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© Key Results
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Expectation and Variance

Let X be a random variable over X', with probability distribution p

Expected value:

E[X] =) x-p(x).

xeX

Variance:

VIX] = E[(X — E[X])?]
= E[X?] - (E[X])*.

Standard deviation is /V[X]
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Properties of expectation and variance

Expectation: A key property of expectations is linearity:

doXi| =D E[X].
i=1 i=1

This holds even if the variables are dependent!

E

Variance: We have linearity of variance for independent random variables:

> x| =D VX
i=1 i=1

Does not hold if the variables are dependent

\%

Also, for any a € R we have E[aX] = a- E[X] and V[aX] = a° - V[X].
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Markov's Inequality

Let X be a nonnegative random variable. Then, for any A > 0,

p(X > \-E[X]) < ;

Values from nonnegative r.v. unlikely to be much larger than expectation
Proof. Let o = AE[X].

E[X] = 37 % p(x)

xeX

S o)+ ol
x<a X>o

Z z X p(X) nonneg. of random variable
x>

> a-p(x)=a-p(X>a)
x>
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Markov's Inequality

Illustration from http://justindomke.wordpress.com/
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Markov's Inequality

Illustration from http://justindomke.wordpress.com/
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Markov's Inequality

Illustration from http://justindomke.wordpress.com/
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Markov's Inequality

Illustration from http://justindomke.wordpress.com/
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Chebyshev's Inequality

Markov's inequality only uses the mean of the distribution What about the
spread of the distribution (variance)?

Ia | ‘||II
10
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Chebyshev's Inequality

Let X be a random variable with E[X] < co. Then, for any A > 0,

VX

pX —E[X]| 2 N) < —5+

Bounds probability of “unexpected” outcome in terms of variance.
Note: Does not require non negativity; two-sided bound.

Let X be a random variable with E[X] < co. Then, for any A > 0,

p(IX ~E[X]| > A+ VX)) < 5.

Observations unlikely several standard deviations away from the mean.
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Chebyshev's Inequality

Proof

Define
Y = (X - E[X])>.

Then, by Markov's inequality, for any v > 0,

p(Y >v) < y
But,
E[Y] = V[X].
Also,
Y>v < | X-E[X]] >V

Thus, setting A = /v,
V[X
p(X ~EIX] = 0 < T
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Law of Large Numbers

Let Xi,...,X, be a sequence of iid random variables, with
E[Xi] =

and V[Xj] < co. Define

Then, for any € > 0,

Jlim_p(|X, — ul > €) =0.

Given enough trials, the empirical “success frequency” will be close to the
expected value
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Law of Large Numbers

Proof

Since X;'s are identically distributed,

E[X,] = p.
Since the X;'s are independent,
c X1+ ...+ X,
T
VX + .+ X
= o
no?
= 7
~on
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Law of Large Numbers

Proof

Applying Chebyshev's inequality to X,

As n — oo, the right hand side — 0.

Thus, _
p(|Xn — u| <€) — 1.
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Outline

© Inequalities
@ Probabilisitic Inequalities
@ Convex Inequalities
@ Information Theoretic Inequalities
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Convex and Concave Functions

Definitions

A function f(x) is convex — over R if for all x;,x € RV and 0 < A < 1:

f()\Xl + (1 = )\)Xz) < )\f(Xl) + (1 = )\)f(XQ)

We say f is strictly convex — if for all x;,xo € RN the equality holds only
for A\=0and A =1.

v

Similarly, a function f is concave —~ if —f is convex —, i.e. if every cord of
the function lies below the function.
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Jensen’s Inequality for Convex Functions

Theorem: Jensen's Inequality

If f: RNV — R is a convex — function and X is a RN-valued r.v. then:
F(E[X]) < E[f(X)].

Moreover, if f is strictly convex —, the equality implies that X = E[X]
with probability 1, i.e X is a constant.

