COMP2610/6261 - Information Theory

Lecture 16: Arithmetic Coding (cont.)

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

September 24th, 2014

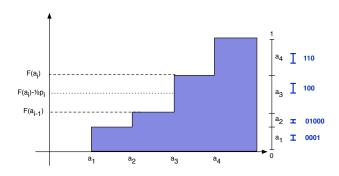
Coding Sequences

2 Updating Distributions

Interval Codes

Recall the **Shannon-Fano-Elias Coding** method from last lecture:

- ullet Order the alphabet \mathcal{A} .
- Represent distribution p by cumulative distribution F
- Construct code by finding intervals of width $\frac{p_i}{2}$ that lie in each symbol interval $[F(a_{i-1}), F(a_i))$



Interval Coding Blocks

What if we apply SFE coding to blocks?

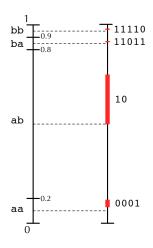
Example: Let $A = \{aa, ab, ba, bb\}$ with p = (0.2, 0.6, 0.1, 0.1).

x	p	Ē	$ar{\mathcal{F}}_2$	ℓ	Code
aa	0.2	0.1	$0.0\overline{0011}_{2}$	4	0001
ab	0.6	0.5	0.1_{2}	2	10
ba	0.1	0.85	$0.110\overline{1100}_2$	5	11011
bb	0.1	0.95	$0.11\overline{1100}_2$	5	11110

Extend to longer sequences

This works but:

- Need $P(\mathbf{x})$ for all \mathbf{x}
- Total $|\mathcal{A}|^N$ values for length N
- Huffman has similar complexity but shorter codes.



Interval Coding Sequences

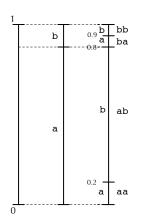
How might we build codes "on the fly"?

$$P(x_1x_2) = P(x_2|x_1)P(x_1)$$

Interval Coding Sequences

How might we build codes "on the fly"?

$$P(x_1x_2) = P(x_2|x_1)P(x_1)$$



Example:

$$P(a) = 0.8$$
 $P(b) = 0.2$
 $P(a|a) = 0.25$ $P(b|a) = 0.75$
 $P(a|b) = 0.5$ $P(b|b) = 0.5$

Intervals for P(aa) and P(ab):

- Lie inside interval for P(a)
- Lengths proportional to P(a|a) and P(b|a)

Knowing $P(x_1...x_{N-1})$ and $P(x|x_1...x_{N-1})$ is enough to compute $P(\mathbf{x})$

Building the Code

Recall the *prefix property* of binary intervals:

If \mathbf{b}' is a prefix of \mathbf{b} the interval for \mathbf{b} is contained in the interval for \mathbf{b}' .

$$01 \leftrightarrow [0.01, 0.1)_2 = [0.25, 0.5)_{10} \supset [0.375, 0.5)_{10} = [0.011, 0.1)_2 \leftrightarrow \underline{01}1$$

Building the Code

Recall the *prefix property* of binary intervals:

If \mathbf{b}' is a prefix of \mathbf{b} the interval for \mathbf{b} is contained in the interval for \mathbf{b}' .

$$01 \leftrightarrow [0.01, 0.1)_2 = [0.25, 0.5)_{10} \supset [0.375, 0.5)_{10} = [0.011, 0.1)_2 \leftrightarrow \underline{01}_1$$

This means:

If interval for ${\boldsymbol x}$ is in the interval for code ${\boldsymbol b}$, the code for ${\boldsymbol x}$ starts with ${\boldsymbol b}$

Building the Code

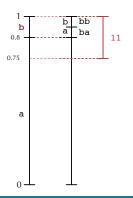
Recall the *prefix property* of binary intervals:

If \mathbf{b}' is a prefix of \mathbf{b} the interval for \mathbf{b} is contained in the interval for \mathbf{b}' .

$$01 \leftrightarrow [0.01, 0.1)_2 = [0.25, 0.5)_{10} \supset [0.375, 0.5)_{10} = [0.011, 0.1)_2 \leftrightarrow \underline{01}_1$$

This means:

If interval for x is in the interval for code b, the code for x starts with b



Example:

- The probability P(b) = 0.2 so b has interval is [0.8, 1.0).
- This lies inside the interval $[0.75, 1) = [0.11, 1.0)_2$ for 11.
- The intervals for ba and bb must also lie in $[0.11, 1.0)_2$
- So codes for ba and bb must start with 11.

