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The Noisy Typewriter Channel

This channel simulates a noisy “typewriter”. Inputs and outputs are 26
letters A through Z plus space. With probability 1

3 , each letter is either:
unchanged; changed to the next letter, changed to the previous letter.
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The transition matrix for this channel has a diagonal structure: all of the
probability mass is concentrated around the diagonal.
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148 9 — Communication over a Noisy Channel

Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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P (y =1 |x=1) = 1 − f. 1
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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Z channel. AX ={0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085

0.22
= 0.39. (9.5)

The transition matrix for this channel has a diagonal structure: all of the
probability mass is concentrated around the diagonal.
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Extended Channels

When used N times, a channel Q from X to Y can be seen as an extended
channel taking “symbols” from XN to “symbols” in YN .

Extended Channel

The Nth extended channel of Q from X to Y is a channel from XN to
YN with transition probability from x ∈ XN to y ∈ YN given by

P(y|x) =
N∏

n=1

P(yi |xi )

Example: BSC Q with f = 0.1 from X = {0, 1} to Y = {0, 1} has N = 2
extended channel from X 2 = {00, 01, 10, 11} to Y2 = {00, 01, 10, 11} with

Q2 =
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N = 1 N = 2 N = 4
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Extended Channels and the Noisy Typewriter

As N increases, any extended channel looks like the noisy typewriter!

Extended Z Channel
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085

0.22
= 0.39. (9.5)

Noisy Typewriter Channel
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085

0.22
= 0.39. (9.5)
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If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
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=
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=
0.085
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If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.
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=
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
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= 0.39. (9.5)
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Block Codes

We now formalise codes that make repeated use of a noisy channel to
communicate a predefined set of S messages.
Each s ∈ {1, 2, . . . ,S} is paired with a unique block of symbols x ∈ XN .

(N ,K ) Block Code

Given a channel Q with inputs X and outputs Y, an integer N > 0, and
K > 0, an (N,K ) Block Code for Q is a list of S = 2K codewords

S = {x(1), x(2), . . . , x(2K )}

where each x(s) ∈ XN consists of N symbols from X . The rate of such a
block code is K/N bits per channel use.

Examples (for Binary Symmetric Channel Q)

A (1, 1) block code: S = {0, 1} — Rate: 1

A (3, 2) block code: S = {000, 001, 100, 111} — Rate: 2
3

A (3, log2 3) block code: S = {001, 010, 100} — Rate: log2 3
3 ≈ 0.53
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Decoding Block Codes

An (N,K ) block code sends each message s ∈ {1, 2, . . . , 2K} over a
channel Q as xs ∈ XN and the block y ∈ YN is received. How does the
receiver determine which s was transmitted?

Block Decoder

A decoder for a (N,K ) block code is a mapping that associates each
y ∈ YN with an ŝ ∈ {1, 2, . . . , 2K}.

Example The (2, 1) block code S = {000, 111} and majority vote decoder
d : {0, 1}3 → {1, 2} defined by

d(000) = d(001) = d(010) = d(100) = 1

d(111) = d(110) = d(101) = d(011) = 2

Optimal Decoder

An optimal decoder for a code S, channel Q, and prior P(s) maps y to ŝ
such that P(ŝ|y) is maximal. That is, dopt(y) = arg maxs P(s|y).
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channel Q as xs ∈ XN and the block y ∈ YN is received. How does the
receiver determine which s was transmitted?

Block Decoder

A decoder for a (N,K ) block code is a mapping that associates each
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Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.

QEncoder
x ysin sout

Decoder

Probability of (Block) Error

Given a channel Q the probability of (block) error for a code is

pB = P(sout 6= sin) =
∑

sin

P(sout 6= sin|sin)P(sin)

and its maximum probability of (block) error is

pBM = max
sin

P(sout 6= sin|sin)

As P(sout 6= sin|sin) ≤ pBM for all sin we get pB ≤
∑

sin
pBMP(sin) = pBM

and so if pBM → 0 then pB → 0.
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Achievable Rates

If it is possible to construct codes with rate R for a channel that can have
arbitrarily small error the rate R is said to be achievable. Formally:

Achievable Rate

A rate R over a channel Q is said to be achievable if, for any ε > 0 there
is a (N,K ) block code and decoder such that its rate K/N ≥ R and its
maximum probability of block error satisfies

pBM = max
sin

P(sout 6= sin|sin) < ε

The main “trick” to minimising pBM is to construct a (N,K ) block code
with (almost) non-confusable codes. That is, a code such that the set of
y that each x(s) are sent to by Q have low probability intersection.

This is possible because extended channels look like the noisy typewriter.
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The Noisy-Channel Coding Theorem
Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R ≤ C , that is, the rate is no greater than the channel capacity.

Example:

In last lecture: BSC Q with f = 0.15 has capacity C = 0.39 bits.

Suppose we want error less than ε = 0.05 and rate R > 0.25

The NCCT tells us there should be, for N large enough, an (N,K )
code with K/N ≥ 0.25

Indeed, we showed the code S = {000, 111} with majority vote decoder
has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.

For N = 3 there is a (3, 1) code meeting the requirements.

However, there is no code with same ε and rate 1/2 > 0.39 = C .
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Summary and Reading

Main Points

The Noisy Typewriter

Extended Channels

Block Codes

The Noisy-Channel Coding Theorem (Statement only)

Reading

MacKay §9.6

Cover & Thomas §7.5

Next time: Detail of the NCCT, joint typicality, and a sketch of the proof!
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