
COMP2610/6261 - Information Theory
Lecture 17: Lempel-Ziv Coding and Summary

Mark Reid and Aditya Menon

Research School of Computer Science
The Australian National University

1 L O G O U S E G U I D E L I N E S
T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y

ANU Logo Use Guidelines

Deep Gold
C30 M50 Y70 K40

PMS Metallic 8620

PMS 463

Black
C0 M0 Y0 K100

PMS Process Black

Preferred logo Black version

Reverse version
Any application of the ANU logo on a coloured
background is subject to approval by the Marketing
Office, contact

brand@anu.edu.au

The ANU logo is a contemporary
reflection of our heritage.
It clearly presents our name,
our shield and our motto:

First to learn the nature of things.
To preserve the authenticity of our brand identity, there are
rules that govern how our logo is used.

Preferred logo - horizontal logo
The preferred logo should be used on a white background.
This version includes black text with the crest in Deep Gold in
either PMS or CMYK.

Black
Where colour printing is not available, the black logo can
be used on a white background.

Reverse
The logo can be used white reversed out of a black
background, or occasionally a neutral dark background.

September 30th, 2014

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 1 / 12

1 Lempel-Ziv Coding

2 Compression Review

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 2 / 12

Eliminating Repetition

What is a simple, short binary description of the following string?

aaaaaaa︸ ︷︷ ︸
7as

bbbbbbb︸ ︷︷ ︸
7bs

aaaaaaa︸ ︷︷ ︸
7as

bbbbbbb︸ ︷︷ ︸
7bs

A simple symbol code for {a, b}, C = {0, 1}, uses 28 bits

Run-length coding using (count, symbol) saves 12 bits:

111︸︷︷︸
7

0︸︷︷︸
a

111︸︷︷︸
7

1︸︷︷︸
b

111︸︷︷︸
7

0︸︷︷︸
a

111︸︷︷︸
7

1︸︷︷︸
b

Makes no probabilistic assumptions about source.

Doesn’t always yield shorter strings:
aa bb a b a→ 10 0 10 1 01 0 01 1 01 0 (7 to 15 bits)

Misses other structure: “2 repetitions of (7 as and 7 bs)”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 3 / 12

Eliminating Repetition

What is a simple, short binary description of the following string?

aaaaaaa︸ ︷︷ ︸
7as

bbbbbbb︸ ︷︷ ︸
7bs

aaaaaaa︸ ︷︷ ︸
7as

bbbbbbb︸ ︷︷ ︸
7bs

A simple symbol code for {a, b}, C = {0, 1}, uses 28 bits

Run-length coding using (count, symbol) saves 12 bits:

111︸︷︷︸
7

0︸︷︷︸
a

111︸︷︷︸
7

1︸︷︷︸
b

111︸︷︷︸
7

0︸︷︷︸
a

111︸︷︷︸
7

1︸︷︷︸
b

Makes no probabilistic assumptions about source.

Doesn’t always yield shorter strings:
aa bb a b a→ 10 0 10 1 01 0 01 1 01 0 (7 to 15 bits)

Misses other structure: “2 repetitions of (7 as and 7 bs)”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 3 / 12

Eliminating Repetition

What is a simple, short binary description of the following string?

aaaaaaa︸ ︷︷ ︸
7as

bbbbbbb︸ ︷︷ ︸
7bs

aaaaaaa︸ ︷︷ ︸
7as

bbbbbbb︸ ︷︷ ︸
7bs

A simple symbol code for {a, b}, C = {0, 1}, uses 28 bits

Run-length coding using (count, symbol) saves 12 bits:

111︸︷︷︸
7

0︸︷︷︸
a

111︸︷︷︸
7

1︸︷︷︸
b

111︸︷︷︸
7

0︸︷︷︸
a

111︸︷︷︸
7

1︸︷︷︸
b

Makes no probabilistic assumptions about source.

