COMP2610/6261 - Information Theory Lecture 19: Block Codes and the Coding Theorem

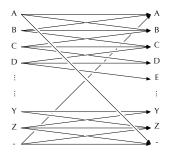
Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

October 7th, 2014

This channel simulates a noisy "typewriter". Inputs and outputs are 26 letters A through Z plus space. With probability $\frac{1}{3}$, each letter is either: unchanged; changed to the next letter, changed to the previous letter.

This channel simulates a noisy "typewriter". Inputs and outputs are 26 letters A through Z plus space. With probability $\frac{1}{3}$, each letter is either: unchanged; changed to the next letter, changed to the previous letter.

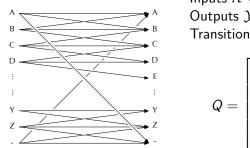


Inputs
$$\mathcal{X} = \{A, B, \dots, Z, _\};$$

Outputs $\mathcal{Y} = \{A, B, \dots, Z, _\};$
Transition probabilities

$$Q = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & 0 & 0 & \cdots & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{3} & 0 & 0 & \cdots & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

This channel simulates a noisy "typewriter". Inputs and outputs are 26 letters A through Z plus space. With probability $\frac{1}{3}$, each letter is either: unchanged; changed to the next letter, changed to the previous letter.



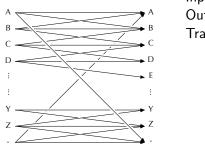
Inputs
$$\mathcal{X} = \{A, B, \dots, Z, _\};$$

Outputs $\mathcal{Y} = \{A, B, \dots, Z, _\};$
Transition probabilities

$$Q = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & 0 & 0 & \cdots & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{3} & 0 & 0 & & \cdots & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

The transition matrix for this channel has a diagonal structure: all of the probability mass is concentrated around the diagonal.

This channel simulates a noisy "typewriter". Inputs and outputs are 26 letters A through Z plus space. With probability $\frac{1}{3}$, each letter is either: unchanged; changed to the next letter, changed to the previous letter.



Inputs
$$\mathcal{X} = \{A, B, \dots, Z, _\};$$

Outputs $\mathcal{Y} = \{A, B, \dots, Z, _\};$
Transition probabilities

The transition matrix for this channel has a diagonal structure: all of the probability mass is concentrated around the diagonal.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory

Extended Channels

When used N times, a channel Q from \mathcal{X} to \mathcal{Y} can be seen as an *extended* channel taking "symbols" from \mathcal{X}^N to "symbols" in \mathcal{Y}^N .

Extended Channel

The N^{th} extended channel of Q from \mathcal{X} to \mathcal{Y} is a channel from \mathcal{X}^N to \mathcal{Y}^N with transition probability from $\mathbf{x} \in \mathcal{X}^N$ to $\mathbf{y} \in \mathcal{Y}^N$ given by

$$P(\mathbf{y}|\mathbf{x}) = \prod_{n=1}^{N} P(y_i|x_i)$$

Extended Channels

When used N times, a channel Q from \mathcal{X} to \mathcal{Y} can be seen as an *extended* channel taking "symbols" from \mathcal{X}^N to "symbols" in \mathcal{Y}^N .

Extended Channel

The N^{th} extended channel of Q from \mathcal{X} to \mathcal{Y} is a channel from \mathcal{X}^N to \mathcal{Y}^N with transition probability from $\mathbf{x} \in \mathcal{X}^N$ to $\mathbf{y} \in \mathcal{Y}^N$ given by

$$P(\mathbf{y}|\mathbf{x}) = \prod_{n=1}^{N} P(y_i|x_i)$$

Example: BSC Q with f = 0.1 from $\mathcal{X} = \{0, 1\}$ to $\mathcal{Y} = \{0, 1\}$ has N = 2 extended channel from $\mathcal{X}^2 = \{00, 01, 10, 11\}$ to $\mathcal{Y}^2 = \{00, 01, 10, 11\}$ with

$$Q_2 = \begin{bmatrix} 0.81 & 0.09 & 0.09 & 0.01 \\ 0.09 & 0.81 & 0.01 & 0.09 \\ 0.09 & 0.01 & 0.81 & 0.09 \\ 0.01 & 0.09 & 0.09 & 0.81 \end{bmatrix}$$

Extended Channels

When used N times, a channel Q from \mathcal{X} to \mathcal{Y} can be seen as an *extended* channel taking "symbols" from \mathcal{X}^N to "symbols" in \mathcal{Y}^N .

