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Expectation and Variance

Let X be a random variable over X , with probability distribution p

Expected value:

E[X ] =
∑

x∈X
x · p(x).

Variance:

V[X ] = E[(X − E[X ])2]

= E[X 2]− (E[X ])2.

Standard deviation is
√

V[X ]

Mark Reid (ANU) Information Theory 1st Dec. 2014 3 / 63



Properties of expectation and variance

Expectation: A key property of expectations is linearity:

E

[
n∑

i=1

Xi

]
=

n∑

i=1

E [Xi ] .

This holds even if the variables are dependent!

Variance: We have linearity of variance for independent random variables:

V

[
n∑

i=1

Xi

]
=

n∑

i=1

V [Xi ] .

Does not hold if the variables are dependent

Also, for any a ∈ R we have E[aX ] = a · E[X ] and V[aX ] = a2 · V[X ].
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Markov’s Inequality

Theorem

Let X be a nonnegative random variable. Then, for any λ > 0,

p(X ≥ λ · E[X ]) ≤ 1

λ
.

Values from nonnegative r.v. unlikely to be much larger than expectation
Proof: Let α = λE[X ].

E[X ] =
∑

x∈X
x · p(x)

=
∑

x<α

x · p(x) +
∑

x≥α
x · p(x)

≥
∑

x≥α
x · p(x) nonneg. of random variable

≥
∑

x≥α
α · p(x) = α · p(X ≥ α)
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Markov’s Inequality
Illustration from http://justindomke.wordpress.com/
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Chebyshev’s Inequality

Markov’s inequality only uses the mean of the distribution What about the
spread of the distribution (variance)?

0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20
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Chebyshev’s Inequality

Theorem

Let X be a random variable with E[X ] <∞. Then, for any λ > 0,

p(|X − E[X ]| ≥ λ) ≤ V[X ]

λ2
.

Bounds probability of “unexpected” outcome in terms of variance.
Note: Does not require non negativity; two-sided bound.

Corollary

Let X be a random variable with E[X ] <∞. Then, for any λ > 0,

p(|X − E[X ]| ≥ λ ·
√

V[X ]) ≤ 1

λ2
.

Observations unlikely several standard deviations away from the mean.
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Chebyshev’s Inequality
Proof

Define
Y = (X − E[X ])2.

Then, by Markov’s inequality, for any ν > 0,

p(Y ≥ ν) ≤ E[Y ]

ν
.

But,
E[Y ] = V[X ].

Also,
Y ≥ ν ⇐⇒ |X − E[X ]| ≥ √ν.

Thus, setting λ =
√
ν,

p(|X − E[X ]| ≥ λ) ≤ V[X ]

λ2
.
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Law of Large Numbers

Theorem

Let X1, . . . ,Xn be a sequence of iid random variables, with

E[Xi ] = µ

and V[Xi ] <∞. Define

X̄n =
X1 + . . .+ Xn

n
.

Then, for any ε > 0,

lim
n→∞

p(|X̄n − µ| > ε) = 0.

Given enough trials, the empirical “success frequency” will be close to the
expected value
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Law of Large Numbers
Proof

Since Xi ’s are identically distributed,

E[X̄n] = µ.

Since the Xi ’s are independent,

V[X̄n] = V
[

X1 + . . .+ Xn

n

]

=
V [X1 + . . .+ Xn]

n2

=
nσ2

n2

=
σ2

n
.

Mark Reid (ANU) Information Theory 1st Dec. 2014 11 / 63



Law of Large Numbers
Proof

Applying Chebyshev’s inequality to X̄n,

p(|X̄n − µ| ≥ ε) ≤
V[X̄n]

ε2

=
σ2

nε2
.

As n→∞, the right hand side → 0.

Thus,
p(|X̄n − µ| < ε)→ 1.
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Convex and Concave Functions
Definitions

Definition

A function f (x) is convex ^ over RN if for all x1, x2 ∈ RN and 0 ≤ λ ≤ 1:

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

We say f is strictly convex ^ if for all x1, x2 ∈ RN the equality holds only
for λ = 0 and λ = 1.

Similarly, a function f is concave _ if −f is convex ^, i.e. if every cord of
the function lies below the function.
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Jensen’s Inequality for Convex Functions

Theorem: Jensen’s Inequality

If f : RN → R is a convex ^ function and X is a RN -valued r.v. then:

f (E[X ]) ≤ E[f (X )].