Doesn’t always yield shorter strings:
aa bb a b a→ 10 0 10 1 01 0 01 1 01 0 (7 to 15 bits)

Misses other structure: “2 repetitions of (7 as and 7 bs)”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 3 / 12

Looking for Repetition

Consider a sequence that starts

abbababbababbab . . .

We can describe each new part in terms of what we have seen so far:

1 A new a

2 A new b

3 The same 1 symbol as 1 symbol ago

4 The same 2 symbols as 3 symbols ago

5 The same 10 symbols as 5 symbols ago

00 01 10010001 10110010 11011001 . . .

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 4 / 12

Looking for Repetition

Consider a sequence that starts

abbababbababbab . . .

We can describe each new part in terms of what we have seen so far:

1 A new a

2 A new b

3 The same 1 symbol as 1 symbol ago

4 The same 2 symbols as 3 symbols ago

5 The same 10 symbols as 5 symbols ago

00 01 10010001 10110010 11011001 . . .

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 4 / 12

Looking for Repetition

Consider a sequence that starts

abbababbababbab . . .

We can describe each new part in terms of what we have seen so far:

1 A new a

2 A new b

3 The same 1 symbol as 1 symbol ago

4 The same 2 symbols as 3 symbols ago

5 The same 10 symbols as 5 symbols ago

00 01 10010001 10110010 11011001 . . .

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 4 / 12

Looking for Repetition

Consider a sequence that starts

abbababbababbab . . .

We can describe each new part in terms of what we have seen so far:

1 A new a

2 A new b

3 The same 1 symbol as 1 symbol ago

4 The same 2 symbols as 3 symbols ago

5 The same 10 symbols as 5 symbols ago

00 01 10010001 10110010 11011001 . . .

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 4 / 12

Looking for Repetition

Consider a sequence that starts

abbababbababbab . . .

We can describe each new part in terms of what we have seen so far:

1 A new a

2 A new b

3 The same 1 symbol as 1 symbol ago

4 The same 2 symbols as 3 symbols ago

5 The same 10 symbols as 5 symbols ago

00 01 10010001 10110010 11011001 . . .

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 4 / 12

Looking for Repetition

Consider a sequence that starts

abbababbababbab . . .

We can describe each new part in terms of what we have seen so far:

1 A new a

2 A new b

3 The same 1 symbol as 1 symbol ago

4 The same 2 symbols as 3 symbols ago

5 The same 10 symbols as 5 symbols ago

00 01 10010001 10110010 11011001 . . .

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 4 / 12

Looking for Repetition

Consider a sequence that starts

abbababbababbab . . .

We can describe each new part in terms of what we have seen so far:

1 A new a (0, a)

2 A new b (0, b)

3 The same 1 symbol as 1 symbol ago (1, 1, 1)

4 The same 2 symbols as 3 symbols ago (1, 3, 2)

5 The same 10 symbols as 5 symbols ago (1, 5, 10)

00 01 10010001 10110010 11011001 . . .

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 4 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε

2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)

2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn

3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise

2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn

3 Output (1, i , |s|)
4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Lempel-Ziv: Sliding Window (LZ77)

LZ77(Sequence x1x2 . . ., Window size W > 0)

1 Initialise s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 Let t ← last W symbols of s xn
3 If t does not appear in xn−W . . . xn−1

1 If s = ε then output (0, xn) and continue; otherwise
2 Find smallest 0 ≤ i <W such that t = xn−i . . . xn−i+|t|−1xn
3 Output (1, i , |s|)

4 Else s ← s xn

Notes:

The output is converted to binary. i is represented with dlog2W e bits.

The size output |s| can be larger than W .

Not very effective compression for short input sequences.

Run-length encoding is essentially LZ77 with W = 1.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 5 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

2

b

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

2

b

3

a

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

2

b

3

a

4

b

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

2

b

3

a

4

b

5
a

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

2

b

3

a

4

b

5
a

6

b

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

2

b

3

a

4

b

5
a

6

b
7
b

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Extending Substrings

Consider the same sequence as before

abbababbababbab . . .