Extended Channel

The N^{th} extended channel of Q from \mathcal{X} to \mathcal{Y} is a channel from \mathcal{X}^N to \mathcal{Y}^N with transition probability from $\mathbf{x} \in \mathcal{X}^N$ to $\mathbf{y} \in \mathcal{Y}^N$ given by

$$P(\mathbf{y}|\mathbf{x}) = \prod_{n=1}^{N} P(y_i|x_i)$$

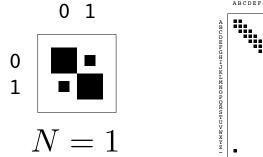
Example: BSC Q with f = 0.1 from $\mathcal{X} = \{0, 1\}$ to $\mathcal{Y} = \{0, 1\}$ has N = 2 extended channel from $\mathcal{X}^2 = \{00, 01, 10, 11\}$ to $\mathcal{Y}^2 = \{00, 01, 10, 11\}$ with

<i>Q</i> ₂ =	0.81	0.09	0.09	0.01]
	0.09	0.81	0.01	0.09
	0.09	0.01	0.81	0.09
	0.01	0.09	0.09	0.81

Extended Channels and the Noisy Typewriter

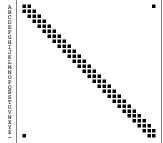
Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!



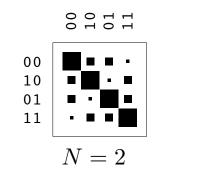
Extended Binary Symmetric Channel

ABCDEFGHIJKLMNOPQRSTUVWXYZ-



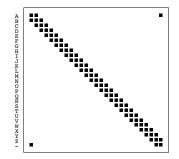
Noisy Typewriter Channel

As N increases, any extended channel looks like the noisy typewriter!



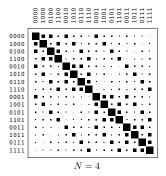
Extended Binary Symmetric Channel

ABCDEFGHIJKLMNOPQRSTUVWXYZ-



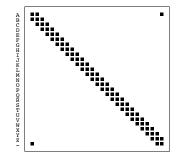
Noisy Typewriter Channel

As N increases, any extended channel looks like the noisy typewriter!



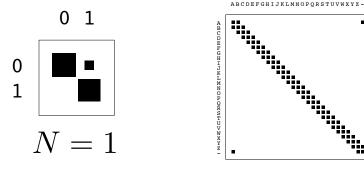
Extended Binary Symmetric Channel

ABCDEFGHIJKLMNOPQRSTUVWXYZ-



Noisy Typewriter Channel

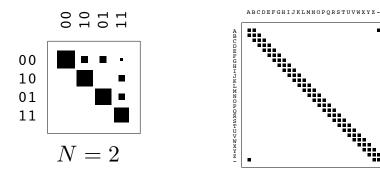
Extended Channels and the Noisy Typewriter



Extended Z Channel

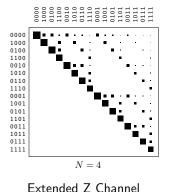
Noisy Typewriter Channel

Extended Channels and the Noisy Typewriter

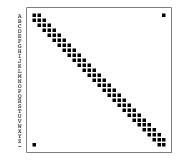


Extended Z Channel

Noisy Typewriter Channel



ABCDEFGHIJKLMNOPORSTUVWXYZ-



Noisy Typewriter Channel

3 The Noisy-Channel Coding Theorem

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory

Block Codes

We now formalise codes that make repeated use of a noisy channel to communicate a predefined set of S messages.

Each $s \in \{1, 2, ..., S\}$ is paired with a unique *block* of symbols $\mathbf{x} \in \mathcal{X}^N$.

Block Codes

We now formalise codes that make repeated use of a noisy channel to communicate a predefined set of S messages. Each $s \in \{1, 2, ..., S\}$ is paired with a unique *block* of symbols $\mathbf{x} \in \mathcal{X}^N$.