Moreover, if f is strictly convex ^, the equality implies that X = E[X ]
with probability 1, i.e X is a constant.

In other words, for a probability vector p,

f

(
N∑

i=1

pixi

)
≤

N∑

i=1

pi f (xi ).

Similarly for a concave _ function: E[f (X )] ≤ f (E[X ]) .
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Jensen’s Inequality: “Proof”
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Gibb’s Inequality

Theorem

The relative entropy (or KL divergence) between two distributions p(X )
and q(X ) with X ∈ X is non-negative:

DKL(p‖q) ≥ 0

with equality if and only if p(x) = q(x) for all x.

Recall that: DKL(p‖q) =
∑

x∈X
p(x) log

p(x)

q(x)
= Ep(X )

[
log

p(X )

q(X )

]

Let A = {x : p(x) > 0}. Then:

−DKL(p‖q) =
∑

x∈A
p(x) log

q(x)

p(x)
≤ log

∑

x∈A
p(x)

q(x)

p(x)
Jensen’s inequality

≤ log
∑

x∈X
q(x) = log 1 = 0
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Non-Negativity of Mutual Information

Corollary

For any two random variables X ,Y :

I (X ; Y ) ≥ 0,

with equality if and only if X and Y are statistically independent.

Proof: We simply use the definition of mutual information and Gibbs’
inequality:

I (X ; Y ) = DKL(p(X ,Y )‖p(X )p(Y )) ≥ 0,

with equality if and only if p(X ,Y ) = p(X )p(Y ), i.e. X and Y are
independent.
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Conditioning Reduces Entropy
Information Cannot Hurt — Proof

Theorem

For any two random variables X ,Y ,

H(X |Y ) ≤ H(X ),

with equality if and only if X and Y are independent.

Proof: We simply use the non-negativity of mutual information:

I (X ; Y ) ≥ 0

H(X )− H(X |Y ) ≥ 0

H(X |Y ) ≤ H(X )

with equality if and only if p(X ,Y ) = p(X )p(Y ), i.e X and Y are
independent.

Data are helpful, they don’t increase uncertainty on average.
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Markov Chain

X" Y" Z"

Definition

Random variables X ,Y ,Z are said to form a Markov chain in that order
(denoted by X → Y → Z ) if their joint probability distribution can be
written as:

p(X ,Y ,Z ) = p(X )p(Y |X )p(Z |Y )

Consequences:

X → Y → Z if and only if X and Z are conditionally independent
given Y .

X → Y → Z implies that Z → Y → X .

If Z = f (Y ), then X → Y → Z
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Data-Processing Inequality
Definition

Theorem

if X → Y → Z then: I (X ; Y ) ≥ I (X ; Z )

X is the state of the world, Y is the data gathered and Z is the
processed data

No “clever” manipulation of the data can improve the inferences that
can be made from the data

No processing of Y , deterministic or random, can increase the
information that Y contains about X
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Data-Processing Inequality
Proof

Recall that the chain rule for mutual information states that:

I (X ; Y ,Z ) = I (X ; Y ) + I (X ; Z |Y )

= I (X ; Z ) + I (X ; Y |Z )

Therefore:

I (X ; Y ) + I (X ; Z |Y )︸ ︷︷ ︸
0

= I (X ; Z ) + I (X ; Y |Z ) Markov chain assumption

I (X ; Y ) = I (X ; Z ) + I (X ; Y |Z ) but I (X ; Y |Z) ≥ 0

I (X ; Y ) ≥ I (X ; Z )
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More on inequalities
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Key Results: Overview
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What is Compression?

Cn y rd ths mssg wtht ny vwls?

It is not too difficult to read as there is redundancy in English text.
(Estimates of 1-1.5 bits per character, compared to log2 26 ≈ 4.7)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

24 2 — Probability, Entropy, and Inference
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(a) P (y | x) (b) P (x | y)

Figure 2.3. Conditional
probability distributions. (a)
P (y |x): Each row shows the
conditional distribution of the
second letter, y, given the first
letter, x, in a bigram xy. (b)
P (x | y): Each column shows the
conditional distribution of the
first letter, x, given the second
letter, y.

that the first letter x is q are u and -. (The space is common after q

because the source document makes heavy use of the word FAQ.)

