
@ x; < next guess from G

@ Output x;
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An |dealised Guesser

If the guesser G is deterministic (i.e., its next output depends only on the
history of values it has seen), the same guesser can be used to encode and
decode.
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An |dealised Guesser

If the guesser G is deterministic (i.e., its next output depends only on the
history of values it has seen), the same guesser can be used to encode and

decode.

Advantages
@ Scheme works regardless of how the sequence x was generated

@ Only need to compute codes for observed sequence
(not all possible blocks of some size)
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An |dealised Guesser

If the guesser G is deterministic (i.e., its next output depends only on the
history of values it has seen), the same guesser can be used to encode and
decode.

Advantages
@ Scheme works regardless of how the sequence x was generated

@ Only need to compute codes for observed sequence
(not all possible blocks of some size)

How can we use this?

Have the guesser guess distributions rather than symbols (repeatedly)
@ Use bits instead of counts (with fewer bits for lower counts)

@ Define a clever guesser (one that “learns”)
°

Prove that this scheme is close to optimal
(at least, not much worse than Huffman on probabilistic sources)
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© Interval Coding
@ Shannon-Fano-Elias Coding
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Real Numbers in Binary

Real numbers are commonly expressed in decimal:
1219 — 1 x 10% + 2 x 10°
3.710 — 3x10°+7x107*
0.9419 — +9x1071 +4x 1072
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Real Numbers in Binary

Real numbers are commonly expressed in decimal:
1219 — 1 x 10% + 2 x 10°
3.710 — 3x10°+7x107*
0.9419 — +9x10714+4x%x1072
Some real numbers have infinite, repeating decimal expansions:

$=033333...10=03y and 2% =3.14285714...;0 = 3.142857y
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Real Numbers in Binary

Real numbers are commonly expressed in decimal:
1219 — 1 x 10% + 2 x 10°
3.710 — 3x10°+7x107*
0.9419 — +9x1071 +4x 1072
Some real numbers have infinite, repeating decimal expansions:
$=033333...10=03y and 2% =3.14285714...;0 = 3.142857y
Real numbers can also be similarly expressed in binary:
11, » 1 x 2t +1x2°
1.1, — 1x204+1x271
0.01, — +0x27 41 x272

% =0.010101..., =1.01, and % =11.001001..., = 11.001,
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Real Numbers in Binary

Real numbers are commonly expressed in decimal:
1219 — 1 x 10% + 2 x 10°
3.710 — 3x10°+7x107*
0.9419 — +9x1071 +4x 1072
Some real numbers have infinite, repeating decimal expansions:
$=033333...10=03y and 2% =3.14285714...;0 = 3.142857y
Real numbers can also be similarly expressed in binary:
11, » 1 x 2t +1x2°
1.1, — 1x204+1x271
0.01, — +0x27 41 x272

1-0010101.., =101, and 2 =11.001001..., = 11.001,
Question: 1) What is 0.1011, in decimal? 2) What is £ in binary?
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Intervals in Binary

An interval [a, b) is the set of all the numbers at least as big as a but
smaller than b. That is,

[a,b) = {x:a < x < b}
Examples: [0,1), [0.3,0.6), [0.2,0.4).
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Intervals in Binary

An interval [a, b) is the set of all the numbers at least as big as a but
smaller than b. That is,

[a,b) = {x:a < x < b}
Examples: [0,1), [0.3,0.6), [0.2,0.4).

The set of numbers in [0, 1) that start with a given sequence of bits b =
by ...by, form the interval [0.b1 ... b,,0.(b1 ... b, + 1)).

e 1—[0.1,1.0)

e 01 — [0.01,0.10)

e 1101 — [0.1101,0.1110)

[0.5,1]10
[0.25,0.5)10
[0.8125,0.875)10
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Intervals in Binary

An interval [a, b) is the set of all the numbers at least as big as a but
smaller than b. That is,

[a,b) = {x:a < x < b}
Examples: [0,1), [0.3,0.6), [0.2,0.4).

The set of numbers in [0, 1) that start with a given sequence of bits b =
by ...by, form the interval [0.b1 ... b,,0.(b1 ... b, + 1)).

e 1—[0.1,1.0) 0.5, 1]10
e 01 — [0.01,0.10) [0.25,0.5)10
e 1101 — [0.1101,0.1110) [0.8125,0.875)10

If b’ is a prefix of b the interval for b is contained in the interval for b’.

b’ = 01 is prefix of b = 0101 so [0.0101,0.0110) C [0.01,0.10)

[0.3125,0.375)10 [0.25,0.5)10
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Cumulative Distribution

Suppose p = (p1, ..., pk) is a distribution over A = {ay,...,ak}.

Assume the alphabet A is ordered and define a; < a; to mean i <.
Consider F the cumulative distribution for p:

Fa)=P(x<a)=> pi
a;<a

Each symbol a; € A is associated with the interval [F(a;_1), F(a;)).
(The value of F(ap) = 0).
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Cumulative Distribution

Suppose p = (p1, ..., pk) is a distribution over A = {ay,...,ak}.

Assume the alphabet A is ordered and define a; < a; to mean i <.
Consider F the cumulative distribution for p:

Fa)=P(x<a)=Yp

a;<a

Each symbol a; € A is associated with the interval [F(a;_1), F(a;)).
(The value of F(ap) = 0).