(N, K) Block Code

Given a channel Q with inputs \mathcal{X} and outputs \mathcal{Y} , an integer N > 0, and K > 0, an (N, K) Block Code for Q is a list of $S = 2^{K}$ codewords

$$\mathcal{S} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(2^{\mathcal{K}})}\}$$

where each $\mathbf{x}^{(s)} \in \mathcal{X}^N$ consists of N symbols from \mathcal{X} . The **rate** of such a block code is K/N bits per channel use.

Block Codes

We now formalise codes that make repeated use of a noisy channel to communicate a predefined set of S messages.

Each $s \in \{1, 2, ..., S\}$ is paired with a unique *block* of symbols $\mathbf{x} \in \mathcal{X}^N$.

(N, K) Block Code

Given a channel Q with inputs \mathcal{X} and outputs \mathcal{Y} , an integer N > 0, and K > 0, an (N, K) Block Code for Q is a list of $S = 2^{K}$ codewords

$$\mathcal{S} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(2^{\mathcal{K}})}\}$$

where each $\mathbf{x}^{(s)} \in \mathcal{X}^N$ consists of N symbols from \mathcal{X} . The **rate** of such a block code is K/N bits per channel use.

Examples (for Binary Symmetric Channel *Q*)

- A (1,1) block code: $\mathcal{S} = \{0,1\}$ Rate: 1
- A (3,2) block code: $S = \{000, 001, 100, 111\}$ Rate: $\frac{2}{3}$

• A (3, log₂ 3) block code:
$$\mathcal{S} = \{001, 010, 100\}$$
 — Rate: $\frac{\log_2 3}{3} \approx 0.53$

Decoding Block Codes

An (N, K) block code sends each message $s \in \{1, 2, ..., 2^K\}$ over a channel Q as $\mathbf{x}^s \in \mathcal{X}^N$ and the block $\mathbf{y} \in \mathcal{Y}^N$ is received. How does the receiver determine which s was transmitted?

Decoding Block Codes

An (N, K) block code sends each message $s \in \{1, 2, ..., 2^K\}$ over a channel Q as $\mathbf{x}^s \in \mathcal{X}^N$ and the block $\mathbf{y} \in \mathcal{Y}^N$ is received. How does the receiver determine which s was transmitted?

Block Decoder

A **decoder** for a (N, K) block code is a mapping that associates each $\mathbf{y} \in \mathcal{Y}^N$ with an $\hat{s} \in \{1, 2, \dots, 2^K\}$.

Decoding Block Codes

An (N, K) block code sends each message $s \in \{1, 2, ..., 2^K\}$ over a channel Q as $\mathbf{x}^s \in \mathcal{X}^N$ and the block $\mathbf{y} \in \mathcal{Y}^N$ is received. How does the receiver determine which s was transmitted?

Block Decoder

A **decoder** for a (N, K) block code is a mapping that associates each $\mathbf{y} \in \mathcal{Y}^N$ with an $\hat{s} \in \{1, 2, \dots, 2^K\}$.

Example The (2, 1) block code $S = \{000, 111\}$ and majority vote decoder $d: \{0, 1\}^3 \to \{1, 2\}$ defined by

$$d(000) = d(001) = d(010) = d(100) = 1$$

 $d(111) = d(110) = d(101) = d(011) = 2$

Optimal Decoder

An **optimal decoder** for a code S, channel Q, and *prior* P(s) maps \mathbf{y} to \hat{s} such that $P(\hat{s}|\mathbf{y})$ is maximal. That is, $d_{opt}(\mathbf{y}) = \arg \max_{s} P(s|\mathbf{y})$.

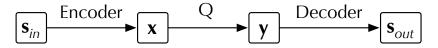
Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.



Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.



Probability of (Block) Error

Given a channel Q the probability of (block) error for a code is

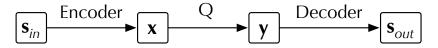
$$p_B = P(\mathbf{s}_{out} \neq \mathbf{s}_{in}) = \sum_{\mathbf{s}_{in}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in}) P(\mathbf{s}_{in})$$

and its maximum probability of (block) error is

$$p_{BM} = \max_{\mathbf{s}_{in}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in})$$

Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.