In other words, for a probability vector p,

N N
f <Z PiXi) < Zpif(xi)-
i—1 i—1

Similarly for a concave —~ function: E[f(X)] < f(E[X]) .
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“Proof”

Jensen’s Inequality:

16 / 63
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Gibb's Inequality

The relative entropy (or KL divergence) between two distributions p(X)
and q(X) with X € X is non-negative:

Dki(pllq) >0

with equality if and only if p(x) = q(x) for all x.
p(x) p(X)
Recall that: Dk (p|lq) = p(x)log——= =E [Iog
kL(pllq) );( (x) a(x) B ()
Let A= {x: p(x) > 0}. Then:
—DKL(qu) = ;4 (X) |Og i < IOg Z p(X % Jensen’s inequality

§Iongx =logl=0
xeX

Mark Reid (ANU) Information Theory 1st Dec. 2014 17 / 63



Non-Negativity of Mutual Information

For any two random variables X, Y:
I(X;Y) >0,

with equality if and only if X and Y are statistically independent.

Proof: We simply use the definition of mutual information and Gibbs’

inequality:
I(X;Y) = Du(p(X, Y)[p(X)p(Y)) = 0,

with equality if and only if p(X,Y) = p(X)p(Y), i.e. X and Y are
independent.
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Conditioning Reduces Entropy

Information Cannot Hurt — Proof

For any two random variables X, Y,
H(X|Y) < H(X),

with equality if and only if X and Y are independent.

Proof: We simply use the non-negativity of mutual information:
I(X;Y)>0
H(X)—H(X|Y)>0
H(X]Y) < H(X)

with equality if and only if p(X,Y) = p(X)p(Y), i.e X and Y are
independent.

Data are helpful, they don't increase uncertainty on average.
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Markov Chain

Random variables X, Y, Z are said to form a Markov chain in that order
(denoted by X — Y — Z) if their joint probability distribution can be
written as:

Definition

p(X, Y, Z) = p(X)p(Y|X)p(Z|Y)

Consequences:

@ X =Y — Zifand only if X and Z are conditionally independent
given Y.

o X > Y — Zimplies that Z — Y — X.
o If Z=1f(Y), then X —-Y > Z
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Data-Processing Inequality

Definition

if X = Y — Z then: I(X;Y) > I(X; 2)

@ X is the state of the world, Y is the data gathered and Z is the
processed data

@ No “clever’” manipulation of the data can improve the inferences that
can be made from the data

@ No processing of Y, deterministic or random, can increase the
information that Y contains about X
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Data-Processing Inequality

Proof

Recall that the chain rule for mutual information states that:

(XY, Z)=1(X;Y)+ I(X; Z]Y)
=1(X;Z)+ 1(X;Y]|2)
Therefore:
I(X, Y) + I(X, Z‘ Y) == I(X, Z) + I(X, Y|Z) Markov chain assumption
0

I(X;Y)=1(X;2)+ I(X;Y|Z) buwixivizy=o
1(X;Y)>1(X;2)

Mark Reid (ANU) Information Theory 1st Dec. 2014 22 /63



More on inequalities

AN INTRODUCTION

TO THE ART OF
MATHEMATICAL
INEQUALITIES

The
Cauchy—Schwarz
Master Class

/" ]. Michael Steele
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© Key Results
@ The Source Coding Theorem for Lossy Uniform-Length Coding
@ The Source Coding Theorem for Lossless Variable-Length Coding
@ The Noisy-Channel Coding Theorem
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Key Results: Overview
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What is Compression?

Cn y rd ths mssg wtht ny vwls?
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What is Compression?

Cn y rd ths mssg wtht ny vwls?

It is not too difficult to read as there is redundancy in English text.
(Estimates of 1-1.5 bits per character, compared to log, 26 ~ 4.7)

o If you see a "q", it is very likely

to be followed with a “u

@ The letter “e" is much more

common than “j

@ Compression exploits differences
in relative probability of symbols
Sbcdefghijkimnopgrstavexyz. y or blocks of symbols

(a) Py|x)

N<X s < £t R,0TO0 B BHRUH-SIH 00T &
CEEee E s E-Eeaaws

We will breifly look at two types of compression: lossy (trade off size and
reliability) and lossless (unambiguous decoding).
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A General Communication Game

Data compression is the process of replacing a message with a smaller
message which can be reliably converted back to the original.

@ Sender & Receiver agree on code for each outcome ahead of time
(e.g., O for Heads; 1 for Tails)

@ Sender observes outcomes then codes and sends message

@ Receiver decodes message and recovers outcome sequence

@ Want small messages on average when outcomes are from a fixed,
known, but uncertain source (e.g., coin flips with known bias)

Heads, Tails, Heads, ...