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Arithmetic Coding of stream $x_1x_2...$ using G

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

• While there are more symbols in the stream:

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in \mathcal{A}$ to \mathbf{x}

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in A$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in \mathcal{A}$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$
 - **3** Find longest \mathbf{b}' such that $[u, v) \subset [0.\mathbf{bb}', 0.\mathbf{bb}'\overline{1})_2$

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in A$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$
 - **3** Find longest \mathbf{b}' such that $[u, v) \subset [0.\mathbf{bb}', 0.\mathbf{bb}'\overline{1})_2$
 - $\mathbf{0}$ Output \mathbf{b}' and update \mathbf{b} to $\mathbf{b}\mathbf{b}'$

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in \mathcal{A}$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$
 - **3** Find longest \mathbf{b}' such that $[u, v) \subset [0.\mathbf{bb}', 0.\mathbf{bb}'\overline{1})_2$
 - **4** Output \mathbf{b}' and update \mathbf{b} to $\mathbf{b}\mathbf{b}'$
 - **3** Let $\mathbf{p} = G(\mathbf{x})$ and F be c.d.f. for \mathbf{p}

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in A$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$
 - **3** Find longest \mathbf{b}' such that $[u, v) \subset [0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2$
 - $\mathbf{0}$ Output \mathbf{b}' and update \mathbf{b} to $\mathbf{b}\mathbf{b}'$
 - **5** Let $\mathbf{p} = G(\mathbf{x})$ and F be c.d.f. for \mathbf{p}
- ② Find the shortest \mathbf{b}' so that $[0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2 \subset [u + \frac{1}{2}(v u), v]$

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in A$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$
 - **3** Find longest \mathbf{b}' such that $[u, v) \subset [0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2$
 - **4** Output \mathbf{b}' and update \mathbf{b} to $\mathbf{b}\mathbf{b}'$
 - **3** Let $\mathbf{p} = G(\mathbf{x})$ and F be c.d.f. for \mathbf{p}
- ② Find the shortest \mathbf{b}' so that $[0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2 \subset [u + \frac{1}{2}(v u), v]$
- Output b'

Suppose we have a guesser G that predicts a distribution \mathbf{p} over \mathcal{A} after seeing the sequence $\mathbf{x} = x_1 \dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

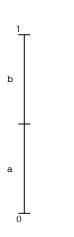
- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in A$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$
 - **3** Find longest \mathbf{b}' such that $[u, v) \subset [0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2$
 - **4** Output \mathbf{b}' and update \mathbf{b} to $\mathbf{b}\mathbf{b}'$
 - **3** Let $\mathbf{p} = G(\mathbf{x})$ and F be c.d.f. for \mathbf{p}
- ② Find the shortest \mathbf{b}' so that $[0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2 \subset [u + \frac{1}{2}(v u), v]$
- Output b'

Suppose we have a guesser G that predicts a distribution ${\bf p}$ over ${\cal A}$ after seeing the sequence ${\bf x}=x_1\dots x_n$

Set
$$[u, v) = [0, 1)$$
, $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, $\mathbf{p} = G(\epsilon)$, $F = \text{c.d.f.}$ for \mathbf{p} ,

- While there are more symbols in the stream:
 - **1** Append the next symbol $x = a_i \in \mathcal{A}$ to **x**
 - 2 Update interval [u, v) to $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$
 - **3** Find longest \mathbf{b}' such that $[u, v) \subset [0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2$
 - **4** Output \mathbf{b}' and update \mathbf{b} to $\mathbf{b}\mathbf{b}'$
 - **3** Let $\mathbf{p} = G(\mathbf{x})$ and F be c.d.f. for \mathbf{p}
- ② Find the shortest \mathbf{b}' so that $[0.\mathbf{b}\mathbf{b}', 0.\mathbf{b}\mathbf{b}'\overline{1})_2 \subset [u + \frac{1}{2}(v u), v]$
- Output b'
 - Interval $[u + (v u)F(a_{i-1}), u + (v u)F(a_i))$ is for a_i inside [u, v].
 - Adding $\overline{1}$ to end of binary string **b** is equivalent to incrementing.
 - Code: https://gist.github.com/mreid/eacfa4dc78c6b142c78f

