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The Noisy Typewriter Channel

This channel simulates a noisy “typewriter”

. Inputs and outputs are 26
letters A through Z plus space. With probability % each letter is either:

unchanged; changed to the next letter, changed to the previous letter.
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The Noisy Typewriter Channel

This channel simulates a noisy “typewriter”. Inputs and outputs are 26
letters A through Z plus space. With probability % each letter is either:
unchanged; changed to the next letter, changed to the previous letter.

Inputs X = {A,B,...,Z,_};
Outputs Y = {A,B,...,Z,_};
Transition probabilities
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The Noisy Typewriter Channel

This channel simulates a noisy “typewriter”. Inputs and outputs are 26
letters A through Z plus space. With probability % each letter is either:
unchanged; changed to the next letter, changed to the previous letter.

Inputs X = {A,B,...,Z,_};
Outputs Y = {A,B,...,Z,_};
Transition probabilities

ri 1 17
5 3 00 0 3
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Q=10 3 3 3 00
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The transition matrix for this channel has a diagonal structure: all of the
probability mass is concentrated around the diagonal.
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The transition matrix for this channel has a diagonal structure: all of the
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Extended Channels

When used N times, a channel @ from X to ) can be seen as an extended
channel taking “symbols” from XN to “symbols” in YN

Extended Channel

The Nt extended channel of Q from X to ) is a channel from XN to
YN with transition probability from x € XN to y € YN given by

Y|x) H 'D yI|XI
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Extended Channels

When used N times, a channel @ from X to ) can be seen as an extended
channel taking “symbols” from XN to “symbols” in YN

Extended Channel

The Nt extended channel of Q from X to ) is a channel from XN to
YN with transition probability from x € XN to y € YN given by

Y|x) H 'D yI|XI

v

Example: BSC Q with f =0.1 from X' = {0,1} to Y ={0,1} has N =2
extended channel from X2 = {00,01,10,11} to Y2 = {00, 01,10, 11} with

0.81 0.09 0.09 0.01
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0.01 0.09 0.09 0.81
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Extended Channels

When used N times, a channel @ from X to ) can be seen as an extended
channel taking “symbols” from XN to “symbols” in YN

Extended Channel

The Nt extended channel of Q from X to ) is a channel from XN to
YN with transition probability from x € XN to y € YN given by

Y|x) H 'D yI|XI

v

Example: BSC Q with f =0.1 from X' = {0,1} to Y ={0,1} has N =2
extended channel from X2 = {00,01,10,11} to Y2 = {00, 01,10, 11} with

0.81 0.09 0.09 0.01
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!
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Extended Binary Symmetric Channel Noisy Typewriter Channel
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!
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Block Codes

We now formalise codes that make repeated use of a noisy channel to
communicate a predefined set of S messages.

Each s € {1,2,...,S} is paired with a unique block of symbols x € XN,
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Block Codes

We now formalise codes that make repeated use of a noisy channel to
communicate a predefined set of 5 messages.

Each s € {1,2,...,S} is paired with a unique block of symbols x € XN,
(N, K) Block Code

Given a channel @ with inputs X and outputs ), an integer N > 0, and
K >0, an (N, K) Block Code for @ is a list of S = 2K codewords

S = {x(l), x®_ ,x(2K)}

where each x(®) € XN consists of N symbols from X. The rate of such a
block code is K/N bits per channel use.
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Block Codes

We now formalise codes that make repeated use of a noisy channel to
communicate a predefined set of 5 messages.

Each s € {1,2,...,S} is paired with a unique block of symbols x € XN,

(N, K) Block Code

Given a channel @ with inputs X and outputs ), an integer N > 0, and
K >0, an (N, K) Block Code for @ is a list of S = 2K codewords

S = {x(l), x®_ ,x(2K)}

where each x(®) € XN consists of N symbols from X. The rate of such a
block code is K/N bits per channel use.

Examples (for Binary Symmetric Channel Q)

e A (1,1) block code: S ={0,1} — Rate: 1

e A (3,2) block code: S = {000,001,100,111} — Rate: 2
o A (3,log, 3) block code: S = {001,010,100} — Rate: &3 ~ 0.53
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Decoding Block Codes

An (N, K) block code sends each message s € {1,2,...,2X} over a

channel @ as x° € XN and the block y € YV is received. How does the
receiver determine which s was transmitted?
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Decoding Block Codes

An (N, K) block code sends each message s € {1,2,...,2X} over a
channel @ as x° € XN and the block y € YV is received. How does the
receiver determine which s was transmitted?

Block Decoder

A decoder for a (N, K) block code is a mapping that associates each
y € YN with an 5 € {1,2,...,2K}.
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Decoding Block Codes

An (N, K) block code sends each message s € {1,2,...,2X} over a
channel Q as x° € XN and the block y € YV is received. How does the
receiver determine which s was transmitted?