The probability P (x | y =u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y =u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule – obtained from the definition of conditional probability:

P (x, y |H) = P (x | y,H)P (y |H) = P (y |x,H)P (x |H). (2.6)

This rule is also known as the chain rule.

Sum rule – a rewriting of the marginal probability definition:

P (x |H) =
∑

y

P (x, y |H) (2.7)

=
∑

y

P (x | y,H)P (y |H). (2.8)

Bayes’ theorem – obtained from the product rule:

P (y |x,H) =
P (x | y,H)P (y |H)

P (x |H)
(2.9)

=
P (x | y,H)P (y |H)∑
y′ P (x | y′,H)P (y′ |H)

. (2.10)

Independence. Two random variables X and Y are independent (sometimes
written X⊥Y ) if and only if

P (x, y) = P (x)P (y). (2.11)

Exercise 2.2.[1, p.40] Are the random variables X and Y in the joint ensemble
of figure 2.2 independent?

If you see a “q”, it is very likely
to be followed with a “u”

The letter “e” is much more
common than “j”

Compression exploits differences
in relative probability of symbols
or blocks of symbols

We will breifly look at two types of compression: lossy (trade off size and
reliability) and lossless (unambiguous decoding).
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A General Communication Game

Data compression is the process of replacing a message with a smaller
message which can be reliably converted back to the original.

Sender & Receiver agree on code for each outcome ahead of time
(e.g., 0 for Heads; 1 for Tails)

Sender observes outcomes then codes and sends message

Receiver decodes message and recovers outcome sequence

Want small messages on average when outcomes are from a fixed,
known, but uncertain source (e.g., coin flips with known bias)

Sender Receiver

Coding Decoding
010

Message

Heads, Tails, Heads, … Heads, Tails, Heads, …
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Codes for Compression

Notation:

If A is a finite set then AN is the set of all strings of length N.

A+ =
⋃

N AN is the set of all finite strings

Examples:

{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}
{0, 1}+ = {0, 1, 00, 01, 10, 11, 000, 001, 010, . . .}

Binary Symbol Code

Let X be an ensemble with AX = {a1, . . . , aI}.
A function c : AX → {0, 1}+ is a code for X .

The binary string c(x) is the codeword for x ∈ AX

The length of the codeword for for x is denoted `(x).
Shorthand: `i = `(ai ) for i = 1 . . . , I .

The extension of c assigns codewords to any sequence x1x2 . . . xN
from A+ by c(x1 . . . xN) = c(x1) . . . c(xN)
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Codes
Examples

X is an ensemble with AX = {a, b, c, d}

Example 1 (Uniform Code):

Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000

Shorthand: C1 = {0001, 0010, 0100, 1000}
All codewords have length 4. That is, `1 = `2 = `3 = `4 = 4

The extension of c maps aba ∈ A3
X ⊂ A+

X to 000100100001

Example 2 (Variable-Length Code):

Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111

Shorthand: C2 = {0, 10, 110, 111}
In this case `1 = 1, `2 = 2, `3 = `4 = 3

The extension of c maps aba ∈ A3
X ⊂ A+

X to 0100
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Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
AX = {a1, . . . , aI} and p = (p1, . . . , pI ) is

L(C ,X ) = Ex∼p [`(x)] =
∑

x∈AX

p(x) `(x) =
I∑

i=1

pi `i

Example: X has AX = {a, b, c, d} and P = {12 , 14 , 18 , 18}
1 The code C1 = {0001, 0010, 0100, 1000} has

L(C1,X ) =
4∑

i=1

pi `i = 4

2 The code C2 = {0, 10, 110, 111} has

L(C2,X ) =
4∑

i=1

pi `i = 1
2 × 1 + 1

4 × 2 + 1
8 × 3 + 1

8 × 3 = 1.25
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Uniform Lossy Codes: What is the best we can do?

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

Coding single outcomes requires 1 bit/outcome

Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can
ignore any sequence of 10 outcomes with more than 3 tails (Why?).
But there are only 176 < 28 sequences with 3 or fewer tails (Why?).

Coding 10 outcomes with 2% failure doable with 0.8 bits/outcome

Smallest bits/outcome needed for 10,000 outcome sequences?

Source Coding Theorem (Informal Statement)

If you want to uniformly code large sequences of outcomes with any
degree of reliability from a random source then the average number of bits
per outcome you will need is roughly equal to the entropy of that source.

