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Eliminating Repetition

What is a simple, short binary description of the following string?

aaaaaaa bbbbbbb aaaaaaa bbbbbbb
—_——— —— —— ——
Tas Tbs Tas Tbs

A simple symbol code for {a,b}, C ={0,1}, uses 28 bits
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Eliminating Repetition

What is a simple, short binary description of the following string?

aaaaaaa bbbbbbb aaaaaaa bbbbbbb
—_——— —— —— ——
Tas Tbs Tas Tbs

A simple symbol code for {a,b}, C ={0,1}, uses 28 bits

Run-length coding using (count, symbol) saves 12 bits:

111 0 111 1 111 0 111 1
N S S SN
7 a 7 b 7 a 7 b
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Eliminating Repetition

What is a simple, short binary description of the following string?

aaaaaaa bbbbbbb aaaaaaa bbbbbbb
—_——— —— —— ——
Tas Tbs Tas Tbs

A simple symbol code for {a,b}, C ={0,1}, uses 28 bits

Run-length coding using (count, symbol) saves 12 bits:

111 0 111 1 111 0 111 1

S SN S S

7 a 7 b 7 a 7 b
@ Makes no probabilistic assumptions about source.

@ Doesn't always yield shorter strings:
aabbaba—10 0 10 1 01 0 01 1 01 O (7 to 15 bits)

@ Misses other structure: “2 repetitions of (7 as and 7 bs)”
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Looking for Repetition

Consider a sequence that starts
abbababbababbab. ..

We can describe each new part in terms of what we have seen so far:
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Looking for Repetition

Consider a sequence that starts
abbababbababbab. ..

We can describe each new part in terms of what we have seen so far:
QO Anewa
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Looking for Repetition

Consider a sequence that starts
abbababbababbab. ..

We can describe each new part in terms of what we have seen so far:
O Anewa
Q@ Anewbd
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Looking for Repetition

Consider a sequence that starts
abbababbababbab...

We can describe each new part in terms of what we have seen so far:
O Anewa
Q@ Anewbd
© The same 1 symbol as 1 symbol ago
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Looking for Repetition

Consider a sequence that starts
abbababbababbab. ..

We can describe each new part in terms of what we have seen so far:
O Anewa
Q@ Anewbd
© The same 1 symbol as 1 symbol ago
© The same 2 symbols as 3 symbols ago
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Looking for Repetition

Consider a sequence that starts
abbababbababbab. ..

We can describe each new part in terms of what we have seen so far:
O Anewa
Q@ Anewbd
© The same 1 symbol as 1 symbol ago
@ The same 2 symbols as 3 symbols ago

© The same 10 symbols as 5 symbols ago
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Looking for Repetition

Consider a sequence that starts
abbababbababbab. ..

We can describe each new part in terms of what we have seen so far:

QO Anewa (0,a)
@ Anewb (0,b)
© The same 1 symbol as 1 symbol ago (1,1,1)
@ The same 2 symbols as 3 symbols ago (1,3,2)
@ The same 10 symbols as 5 symbols ago (1,5,10)

00 01 10010001 10110010 11011001 ...
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

@ Initialise s + ¢
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LZ77(Sequence x1x; . . ., Window size W > 0)

O Initialise s < ¢
@ While input sequence has more symbols:
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

Q |Initialise s +— €
@ While input sequence has more symbols:
@ x, < next symbol from sequence (n is total symbols read)
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

O Initialise s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ Let t + last W symbols of s x,
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

O Initialise s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ Let t + last W symbols of s x,
@ If t does not appear in X,_w ...Xp_1
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

Q |Initialise s +— €
@ While input sequence has more symbols:
@ x, < next symbol from sequence (n is total symbols read)

@ Let t + last W symbols of s x,
@ If t does not appear in X,_w ...Xp_1

@ If s =€ then output (0, x,) and continue; otherwise
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

O Initialise s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ Let t + last W symbols of s x,
@ If t does not appear in X,_w ...Xp_1

@ If s =€ then output (0, x,) and continue; otherwise

@ Find smallest 0 </ < W such that t = x;—i ... Xp—jt|t|]—1Xn
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