Block Decoder

A decoder for a (N, K) block code is a mapping that associates each
y € YN with an 5 € {1,2,...,2K}.

Example The (2,1) block code § = {000,111} and majority vote decoder
d:{0,1}3 — {1,2} defined by

d(000) = d(001) = d(010) = d(100) = 1
d(111) = d(110) = d(101) = d(011) = 2

Optimal Decoder

An optimal decoder for a code S, channel Q, and prior P(s) maps y to §
such that P(5]y) is maximal. That is, dopt(y) = arg maxs P(sly).
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© The Noisy-Channel Coding Theorem
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Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.

Encoder Q Decoder
S: > X >y > S

out
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Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.

Encoder Q Decoder
~ >
Sin > X >y Sout
Probability of (Block) Error
Given a channel Q the probability of (block) error for a code is
PB = 'D(Sout 7& Sin) — Z 'D(sout 7é sin|5in)'D(sin)
Sin
and its maximum probability of (block) error is
PBM = n;ax P(sout 7& Sinlsin)
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Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.

Encoder Q Decoder

Sl-n P> X >y—>s

out

Probability of (Block) Error

Given a channel Q the probability of (block) error for a code is

pPB = P(sout # Sin) = Z ’D(SOUf # si”|si”)P(si”)

Sin

and its maximum probability of (block) error is

PBM = n;ax P(Sout # Sinlsin)

As P(sout # Sin|Sin) < pam for all si, we get pg < > ¢ pemP(sin) = pam
and so if pgy — 0 then pg — 0.
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Achievable Rates

If it is possible to construct codes with rate R for a channel that can have
arbitrarily small error the rate R is said to be achievable. Formally:

Achievable Rate

A rate R over a channel Q is said to be achievable if, for any € > 0 there
is a (N, K) block code and decoder such that its rate K/N > R and its
maximum probability of block error satisfies

pPBM = n’;aX P(Sout # sin|5in) <€
m
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Achievable Rates

If it is possible to construct codes with rate R for a channel that can have
arbitrarily small error the rate R is said to be achievable. Formally:

Achievable Rate

A rate R over a channel Q is said to be achievable if, for any € > 0 there
is a (N, K) block code and decoder such that its rate K/N > R and its
maximum probability of block error satisfies

pPBM = ngax P(sout # sin|5in) <€
m

The main “trick” to minimising pgy is to construct a (N, K) block code
with (almost) non-confusable codes. That is, a code such that the set of
y that each x(*) are sent to by Q have low probability intersection.
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Achievable Rates

If it is possible to construct codes with rate R for a channel that can have
arbitrarily small error the rate R is said to be achievable. Formally:

Achievable Rate

A rate R over a channel Q is said to be achievable if, for any € > 0 there
is a (N, K) block code and decoder such that its rate K/N > R and its
maximum probability of block error satisfies

pPBM = ngax P(sout # sin|5in) <€
m

The main “trick” to minimising pgy is to construct a (N, K) block code
with (almost) non-confusable codes. That is, a code such that the set of
y that each x(*) are sent to by Q have low probability intersection.

This is possible because extended channels look like the noisy typewriter.
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.

Example:
@ In last lecture: BSC @ with f = 0.15 has capacity C = 0.39 bits.
@ Suppose we want error less than ¢ = 0.05 and rate R > 0.25

@ The NCCT tells us there should be, for N large enough, an (N, K)
code with K/N > 0.25

Indeed, we showed the code & = {000, 111} with majority vote decoder
has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.

Example:
@ In last lecture: BSC @ with f = 0.15 has capacity C = 0.39 bits.
@ Suppose we want error less than ¢ = 0.05 and rate R > 0.25

@ The NCCT tells us there should be, for N large enough, an (N, K)
code with K/N > 0.25

Indeed, we showed the code S = {000, 111} with majority vote decoder
has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.

@ For N = 3 there is a (3,1) code meeting the requirements.

@ However, there is no code with same ¢ and rate 1/2 > 0.39 = C.
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Summary and Reading

Main Points

@ The Noisy Typewriter

o Extended Channels

o Block Codes

@ The Noisy-Channel Coding Theorem (Statement only)
Reading

o MacKay §9.6

@ Cover & Thomas §7.5
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Summary and Reading

Main Points

@ The Noisy Typewriter

o Extended Channels

o Block Codes

@ The Noisy-Channel Coding Theorem (Statement only)
Reading

o MacKay §9.6

@ Cover & Thomas §7.5

Next time: Detail of the NCCT, joint typicality, and a sketch of the proof!
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