To define: “Uniformly code”, “large sequences”, “degree of reliability”,
“average number of bits per outcome”, “roughly equal”
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degree of reliability from a random source then the average number of bits
per outcome you will need is roughly equal to the entropy of that source.

To define: “Uniformly code”, “large sequences”, “degree of reliability”,
“average number of bits per outcome”, “roughly equal”
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Essential Bit Content

There is an inherent trade off between the number of bits required in a
uniform lossy code and the probability of being able to code an outcome

Smallest δ-sufficient subset

Let X be an ensemble and for δ ≥ 0 define Sδ to be the smallest subset of
AX such that

P(x ∈ Sδ) ≥ 1− δ

x P(x)

a 1/4
b 1/4
c 1/4
d 3/16
e 1/64
f 1/64
g 1/64
h 1/64

Outcomes ranked (high–low) by P(x = ai )
removed to make set Sδ with P(x ∈ Sδ) ≥ 1− δ
δ = 0 : Sδ = {a, b, c, d, e, f, g, h}

δ = 1/64 : Sδ = {a, b, c, d, e, f, g}
δ = 1/16 : Sδ = {a, b, c, d}
δ = 3/4 : Sδ = {a}
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Essential Bit Content

Trade off between a probability of δ of not coding an outcome and size of
uniform code is captured by the essential bit content

Essential Bit Content

Let X be an ensemble then for δ ≥ 0 the essential bit content of X is

Hδ(X )
def
= log2 |Sδ|

x P(x)

a 1/4
b 1/4
c 1/4
d 3/16
e 1/64
f 1/64
g 1/64
h 1/64

(a)

!
log2 P (x)−2−2.4−4−6

S0
S 1

16

a,b,cde,f,g,h

"""

(b)

Hδ(X)
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{a,b,c}

{a,b,c,d}

{a,b,c,d,e}
{a,b,c,d,e,f}

{a}

{a,b,c,d,e,f,g}
{a,b,c,d,e,f,g,h}

δ
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The Source Coding Theorem for Uniform Codes
(Theorem 4.1 in MacKay)

The Source Coding Theorem for Uniform Codes

Let X be an ensemble with entropy H = H(X ) bits. Given ε > 0 and
0 < δ < 1, there exists a positive integer N0 such that for all N > N0

∣∣∣∣
1

N
Hδ

(
XN
)
− H

∣∣∣∣ < ε.

The term 1
N Hδ(XN) is the average number of bits per symbol required

to uniformly code all but a proportion δ of length N sequences.

Given a tiny probability of error δ, the average bits per symbol can be
made as close to H as required.

Even if we allow a large probability of error we cannot compress more
than H bits ber symbol.
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The Source Coding Theorem

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X ) bits. Given ε > 0 and
0 < δ < 1, there exists a positive integer N0 such that for all N > N0

∣∣∣∣
1

N
Hδ

(
XN
)
− H

∣∣∣∣ < ε.

1
N Hδ(XN)

0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N=10
N=210
N=410
N=610
N=810
N=1010

δ

Given a tiny probability of error
δ, the average bits per outcome
can be made as close to H as
required.

Even if we allow a large
probability of error we cannot
compress more than H bits per
outcome for large sequences.
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Typical Sets and the AEP

Typical Set

For “closeness” β > 0 the typical set TNβ for XN is

TNβ
def
=

{
x :

∣∣∣∣−
1

N
log2 P(x)− H(X )

∣∣∣∣ < β

}

The name “typical” is used since x ∈ TNβ will have roughly p1N
occurences of symbol a1, p2N of a2, . . ., pKN of aK .

Asymptotic Equipartition Property (Informal)

As N →∞, − 1
N log2 P(x1, . . . , xN) is close to H(X ) with high probability.

For large block sizes “almost all sequences are typical” (i.e., in TNβ).
This means TNβ can be made to “look like” Sδ for any δ by choosing N
large enough. This is useful since TNβ is easy to count (size ≈ 2NH(X ))
while Sδ is not (size varies with distribution)
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The Source Coding Theorem

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X ) bits. Given ε > 0 and
0 < δ < 1, there exists a positive integer N0 such that for all N > N0
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δ

Proof Idea: As N increases

TNβ has ∼ 2NH(X ) elements

almost all x are in TNβ

Sδ and TNβ increasingly overlap

so log2 |Sδ| ∼ NH
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Outline

1 Inequalities

2 Key Results
The Source Coding Theorem for Lossy Uniform-Length Coding
The Source Coding Theorem for Lossless Variable-Length Coding
The Noisy-Channel Coding Theorem
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Lossless Codes: Unique Decodeability

Unique Decodeability

A code c for X is uniquely decodeable if no two strings from A+
X have

the same codeword. That is, for all x, y ∈ A+
X

x 6= y =⇒ c(x) 6= c(y)

Examples:

C1 = {0001, 0010, 0100, 1000} is uniquely decodeable Why?