O Initialise s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ Let t + last W symbols of s x,
@ If t does not appear in X,_w ...Xp_1
@ If s =€ then output (0, x,) and continue; otherwise
@ Find smallest 0 </ < W such that t = x;—i ... Xp—jt|t|]—1Xn
© Output (1,1/,]|s|)
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

O Initialise s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ Let t + last W symbols of s x,
@ If t does not appear in X,_w ...Xp_1
@ If s =€ then output (0, x,) and continue; otherwise
@ Find smallest 0 </ < W such that t = x;—i ... Xp—jt|t|]—1Xn
© Output (1,1/,]|s|)
@ Else s + sx,
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x; . . ., Window size W > 0)

O Initialise s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ Let t + last W symbols of s x,
@ If t does not appear in X,_w ...Xp_1
@ If s =€ then output (0, x,) and continue; otherwise
@ Find smallest 0 </ < W such that t = x;—i ... Xp—jt|t|]—1Xn
© Output (1,1/,]|s|)
@ Else s + sx,
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Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence xix; . .., Window size W > 0)
O |Initialise s + €

@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ Let t + last W symbols of s x,
@ If t does not appear in X,_w ...Xp_1
@ If s =€ then output (0, x,) and continue; otherwise
@ Find smallest 0 </ < W such that t = x;—i ... Xp—jt|t|]—1Xn
© Output (1,1/,]|s|)
@ Else s + sx,

Notes:
@ The output is converted to binary. i is represented with [log, W bits.
@ The size output |s| can be larger than W.
@ Not very effective compression for short input sequences.
@ Run-length encoding is essentially LZ77 with W = 1.
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

€

@
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Q= (0,a)
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Q a (0,a)
(2 J) (0,D)
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Q a (0,a)
Q@b (0,p)
Q ba (2,a)
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Qa (0,a)
Qb (0,b)
Q ba (2,a)
Q bab (3,b)
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Qa (0,a)
Qb (0,Dp)
Q ba (2,a)
O bab (3,b)
© baba (4,a)
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Qa (0,a)
Qb (0,Dp)
Q ba (2,a)
O bab (3,b)
© baba (4,2)
Q bb (2,b)
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Qa (0,a)
Qb (0,Dp)
Q ba (2,a)
O bab (3,b)
© baba (4,2)
0 bb (2,b)
Q@ ab (1,D)
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Extending Substrings

Consider the same sequence as before
abbababbababbab. ..

Scan sequence and record each previously unseen string:

Q- (0,a)
Qb (0,Dp)
Q ba (2,a)
O bab (3,b)
© baba (4,2)
O bb (2,b)
Q ab (1,1p)

0001 100 111 1000 0101 0OO11...
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
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@ While input sequence has more symbols:
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
@ While input sequence has more symbols:
@ x, < next symbol from sequence (n is total symbols read)
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ If sx, is not in dictionary then
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ If sx, is not in dictionary then

@ Find index i such that D[i] = s and output (i, x,)
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ If sx, is not in dictionary then

@ Find index i such that D[i] = s and output (i, x,)

@ Update D[|D|] < sx, and reset s < ¢
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ If sx, is not in dictionary then

@ Find index i such that D[i] = s and output (i, x,)

@ Update D[|D|] < sx, and reset s < ¢

© Else s + sx,
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ If sx, is not in dictionary then

@ Find index i such that D[i] = s and output (i, x,)

@ Update D[|D|] < sx, and reset s < ¢

© Else s + sx,
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Lempel-Ziv: Tree-Structured (LZ78)

See MacKay §6.4

LZ78(Sequence x1x . . .)

Q Initialise empty dictionary D < {} and s < ¢
@ While input sequence has more symbols:

@ x, < next symbol from sequence (n is total symbols read)
@ If sx, is not in dictionary then

@ Find index i such that D[i] = s and output (i, x,)
@ Update D[|D|] < sx, and reset s < ¢

© Else s + sx,

Notes:
@ Only [log, n] bits of i need to be output at step n
@ |D| is the number of entries in the dictionary

@ Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

@ Decoding via “identical twin”
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Lempel-Ziv: Theory and Practice

Theory
@ Both LZ77 and LZ78 are optimal in the sense that the expected bits
per symbol from some source X converges to H(X) as N — oo
@ Proofs are involved and not covered in this course (See Cover &
Thomas §13.5)

8/ 12
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Lempel-Ziv: Theory and Practice