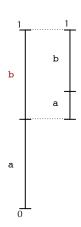
Input: ϵ Output: ϵ



Steps:

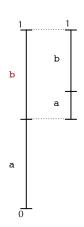
• $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, [u, v) = [0, 1) $G(\mathbf{x}) = (0.5, 0.5)$

Input: b Output: ϵ



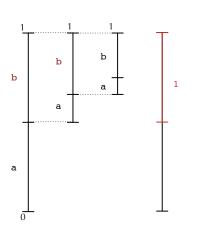
- $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, [u, v) = [0, 1) $G(\mathbf{x}) = (0.5, 0.5)$
- $\mathbf{x} = \mathbf{b}$, $\mathbf{b} = \epsilon$, [u, v) = [0.5, 1) $G(\mathbf{x}) = (0.34, 0.66)$

Input: b b Output: 1



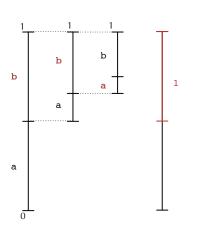
- $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, [u, v) = [0, 1) $G(\mathbf{x}) = (0.5, 0.5)$
- $\mathbf{x} = \mathbf{b}, \ \mathbf{b} = \mathbf{1}, \ [u, v) = [0.5, 1)$ $G(\mathbf{x}) = (0.34, 0.66)$

Input: b b Output: 1



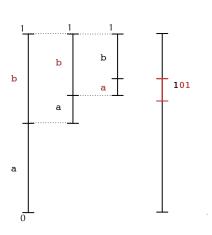
- $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, [u, v) = [0, 1) $G(\mathbf{x}) = (0.5, 0.5)$
- $\mathbf{x} = \mathbf{b}$, $\mathbf{b} = 1$, [u, v) = [0.5, 1) $G(\mathbf{x}) = (0.34, 0.66)$
- $\mathbf{x} = \mathbf{bb}$, $\mathbf{b} = 1$, [u, v) = [0.67, 1) $G(\mathbf{x}) = (0.25, 0.75)$

Input: bba Output: 1



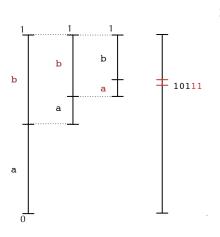
- $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, [u, v) = [0, 1) $G(\mathbf{x}) = (0.5, 0.5)$
- $\mathbf{x} = \mathbf{b}$, $\mathbf{b} = 1$, [u, v) = [0.5, 1) $G(\mathbf{x}) = (0.34, 0.66)$
- $\mathbf{x} = \mathbf{bb}$, $\mathbf{b} = 1$, [u, v) = [0.67, 1) $G(\mathbf{x}) = (0.25, 0.75)$
- $\mathbf{x} = \text{bba}$, $\mathbf{b} = 1$, [u, v) = [0.67, 0.75) $G(\mathbf{x}) = \dots$

Input: bba Output: 101



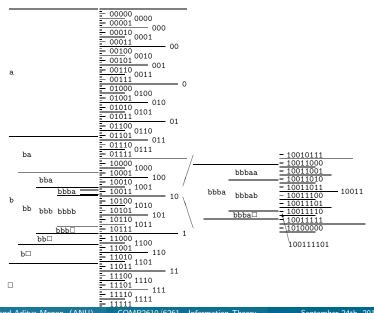
- $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, [u, v) = [0, 1) $G(\mathbf{x}) = (0.5, 0.5)$
- $\mathbf{x} = \mathbf{b}$, $\mathbf{b} = 1$, [u, v) = [0.5, 1) $G(\mathbf{x}) = (0.34, 0.66)$
- $\mathbf{x} = \mathbf{bb}$, $\mathbf{b} = 1$, [u, v) = [0.67, 1) $G(\mathbf{x}) = (0.25, 0.75)$
- $\mathbf{x} = bba$, $\mathbf{b} = 101$, [u, v) = [0.67, 0.75) $G(\mathbf{x}) = \dots$