C2 = {0, 10, 110, 111} is uniquely decodeable

C ′2 = {1, 10, 110, 111} is not uniquely decodeable because

c(aaa) = c(d) = 111 and c(ab) = c(c) = 110
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Prefix Codes
a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

Prefix

A codeword c ∈ {0, 1}+ is said to be a prefix of another codeword
c′ ∈ {0, 1}+ if there exists a string t ∈ {0, 1}+ such that c′ = ct.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code C = {c1, . . . , cI} is a prefix code if for every codeword ci ∈ C
there is no prefix of ci in C .

Examples:

C1 = {0001, 0010, 0100, 1000} is prefix-free

C2 = {0, 10, 110, 111} is prefix-free

C ′2 = {1, 10, 110, 111} is not prefix free since c3 = 110 = c1c2

C ′′2 = {1, 01, 110, 111} is not prefix free since c3 = 110 = c110
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Prefix Codes as Trees

C1 = {0001, 0010, 0100, 1000}
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Prefix Codes as Trees

C2 = {0, 10, 110, 111}
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Prefix Codes as Trees

C ′2 = {1, 10, 110, 111}
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Lengths for Prefix Codes

Suppose someone said “I want codes with codewords lengths”:

L1 = {4, 4, 4, 4}

— C1 = {0001, 0010, 0100, 1000}

L2 = {1, 2, 3, 3}

— C2 = {0, 10, 110, 111}

L3 = {2, 2, 3, 4, 4}

— C3 = {

00

,

01

,

100

,

1010

,

1011

}

L4 = {1, 3, 3, 3, 3, 4}

— Impossible!

Could you construct such codes? Uniquely Decodeable? Prefix-free?
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

2 x 2-bit codewords: {00, 01}
4 x 3-bit codewords: {000, 001, 010, 011}
8 x 4-bit codewords: {0000, 0001, . . . , 0111}
In general, an `-bit codeword excludes
2k−` x k-bit codewords

For lengths L = {`1, . . . , `I} and `∗ = max{`1, . . . , `I}, there will be

1

2`∗

I∑

i=1

2`
∗−`i ≤ 2`

∗

excluded `∗-bit codewords. But there are only 2`
∗

possible `∗-bit codewords
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The Kraft Inequality
a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C , its codeword lengths {`1, . . . , `I} satisfy

I∑

i=1

2−`i ≤ 1 (1)

Conversely, if the set {`1, . . . , `I} satisfy (1) then there exists a prefix code
C with those codeword lengths.

Examples:

1 C1 = {0001, 0010, 0100, 1000} is prefix and
∑4

i=1 2−4 = 1
4 ≤ 1

2 C2 = {0, 10, 110, 111} is prefix and
∑4

i=1 2−`i = 1
2 + 1

4 + 2
8 = 1

3 Lengths {1, 2, 2, 3} give
∑4

i=1 2−`i = 1
2 + 2

4 + 1
8 > 1 so no prefix code
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Code Lengths and Probabilities

The Kraft inequality says that {`1, . . . , `I} are prefix code lengths iff

I∑

i=1

2−`i ≤ 1

Probabilities from Code Lengths

Given code lengths ` = {`1, . . . , `I} such that
∑I

i=1 2−`i ≤ 1 we define
q = {q1, . . . , qI} the probabilities for ` by

qi
def
=

1

z
2−`i where z

def
=
∑

i2
−`i ensure that qi satisfy

∑
iqi = 1

Note: this implies `i = log2
1
zqi

Examples:

1 Lengths {1, 2, 2} give z = 1 so q1 = 1
2 , q2 = 1

4 , and q3 = 1
4

2 Lengths {2, 2, 3} give z = 5
8 so q1 = 2

5 , q2 = 2
5 , and q3 = 1

5
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Minimising Expected Code Length

Given an ensemble X with probabilities PX = p = {p1, . . . , pI} how can
we minimise the expected code length?