Theory
@ Both LZ77 and LZ78 are optimal in the sense that the expected bits
per symbol from some source X converges to H(X) as N — oo

@ Proofs are involved and not covered in this course (See Cover &
Thomas §13.5)

Practice
o LZ77 forms the basis of gzip, WinZip, the PNG image format, as
well as PDF and HTTP compression.

e Variants of LZ78 (a.k.a. LZW) are used for the GIF image format,
UNIX compress, and early modem protocols.
@ Run-Length Encoding (RLE), along with the Burrows-Wheeler

Transform (BWT) and Huffman coding are used in the bzip2
compressor
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Summary and Reading

Summary:
@ Run-length Encoding
o Lempel-Ziv Coding

» Sliding Window (LZ77)
» Tree-Structured (LZ78)

Reading
o MacKay §6.4
o Cover & Thomas §13.4
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© Compression Review
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Compression: Review

Block Coding (Uniform Length)
@ Lossy compression
o Typical Sets

@ Source Coding Theorem
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Compression: Review

Block Coding (Uniform Length)
@ Lossy compression
o Typical Sets

@ Source Coding Theorem

Source Coding Theorem for Block Codes (Lecture 11)

For all 6 € (0,1) and € > 0 there is an Ny such that for all N > Ny

‘%H(; (X’V) . H(X)‘ <e
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Compression: Review

Block Coding (Uniform Length)
@ Lossy compression
o Typical Sets
@ Source Coding Theorem
Symbol Coding (Variable Length)
o Kraft inequalities: Unique decodability limits compression
@ Source Coding Theorem: Witnessed by Shannon Codes
o Huffman Coding: Optimal Symbol Coding
@ Shannon-Fano-Elias Coding: Codes from Intervals
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Compression: Review

Block Coding (Uniform Length)
@ Lossy compression
o Typical Sets
@ Source Coding Theorem

Symbol Coding (Variable Length)
o Kraft inequalities: Unique decodability limits compression
@ Source Coding Theorem: Witnessed by Shannon Codes
@ Huffman Coding: Optimal Symbol Coding

@ Shannon-Fano-Elias Coding: Codes from Intervals

Kraft Inequality (Lecture 13)

The code lengths {¢1,...,¢;} for an alphabet of / symbols are for a
uniquely decodable code if and only if >; 27l <1
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Compression: Review

Block Coding (Uniform Length)
@ Lossy compression
o Typical Sets
@ Source Coding Theorem

Symbol Coding (Variable Length)
o Kraft inequalities: Unique decodability limits compression
@ Source Coding Theorem: Witnessed by Shannon Codes
@ Huffman Coding: Optimal Symbol Coding

@ Shannon-Fano-Elias Coding: Codes from Intervals

Source Coding Theorem for Symbol Codes (Lecture 14)

For any ensemble X there exists a code C (the Shannon Code) such that

H(X) < L(C,X) < H(X) +1
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Compression: Review

Block Coding (Uniform Length)
o Lossy compression
o Typical Sets
@ Source Coding Theorem
Symbol Coding (Variable Length)
o Kraft inequalities: Unique decodability limits compression
@ Source Coding Theorem: Witnessed by Shannon Codes
e Huffman Coding: Optimal Symbol Coding
@ Shannon-Fano-Elias Coding: Codes from Intervals
Stream Coding (Dynamic Codes)
@ Arithmetic Coding: Probabilistic Models — e.g., Dirichlet
@ Lempel-Ziv Coding: Model-free
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The Limits of Compression

In each of the types of compression schemes the goal is to compress down
to the entropy of the source.

Q: Why can't | repeatedly compress a message to make it smaller?
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The Limits of Compression

In each of the types of compression schemes the goal is to compress down
to the entropy of the source.

Q: Why can't | repeatedly compress a message to make it smaller?

In an optimally compressed message there is no redundancy — every bit

counts! = A single flipped bit can have a large effect on decompressed
message.
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The Limits of Compression

In each of the types of compression schemes the goal is to compress down
to the entropy of the source.

Q: Why can't | repeatedly compress a message to make it smaller?

In an optimally compressed message there is no redundancy — every bit
counts! = A single flipped bit can have a large effect on decompressed
message.

Next Time:

Error Correction — Putting the redundancy back in!
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