Codlng Decodlng

‘010)

Message

Sender Receiver
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Codes for Compression

Notation:
o If Ais a finite set then AN is the set of all strings of length N.
o At =Jy AN is the set of all finite strings
Examples:
e {0,1}® = {000, 001,010,011, 100,101,110,111}
e {0,1}* =1{0,1,00,01,10,11,000,001,010,...}

Mark Reid (ANU) Information Theory 1st Dec. 2014 28 / 63



Codes for Compression

Notation:
o If Ais a finite set then AN is the set of all strings of length N.
o At =Jy AN is the set of all finite strings
Examples:
e {0,1}® = {000, 001,010,011, 100,101,110,111}
e {0,1}* =1{0,1,00,01,10,11,000,001,010,...}

Binary Symbol Code

Let X be an ensemble with Ax = {a1,...,a/}.
A function ¢ : Ax — {0,1}" is a code for X.

@ The binary string c(x) is the codeword for x € Ax

@ The length of the codeword for for x is denoted ¢(x).
Shorthand: ¢; = ¢(a;) fori=1...,1.

@ The extension of ¢ assigns codewords to any sequence xixo ... Xy
from A" by c(xq...xn) = c(x1) ... c(xn)

v
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Codes

Examples

X is an ensemble with Ax = {a, b, c,d}

Example 1 (Uniform Code):
o Let ¢(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
@ Shorthand: ¢; = {0001, 0010,0100, 1000}
@ All codewords have length 4. Thatis, {1 =4y ={l3 =40, =4
@ The extension of ¢ maps aba € .Ai C .A; to 000100100001
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Codes

Examples

X is an ensemble with Ax = {a, b, c,d}

Example 1 (Uniform Code):
o Let ¢(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
@ Shorthand: ¢; = {0001, 0010,0100, 1000}
@ All codewords have length 4. Thatis, {1 =4y ={l3 =40, =4
@ The extension of ¢ maps aba € .A} C .A; to 000100100001

Example 2 (Variable-Length Code):
e Let c(a) =0, ¢(b) =10, c(c) =110, ¢(d) = 111
e Shorthand: G, ={0,10,110,111}
@ Inthiscase {1 =1, 0, =2, 03=44=3
o The extension of ¢ maps aba € A} C .A; to 0100
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Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
Ax ={a1,...,a} and p=(p1,...,py) is

L(C,X) = Banp 6] = 3 p0) () = Zp,,

xEAx

Example: X has Ax = {a,b,c,d} and P = {2, a 8,213
@ The code C¢; = {0001, 0010,0100, 1000} has

4
L(G,X) = Zpifi =4
i—1

@ The code C; = {0,10,110,111} has
4
L(CX)=> pili=3x1+3x2+3x3+1x3=125
i=1
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Uniform Lossy Codes: What is the best we can do?

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:
e Coding single outcomes requires 1 bit/outcome
o Coding 10 outcomes at a time needs 1 bits/outcome
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Uniform Lossy Codes: What is the best we can do?

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:
e Coding single outcomes requires 1 bit/outcome
o Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can
ignore any sequence of 10 outcomes with more than 3 tails (Why?).

Mark Reid (ANU) Information Theory 1st Dec. 2014 31/63



Uniform Lossy Codes: What is the best we can do?

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:
e Coding single outcomes requires 1 bit/outcome
o Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can
ignore any sequence of 10 outcomes with more than 3 tails (Why?).
But there are only 176 < 28 sequences with 3 or fewer tails (Why?).

e Coding 10 outcomes with 2% failure doable with 0.8 bits/outcome
@ Smallest bits/outcome needed for 10,000 outcome sequences?
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Uniform Lossy Codes: What is the best we can do?

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:
e Coding single outcomes requires 1 bit/outcome
o Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can
ignore any sequence of 10 outcomes with more than 3 tails (Why?).
But there are only 176 < 28 sequences with 3 or fewer tails (Why?).

e Coding 10 outcomes with 2% failure doable with 0.8 bits/outcome
@ Smallest bits/outcome needed for 10,000 outcome sequences?

Source Coding Theorem (Informal Statement)

If you want to uniformly code large sequences of outcomes with any
degree of reliability from a random source then the average number of bits
per outcome you will need is roughly equal to the entropy of that source.
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Uniform Lossy Codes: What is the best we can do?