Suppose we use code C with lengths ` = {`1, . . . , `I} and
corresponding probabilities q = {q1, . . . , qI} with qi = 1

z 2−`i . Then,

L(C ,X ) =
∑

i

pi`i =
∑

i

pi log2

(
1

zqi

)

=
∑

i

pi log2

(
1

zpi

pi

qi

)

=
∑

i

pi

[
log2

(
1

pi

)
+ log2

(
pi

qi

)
+ log2

(
1

z

)]

=
∑

i

pi log2
1

pi
+
∑

i

pi log2
pi

qi
+ log2

(
1

z

)∑

i

pi

= H(X ) + D(p‖q) + log2
1

z
1
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Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X ) = H(X ) + D(p‖q) + log2
1

z

Thus, L(C ,X ) is minimal (and equal to the entropy H(X )) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X ) ≥ H(X )

with equality only when C has code lengths `i = log2
1
pi

Mark Reid (ANU) Information Theory 1st Dec. 2014 47 / 63



Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X ) = H(X ) + D(p‖q) + log2
1

z

Thus, L(C ,X ) is minimal (and equal to the entropy H(X )) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X ) ≥ H(X )

with equality only when C has code lengths `i = log2
1
pi

Mark Reid (ANU) Information Theory 1st Dec. 2014 47 / 63



Shannon Codes

But log2
1
pi

is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with PX = {p1, . . . , pI} definea codelengths
` = {`1, . . . , `I} by

`i =

⌈
log2

1

pi

⌉
≥ log2

1

pi
.

A code C is called a Shannon code if it has codelengths `.

aHere dxe is “smallest integer not smaller than x”. e.g., d2.1e = 3, d5e = 5.

This gives us code lengths that are “closest” to log2
1
pi

Examples:
1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} so C = {0, 10, 11} is a Shannon

code (in fact, this is an optimal code)
2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} with Shannon code

C = {00, 10, 11} (or C = {01, 10, 11} . . . )
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Source Coding Theorem for Symbol Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X ) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X ) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

Shannon codes are “good” but not optimal — cf. Huffman coding

Mark Reid (ANU) Information Theory 1st Dec. 2014 49 / 63



Source Coding Theorem for Symbol Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X ) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X ) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

Shannon codes are “good” but not optimal — cf. Huffman coding

Mark Reid (ANU) Information Theory 1st Dec. 2014 49 / 63



Source Coding Theorem for Symbol Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X ) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X ) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

Shannon codes are “good” but not optimal — cf. Huffman coding

Mark Reid (ANU) Information Theory 1st Dec. 2014 49 / 63



Source Coding Theorem for Symbol Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X ) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X ) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

Shannon codes are “good” but not optimal — cf. Huffman coding
Mark Reid (ANU) Information Theory 1st Dec. 2014 49 / 63



Outline

1 Inequalities

2 Key Results
The Source Coding Theorem for Lossy Uniform-Length Coding
The Source Coding Theorem for Lossless Variable-Length Coding
The Noisy-Channel Coding Theorem
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The Big Picture
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9

Communication over a Noisy Channel

9.1 The big picture

Noisy
channel

Encoder Decoder

Compressor Decompressor
Source
coding

Channel
coding

Source

!
"

"

"

#

#

In Chapters 4–6, we discussed source coding with block codes, symbol codes
and stream codes. We implicitly assumed that the channel from the compres-
sor to the decompressor was noise-free. Real channels are noisy. We will now
spend two chapters on the subject of noisy-channel coding – the fundamen-
tal possibilities and limitations of error-free communication through a noisy
channel. The aim of channel coding is to make the noisy channel behave like
a noiseless channel. We will assume that the data to be transmitted has been
through a good compressor, so the bit stream has no obvious redundancy. The
channel code, which makes the transmission, will put back redundancy of a
special sort, designed to make the noisy received signal decodeable.

Suppose we transmit 1000 bits per second with p0 = p1 = 1/2 over a
noisy channel that flips bits with probability f = 0.1. What is the rate of
transmission of information? We might guess that the rate is 900 bits per
second by subtracting the expected number of errors per second. But this is
not correct, because the recipient does not know where the errors occurred.
Consider the case where the noise is so great that the received symbols are
independent of the transmitted symbols. This corresponds to a noise level of
f = 0.5, since half of the received symbols are correct due to chance alone.
But when f = 0.5, no information is transmitted at all.