Input: bba Output: 10111



- $\mathbf{x} = \epsilon$, $\mathbf{b} = \epsilon$, [u, v) = [0, 1) $G(\mathbf{x}) = (0.5, 0.5)$
- $\mathbf{x} = \mathbf{b}$, $\mathbf{b} = 1$, [u, v) = [0.5, 1) $G(\mathbf{x}) = (0.34, 0.66)$
- $\mathbf{x} = \mathbf{bb}$, $\mathbf{b} = 1$, [u, v) = [0.67, 1) $G(\mathbf{x}) = (0.25, 0.75)$
- $\mathbf{x} = \mathbf{bba}, \ \mathbf{b} = 101, \ [u, v) = [0.67, 0.75)$ $G(\mathbf{x}) = \dots$
- x = bba, b = 10111

Arithmetic Coding: Example (MacKay, Figure 6.4)



Decoding

How do we decode a sequence of bits?

Rough Sketch:

- Guesser G gives initial distribution $G(\epsilon)$
- Keep reading bits until binary interval in a symbol interval
- Output that symbol and pass to G for next distribution
- Repeat

Homework:

- Describe above decoding method in more detail (e.g., like previous sketch for coding)
- Running through decoding output of previous example

Coding Sequences

2 Updating Distributions

Building a Better Guesser

So far we assume the sequence of probabilities are given in advance.

In Lecture 5, you saw Bernoulli distribution for two outcomes

- Beta distribution Beta $(\theta|m_h, m_t)$ as a prior for Bern $(x|\theta)$
- The posterior after observing n_h heads and n_t tails is just Beta $(\theta|m_h+n_h,m_t+n_t)$
- ullet The expected value of heta is

$$p(x = h|\mathcal{D}, m_h, m_t) = \frac{m_h + n_h}{m_h + n_h + m_t + n_t}$$

Building a Better Guesser

So far we assume the sequence of probabilities are given in advance.

In Lecture 5, you saw Bernoulli distribution for two outcomes

- Beta distribution Beta $(\theta|m_h, m_t)$ as a prior for Bern $(x|\theta)$
- The posterior after observing n_h heads and n_t tails is just Beta $(\theta|m_h+n_h,m_t+n_t)$
- ullet The expected value of heta is

$$p(x = h|\mathcal{D}, m_h, m_t) = \frac{m_h + n_h}{m_h + n_h + m_t + n_t}$$

Example: Start with $m_h = m_t = 1$ and observe sequence hht.

$$G(\epsilon)=(\frac{1}{2},\frac{1}{2}),\; G(h)=(\frac{2}{3},\frac{1}{3}),\; G(hh)=(\frac{3}{4},\frac{1}{4})\; G(hht)=(\frac{3}{5},\frac{2}{5})$$

Laplace's Rule

Dirichlet Model

A **Dirichlet distribution** is a generalisation of the Beta distribution to more than two outcomes. Its parameter is a vector $\mathbf{m} = (m_1, \dots, m_K)$ can be viewed as "virtual counts" for each symbol a_1, \dots, a_K :

$$P(x = a_i | x_1 \dots x_n) = \frac{\sharp(a_i) + m_i}{\sum_{k=1}^K \sharp(a_k) + m_k}$$

Can implement an adaptive guesser by just counting symbol occurrences.

Dirichlet Model

A **Dirichlet distribution** is a generalisation of the Beta distribution to more than two outcomes. Its parameter is a vector $\mathbf{m} = (m_1, \dots, m_K)$ can be viewed as "virtual counts" for each symbol a_1, \dots, a_K :

$$P(x = a_i | x_1 \dots x_n) = \frac{\sharp(a_i) + m_i}{\sum_{k=1}^K \sharp(a_k) + m_k}$$

Can implement an adaptive guesser by just counting symbol occurrences.

Benefits:

- A deterministic guesser G specified by "virtual counts" m
- Flexible
 - e.g., Choose **m** to be frequency of English letters
 - $\sum_{k} m_k$ Large = Stable; Small = Responsive

Summary and Reading

Main Points

- Arithmetic Coding:
 - Uses interval coding and conditional probability
 - Separates coding and prediction
 - No need to compute every code word
 - Sketch of coding algorithm
- Predictive distributions:
 - Update distribution after each symbol
 - Beta and Dirichlet priors = virtual counts

Reading

Section 6.2 of MacKay