Probability of (Block) Error

Given a channel Q the probability of (block) error for a code is

$$p_B = P(\mathbf{s}_{out} \neq \mathbf{s}_{in}) = \sum_{\mathbf{s}_{in}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in}) P(\mathbf{s}_{in})$$

and its maximum probability of (block) error is

$$p_{BM} = \max_{\mathbf{s}_{in}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in})$$

As $P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in}) \leq p_{BM}$ for all \mathbf{s}_{in} we get $p_B \leq \sum_{\mathbf{s}_{in}} p_{BM} P(\mathbf{s}_{in}) = p_{BM}$ and so if $p_{BM} \rightarrow 0$ then $p_B \rightarrow 0$.

Mark Reid and Aditya Menon (ANU)

If it is possible to construct codes with rate R for a channel that can have arbitrarily small error the rate R is said to be *achievable*. Formally:

Achievable Rate

A rate *R* over a channel *Q* is said to be **achievable** if, for any $\epsilon > 0$ there is a (N, K) block code and decoder such that its rate $K/N \ge R$ and its maximum probability of block error satisfies

$$p_{BM} = \max_{\mathbf{s}_{in}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in}) < \epsilon$$

If it is possible to construct codes with rate R for a channel that can have arbitrarily small error the rate R is said to be *achievable*. Formally:

Achievable Rate

A rate *R* over a channel *Q* is said to be **achievable** if, for any $\epsilon > 0$ there is a (N, K) block code and decoder such that its rate $K/N \ge R$ and its maximum probability of block error satisfies

$$p_{BM} = \max_{\mathbf{s}_{in}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in}) < \epsilon$$

The main "trick" to minimising p_{BM} is to construct a (N, K) block code with (almost) **non-confusable** codes. That is, a code such that the set of **y** that each $\mathbf{x}^{(s)}$ are sent to by Q have low probability intersection.

If it is possible to construct codes with rate R for a channel that can have arbitrarily small error the rate R is said to be *achievable*. Formally:

Achievable Rate

A rate *R* over a channel *Q* is said to be **achievable** if, for any $\epsilon > 0$ there is a (N, K) block code and decoder such that its rate $K/N \ge R$ and its maximum probability of block error satisfies

$$p_{BM} = \max_{\mathbf{s}_{in}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in}) < \epsilon$$

The main "trick" to minimising p_{BM} is to construct a (N, K) block code with (almost) **non-confusable** codes. That is, a code such that the set of **y** that each $\mathbf{x}^{(s)}$ are sent to by Q have low probability intersection.

This is possible because extended channels look like the noisy typewriter.

The Noisy-Channel Coding Theorem

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is *achievable* if and only if $R \le C$, that is, the rate is no greater than the channel capacity.

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is *achievable* if and only if $R \le C$, that is, the rate is no greater than the channel capacity.

Example:

- In last lecture: BSC Q with f = 0.15 has capacity C = 0.39 bits.
- Suppose we want error less than $\epsilon = 0.05$ and rate R > 0.25
- The NCCT tells us there should be, for N large enough, an (N, K) code with $K/N \ge 0.25$

Indeed, we showed the code $S = \{000, 111\}$ with majority vote decoder has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is *achievable* if and only if $R \le C$, that is, the rate is no greater than the channel capacity.

Example:

- In last lecture: BSC Q with f = 0.15 has capacity C = 0.39 bits.
- Suppose we want error less than $\epsilon = 0.05$ and rate R > 0.25
- The NCCT tells us there should be, for N large enough, an (N, K) code with $K/N \ge 0.25$

Indeed, we showed the code $S = \{000, 111\}$ with majority vote decoder has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.

- For N = 3 there is a (3, 1) code meeting the requirements.
- However, there is no code with same ϵ and rate 1/2 > 0.39 = C.

Summary and Reading

Main Points

- The Noisy Typewriter
- Extended Channels
- Block Codes
- The Noisy-Channel Coding Theorem (Statement only)

Reading

- MacKay §9.6
- Cover & Thomas §7.5

Main Points

- The Noisy Typewriter
- Extended Channels
- Block Codes
- The Noisy-Channel Coding Theorem (Statement only)

Reading

- MacKay §9.6
- Cover & Thomas §7.5

Next time: Detail of the NCCT, joint typicality, and a sketch of the proof!