Given what we have learnt about entropy, it seems reasonable that a mea-
sure of the information transmitted is given by the mutual information between
the source and the received signal, that is, the entropy of the source minus the
conditional entropy of the source given the received signal.

We will now review the definition of conditional entropy and mutual in-
formation. Then we will examine whether it is possible to use such a noisy
channel to communicate reliably. We will show that for any channel Q there
is a non-zero rate, the capacity C(Q), up to which information can be sent

146

Mark Reid (ANU) Information Theory 1st Dec. 2014 51 / 63



Channels

A discrete channel Q consists of an input alphabet X = {a1, . . . , aI}, an
output alphabet Y = {b1, . . . , bJ} and transistion probabilities P(y |x).
The channel Q can be expressed as a matrix

Qj ,i = P(y = bj |x = ai )

Example: A channel Q with inputs X = {a1, a2, a3}, outputs
Y = {b1, b2}, and transition probabilities expressed by the matrix

Q =

[
0.8 0.5 0.2
0.2 0.5 0.8

]

So P(b1|a1) = 0.8 = P(b2|a3) and P(b1|a2) = P(b2|a2) = 0.5.
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The Binary Symmetric Channel & The Z-Channel

Binary Symmetric Channel
0 0

1 1

X Y

1-f

1-f

f

f

Inputs X = {0, 1}; Outputs Y = {0, 1};
Transition probabilities with P(flip) = f

Q =

[
1− f f

f 1− f

]

Z-Channel
0 0

1 1

X Y

1

1-f

f

Inputs X = {0, 1}; Outputs Y = {0, 1};
Transition probabilities

Q =

[
1 f
0 1− f

]
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Communicating over Noisy Channels

Suppose we know we have to communicate over some channel Q and we
want build an encoder/decoder pair to reliably send a message s over Q.

QEncoder
x ysin sout

Decoder

Reliability is measured via probability of error — that is, the probability
of incorrectly decoding sout given sin as input:

P(sout 6= sin) =
∑

s

P(sout 6= sin|sin)P(sin)

Example:
Let S = {a, b}, with encoder: a→ 0 ; b→ 1, decoder: 0→ a ; 1→ b.
For binary symmetric Q with f = 0.1 and (pa, pb) = (0.5, 0.5)

P(sin 6= sout) = P(y = 1|x = 0) pa + P(y = 0|x = 1) pb = f = 0.1
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A Simple Coding Scheme

Suppose s ∈ {a, b} and we encode by a→ 000 and b→ 111.
To decode we count the number of 1s and 0s and set all bits to the
majority count to determine s

000, 001, 010, 100︸ ︷︷ ︸
A

→ a and 111, 110, 101, 011︸ ︷︷ ︸
B

→ b

If the channel Q is binary symmetric with f = 0.1 again

P(sin 6= sout) = P(y ∈ B|000) pa + P(y ∈ A|111) pb

= [f 3 + 3f 2(1− f )]pa + [f 3 + 3f 2(1− f )]pb

= f 3 + 3f 2(1− f ) = 0.028

So the error has dropped from 0.1 to 0.028
but so has the rate: from 1 symbol/bit to 1/3 symbol/bit.

Can we make the error arbitrarily small without the rate going to zero?
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Channel Capacity

A key quantity when using a channel is the mutual information between its
inputs X and outputs Y :

I (X ; Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )

This measures how much what was received reduces uncertainty about
what was transmitted.

Examples (See MacKay §9.5)

For noiseless channel H(X |Y ) = 0 so I (X ; Y ) = H(X ).
If pX = (0.9, 0.1) then I (X ; Y ) = 0.47 bits.

For binary symmetric channel with f = 0.15 and pX as above we have
H(Y ) = 0.76 and H(Y |X ) = 0.61 so I (X ; Y ) = 0.15 bits

For Z channel with f = 0.15 and same pX we have H(Y ) = 0.42,
H(Y |X ) = 0.061 so I (X ; Y ) = 0.36 bits

So, intuitively, the reliability is “noiseless > Z > symmetric”
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Channel Capacity

The mutual information measure for a channel depends on the choice of
input distribution pX . If H(X ) is small then I (X ; Y ) ≤ H(X ) is small.
The largest possible reduction in uncertainty achievable across a channel is
its capacity.