Scan sequence and record each previously unseen string:

1 a (0, a)

2 b (0, b)

3 ba (2, a)

4 bab (3, b)

5 baba (4, a)

6 bb (2, b)

7 ab (1, b)

0

ε

1

a

2

b

3

a

4

b

5
a

6

b
7
b

0 0 0 1 10 0 11 1 100 0 010 1 001 1...

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 6 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε

2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)

2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)

2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Tree-Structured (LZ78)
See MacKay §6.4

LZ78(Sequence x1x2 . . .)

1 Initialise empty dictionary D ← {} and s ← ε
2 While input sequence has more symbols:

1 xn ← next symbol from sequence (n is total symbols read)
2 If s xn is not in dictionary then

1 Find index i such that D[i] = s and output (i , xn)
2 Update D[|D|]← s xn and reset s ← ε

3 Else s ← s xn

Notes:

Only dlog2 ne bits of i need to be output at step n

|D| is the number of entries in the dictionary

Basic algorithm has several inefficiencies (e.g., if aa and ab in
dictionary, then a is not needed)

Decoding via “identical twin”

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 7 / 12

Lempel-Ziv: Theory and Practice

Theory

Both LZ77 and LZ78 are optimal in the sense that the expected bits
per symbol from some source X converges to H(X) as N →∞
Proofs are involved and not covered in this course (See Cover &
Thomas §13.5)

Practice

LZ77 forms the basis of gzip, WinZip, the PNG image format, as
well as PDF and HTTP compression.

Variants of LZ78 (a.k.a. LZW) are used for the GIF image format,
UNIX compress, and early modem protocols.

Run-Length Encoding (RLE), along with the Burrows-Wheeler
Transform (BWT) and Huffman coding are used in the bzip2

compressor

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 8 / 12

Lempel-Ziv: Theory and Practice

Theory

Both LZ77 and LZ78 are optimal in the sense that the expected bits
per symbol from some source X converges to H(X) as N →∞
Proofs are involved and not covered in this course (See Cover &
Thomas §13.5)

Practice

LZ77 forms the basis of gzip, WinZip, the PNG image format, as
well as PDF and HTTP compression.

Variants of LZ78 (a.k.a. LZW) are used for the GIF image format,
UNIX compress, and early modem protocols.

Run-Length Encoding (RLE), along with the Burrows-Wheeler
Transform (BWT) and Huffman coding are used in the bzip2

compressor

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 8 / 12

Summary and Reading

Summary:

Run-length Encoding

Lempel-Ziv Coding
I Sliding Window (LZ77)
I Tree-Structured (LZ78)

Reading

MacKay §6.4

Cover & Thomas §13.4

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 9 / 12

1 Lempel-Ziv Coding

2 Compression Review

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 10 / 12

Compression: Review

Block Coding (Uniform Length)

Lossy compression

Typical Sets

Source Coding Theorem

Symbol Coding (Variable Length)

Kraft inequalities: Unique decodability limits compression

Source Coding Theorem: Witnessed by Shannon Codes

Huffman Coding: Optimal Symbol Coding

Shannon-Fano-Elias Coding: Codes from Intervals

Source Coding Theorem for Block Codes (Lecture 11)

For all δ ∈ (0, 1) and ε > 0 there is an N0 such that for all N > N0∣∣∣∣ 1

N
Hδ

(
XN
)
− H(X)

∣∣∣∣ < ε

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 11 / 12

Compression: Review

Block Coding (Uniform Length)

Lossy compression

Typical Sets

Source Coding Theorem

Symbol Coding (Variable Length)

Kraft inequalities: Unique decodability limits compression

Source Coding Theorem: Witnessed by Shannon Codes

Huffman Coding: Optimal Symbol Coding

Shannon-Fano-Elias Coding: Codes from Intervals

Source Coding Theorem for Block Codes (Lecture 11)

For all δ ∈ (0, 1) and ε > 0 there is an N0 such that for all N > N0∣∣∣∣ 1

N
Hδ

(
XN
)
− H(X)