Example:
={r,g,b} = a1=r,aa=g,a3=b = r<bsincel <3.
Ifp=(3,7.4) then F(r) =3, F(g) =3 F(b) =
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Cumulative Distribution

Example

F(ay)-Yep;

F(aj4)

a1 82 33 a4

Cumulative distribution for p = (%, %, %, %)

September 23rd, 2014
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Shannon-Fano-Elias Coding

[0, 2)10 [0,0.001110),
[5.3)10 [0.001110,0.01),
[5,5)10 [0.01,0.10)>
[3.1)10 [0.10,1)
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Shannon-Fano-Elias Coding

[0, 2)10 [0,0.001110),
[5.3)10 [0.001110, 0.01);
12, 2)w0 [0.01,0.10),
[2, D10 [0.10,1),

Define the midpoint F(a;) = F(a;) — %p,- and length ¢(a;) = {Iogz %-‘ + 1.
Code x € A using first £(x) bits of F(x).

x  p(x) F(x) F(x) F(x)2 {(x) Code

a1 2/9 2/9 1/9  0.000111, 4 0001
a 1/9 1/3 5/18 0.01000111, 5 01000
a3 1/3 2/3 1/2 0.1 3 100
ag 1/3 1 5/6 0.110 3 110
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Shannon-Fano-Elias Coding

[0, 2)10 [0,0.001110),
[5.3)10 [0.001110, 0.01);
12 2)10 [0.01,0.10);
[2, D10 [0.10,1),

Define the midpoint F(a;) = F(a;) — %p,- and length ¢(a;) = {Iogz %-‘ + 1.
Code x € A using first £(x) bits of F(x).

x  p(x) F(x) F(x) F(x)2 {(x) Code

a1 2/9 2/9 1/9  0.000111, 4 0001
a 1/9 1/3 5/18 0.01000111, 5 01000
a3 1/3 2/3 1/2 0.1 3 100
ag 1/3 1 5/6 0.110 3 110

Example: Sequence x = azasza; coded as 100 100 0001.
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Shannon-Fano-Elias Decoding

Let p= {%, é, %, %} Suppose we want to decode 01000:

Find symbol whose interval contains interval for 01000

1+ - - - -

ay

ag

033 01 T T

a
2 010 0100
oo 21 0 1 I 101000

a4

ol i 1 1 1
[0,05)  [0.25,0.5) [0.25,0.375) [0.25,0.3125) [0.25,0.2815)

Note: We did not need to know all the codewords in C.
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Expected Code Length of SFE Code

The extra bit for the code lengths is because we code & and

2 1 1
log, o = log, o +logy,2 =logy, — +1

i i Pi

What is the expected length of a SFE code C for ensemble X with
probabilities p?

X) = épiﬂ(a: Zp, ([Iogz W + 1)
< épi <I0g2 % + 2)
= H(X) +2

Similarly, H(X) +1 < L(C, X) for the SFE codes.
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What does the extra bit buy us?

Let X be an ensemble, Csge be a Shannon-Fano-Elias code for X and Cy
be a Huffman code for X.

H(X) < L(Cy, X) < H(X) +1 < L(Csre, X) < H(X) +2

Source Coding Theorem
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What does the extra bit buy us?

Let X be an ensemble, Csge be a Shannon-Fano-Elias code for X and Cy
be a Huffman code for X.

H(X) < L(Cy, X) < H(X) +1 < L(Csre, X) < H(X) +2

Source Coding Theorem

The extra bit guarantees that the interval for each code word lies entirely
within the interval for each symbol. why
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What does the extra bit buy us?

Let X be an ensemble, Csge be a Shannon-Fano-Elias code for X and Cy
be a Huffman code for X.

H(X) < L(Cy, X) < H(X) +1 < L(Csre, X) < H(X) + 2

Source Coding Theorem

The extra bit guarantees that the interval for each code word lies entirely
within the interval for each symbol. why

Example: SFE Code for p = {2, 1,1 1} is C = {0001, 01000, 100, 110}.
Intervals for p are

[0,0.22),[0.22,0.33),[0.33,0.66), [0.66, 1)
Intervals for {000, 0100, 10,11} are

[0,0.125),[0.25,0.3125),[0.5,0.75), [0.75, 1)
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Summary and Reading

Main points:
@ Problems with Huffman coding
@ Guessing game for coding without assuming fixed symbol distribution
@ Binary strings to/from intervals in [0, 1]

@ Shannon-Fano-Elias Coding:

» Code C via cumulative distribution function for p
» HX)+1<L(C,X) < H(X)+2

@ Extra bit guarantees interval containment
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Summary and Reading

Main points:

Problems with Huffman coding

@ Guessing game for coding without assuming fixed symbol distribution
@ Binary strings to/from intervals in [0, 1]

@ Shannon-Fano-Elias Coding:

» Code C via cumulative distribution function for p
» HX)+1<L(C,X) < H(X)+2

@ Extra bit guarantees interval containment

Reading;:
o Guessing game and interval coding: MacKay §6.1 and §6.2
@ Shannon-Fano-Elias Coding: Cover & Thomas §5.9
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Summary and Reading

Main points:

Problems with Huffman coding

@ Guessing game for coding without assuming fixed symbol distribution
@ Binary strings to/from intervals in [0, 1]

@ Shannon-Fano-Elias Coding:

» Code C via cumulative distribution function for p
» HX)+1<L(C,X) < H(X)+2

@ Extra bit guarantees interval containment

Reading;:
o Guessing game and interval coding: MacKay §6.1 and §6.2
@ Shannon-Fano-Elias Coding: Cover & Thomas §5.9

Next time:

Extending SFE Coding to sequences of symbols
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