Channel Capacity

The capacity C of a channel Q is the largest mutual information between
its input and output for any choice of input ensemble. That is,

C = max
pX

I (X ; Y )

Example: For binary symmetric channel (f = .15), I (X ; Y ) is maximal for
pX = (0.5, 0.5), so C = 0.39 bits (cf. I (X ; Y ) = 0.15 for pX = (0.9, 0.1))
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Block Codes

We now formalise codes that make repeated use of a noisy channel to
communicate a predefined set of S messages.
Each s ∈ {1, 2, . . . ,S} is paired with a unique block of symbols x ∈ XN .

(N ,K ) Block Code

Given a channel Q with inputs X and outputs Y, an integer N > 0, and
K > 0, an (N,K ) Block Code for Q is a list of S = 2K codewords

S = {x(1), x(2), . . . , x(2K )}

where each x(s) ∈ XN consists of N symbols from X . The rate of such a
block code is K/N bits per channel use.

Examples (for Binary Symmetric Channel Q)

A (1, 1) block code: S = {0, 1} — Rate: 1

A (3, 2) block code: S = {000, 001, 100, 111} — Rate: 2
3

A (3, log2 3) block code: S = {001, 010, 100} — Rate: log2 3
3 ≈ 0.53

Mark Reid (ANU) Information Theory 1st Dec. 2014 58 / 63



Decoding Block Codes

An (N,K ) block code sends each message s ∈ {1, 2, . . . , 2K} over a
channel Q as xs ∈ XN and the block y ∈ YN is received. How does the
receiver determine which s was transmitted?

Block Decoder

A decoder for a (N,K ) block code is a mapping that associates each
y ∈ YN with an ŝ ∈ {1, 2, . . . , 2K}.

Example The (2, 1) block code S = {000, 111} and majority vote decoder
d : {0, 1}3 → {1, 2} defined by

d(000) = d(001) = d(010) = d(100) = 1

d(111) = d(110) = d(101) = d(011) = 2
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Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.

QEncoder
x ysin sout

Decoder

Probability of (Block) Error

Given a channel Q the probability of (block) error for a code is

pB = P(sout 6= sin) =
∑

sin

P(sout 6= sin|sin)P(sin)

and its maximum probability of (block) error is

pBM = max
sin

P(sout 6= sin|sin)

As P(sout 6= sin|sin) ≤ pBM for all sin we get pB ≤
∑

sin
pBMP(sin) = pBM

and so if pBM → 0 then pB → 0.
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Achievable Rates

If it is possible to construct codes with rate R for a channel that can have
arbitrarily small error the rate R is said to be achievable. Formally:

Achievable Rate

A rate R over a channel Q is said to be achievable if, for any ε > 0 there
is a (N,K ) block code and decoder such that its rate K/N ≥ R and its
maximum probability of block error satisfies

pBM = max
sin

P(sout 6= sin|sin) < ε

The main “trick” to minimising pBM is to construct a (N,K ) block code
with (almost) non-confusable codes. That is, a code such that the set of
y that each x(s) are sent to by Q have low probability intersection.
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The Noisy-Channel Coding Theorem
Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R ≤ C , that is, the rate is no greater than the channel capacity.

Example:

We saw that BSC Q with f = 0.15 has capacity C = 0.39 bits.

Suppose we want error less than ε = 0.05 and rate R > 0.25

The NCCT tells us there should be, for N large enough, an (N,K )
code with K/N ≥ 0.25

Indeed, we showed the code S = {000, 111} with majority vote decoder
has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.

For N = 3 there is a (3, 1) code meeting the requirements.

But there is no code with arbitrarily small ε and rate 1/2 > 0.39 = C .
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Summary

Inequalities

Probabilistic: Markov, Chebyshev, Law of Large Numbers

Information Theoretic: Gibbs, “Data doesn’t hurt”, Data-Processing
I (Aside: All driven by concavity of entropy)

Main Results

Source Coding Theorems
I For Lossy Block Coding: Reliability/compression trade-off is

asymptotically controlled by entropy of source.
I For Lossless Variable-Length Coding: Can always find code with

expected size within 1 bit of entropy of source

Noisy-Channel Coding Theorem
I The trade-off between reliability and rate of communication over a

noisy channel is determined by capacity of channel (i.e., maxmimum
mutual information between input and output).
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