∣∣∣∣ < ε

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 11 / 12

Compression: Review

Block Coding (Uniform Length)

Lossy compression

Typical Sets

Source Coding Theorem

Symbol Coding (Variable Length)

Kraft inequalities: Unique decodability limits compression

Source Coding Theorem: Witnessed by Shannon Codes

Huffman Coding: Optimal Symbol Coding

Shannon-Fano-Elias Coding: Codes from Intervals

Source Coding Theorem for Block Codes (Lecture 11)

For all δ ∈ (0, 1) and ε > 0 there is an N0 such that for all N > N0∣∣∣∣ 1

N
Hδ

(
XN
)
− H(X)

∣∣∣∣ < ε

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 11 / 12

Compression: Review

Block Coding (Uniform Length)

Lossy compression

Typical Sets

Source Coding Theorem

Symbol Coding (Variable Length)

Kraft inequalities: Unique decodability limits compression

Source Coding Theorem: Witnessed by Shannon Codes

Huffman Coding: Optimal Symbol Coding

Shannon-Fano-Elias Coding: Codes from Intervals

Kraft Inequality (Lecture 13)

The code lengths {`1, . . . , `I} for an alphabet of I symbols are for a
uniquely decodable code if and only if

∑
i 2−`i ≤ 1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 11 / 12

Compression: Review

Block Coding (Uniform Length)

Lossy compression

Typical Sets

Source Coding Theorem

Symbol Coding (Variable Length)

Kraft inequalities: Unique decodability limits compression

Source Coding Theorem: Witnessed by Shannon Codes

Huffman Coding: Optimal Symbol Coding

Shannon-Fano-Elias Coding: Codes from Intervals

Source Coding Theorem for Symbol Codes (Lecture 14)

For any ensemble X there exists a code C (the Shannon Code) such that

H(X) ≤ L(C ,X) ≤ H(X) + 1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 11 / 12

Compression: Review

Block Coding (Uniform Length)

Lossy compression
Typical Sets
Source Coding Theorem

Symbol Coding (Variable Length)

Kraft inequalities: Unique decodability limits compression
Source Coding Theorem: Witnessed by Shannon Codes
Huffman Coding: Optimal Symbol Coding
Shannon-Fano-Elias Coding: Codes from Intervals

Stream Coding (Dynamic Codes)

Arithmetic Coding: Probabilistic Models – e.g., Dirichlet
Lempel-Ziv Coding: Model-free

Source Coding Theorem for Block Codes (Lecture 11)

For all δ ∈ (0, 1) and ε > 0 there is an N0 such that for all N > N0∣∣∣∣ 1

N
Hδ

(
XN
)
− H(X)

∣∣∣∣ < ε

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 11 / 12

The Limits of Compression

In each of the types of compression schemes the goal is to compress down
to the entropy of the source.

Q: Why can’t I repeatedly compress a message to make it smaller?

In an optimally compressed message there is no redundancy — every bit
counts! =⇒ A single flipped bit can have a large effect on decompressed
message.

Next Time:

Error Correction – Putting the redundancy back in!

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 12 / 12

The Limits of Compression

In each of the types of compression schemes the goal is to compress down
to the entropy of the source.

Q: Why can’t I repeatedly compress a message to make it smaller?

In an optimally compressed message there is no redundancy — every bit
counts! =⇒ A single flipped bit can have a large effect on decompressed
message.

Next Time:

Error Correction – Putting the redundancy back in!

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 12 / 12

The Limits of Compression

In each of the types of compression schemes the goal is to compress down
to the entropy of the source.

Q: Why can’t I repeatedly compress a message to make it smaller?

In an optimally compressed message there is no redundancy — every bit
counts! =⇒ A single flipped bit can have a large effect on decompressed
message.

Next Time:

Error Correction – Putting the redundancy back in!

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 30th, 2014 12 / 12

	Lempel-Ziv Coding
	Compression Review