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:
e Coding single outcomes requires 1 bit/outcome
o Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can
ignore any sequence of 10 outcomes with more than 3 tails (Why?).
But there are only 176 < 28 sequences with 3 or fewer tails (Why?).

e Coding 10 outcomes with 2% failure doable with 0.8 bits/outcome
@ Smallest bits/outcome needed for 10,000 outcome sequences?

Source Coding Theorem (Informal Statement)

If you want to uniformly code large sequences of outcomes with any
degree of reliability from a random source then the average number of bits
per outcome you will need is roughly equal to the entropy of that source.

To define: “Uniformly code”, “large sequences”, “degree of reliability”,
“average number of bits per outcome”, “roughly equal”
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Essential Bit Content

There is an inherent trade off between the number of bits required in a
uniform lossy code and the probability of being able to code an outcome

Smallest -sufficient subset

Let X be an ensemble and for 0 > 0 define Ss5 to be the smallest subset of
Ax such that

P(xe€Ss)>1-4
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Essential Bit Content

There is an inherent trade off between the number of bits required in a
uniform lossy code and the probability of being able to code an outcome

Smallest -sufficient subset

Let X be an ensemble and for 0 > 0 define Ss5 to be the smallest subset of
Ax such that
P(xe€Ss)>1-4

P(x)
1/4
1/4
1/4 =0 :5 ={a,b,c,d,ef,gh}
3/16
1/64
1/64
1/64
1/64
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@ Outcomes ranked (high—low) by P(x = a;)
removed to make set S5 with P(x € S5) > 1—§
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Essential Bit Content

There is an inherent trade off between the number of bits required in a
uniform lossy code and the probability of being able to code an outcome

Smallest -sufficient subset

Let X be an ensemble and for 0 > 0 define Ss5 to be the smallest subset of
Ax such that
P(xe€Ss)>1-4

x_ P(x) @ Outcomes ranked (high—low) by P(x = a;)

2 i/z removed to make set S5 with P(x € S5) > 1—46
c 1?4 =0 :5 ={a,b,c,d,ef,gh}

d 3/16 0=1/64 : S5 ={a,b,c,d,e,f,g}

e 1/64

£ 1/64

g 1/64
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Essential Bit Content

There is an inherent trade off between the number of bits required in a
uniform lossy code and the probability of being able to code an outcome

Smallest -sufficient subset

Let X be an ensemble and for 0 > 0 define Ss5 to be the smallest subset of
Ax such that
P(xe€Ss)>1-4

x_P(x) @ Outcomes ranked (high—low) by P(x = a;)

a %2 removed to make set S5 with P(x € S5) > 1—46
b

c 1/4 6=0:5 ={ab,c,de,fgh}

d 3/16 0=1/64 : S5 ={a,b,c,d,e,f,g}

0=1/16 : S5 = {a,b,c,d}
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Essential Bit Content

There is an inherent trade off between the number of bits required in a
uniform lossy code and the probability of being able to code an outcome

Smallest -sufficient subset

Let X be an ensemble and for 0 > 0 define Ss5 to be the smallest subset of
Ax such that
P(xe€Ss)>1-4

x P(x)

ANtV @ Outcomes ranked (high—low) by P(x = a;)
a 1/4

removed to make set S5 with P(x € S5) > 1—4
=0 :5 ={a,b,c,d,e,f, g h}
0=1/64 : S5 ={a,b,c,d,e,f,g}
0=1/16 : S5 = {a,b,c,d}
0=23/4: S5 ={a}
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Essential Bit Content

Trade off between a probability of § of not coding an outcome and size of
uniform code is captured by the essential bit content

Essential Bit Content

Let X be an ensemble then for § > 0 the essential bit content of X is

def

Hs(X) = log, [ S5
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Essential Bit Content

Trade off between a probability of § of not coding an outcome and size of
uniform code is captured by the essential bit content

Essential Bit Content

Let X be an ensemble then for § > 0 the essential bit content of X is

Hs(X) < log, |Ss|

x P(x)
> e ]
b 1/4 I i i ]
c 1/4 H(;(X) ~<—— {ab,c,d,e}

2+ =— {ab,c,d} -
d 3/16
e 1?64 ey T
f 1 / 64 r —fab} 1
g 1 / 64 05 - 8

{a}

h 1 / 64 0 I

Il Il Il Il Il Il Il
0O 01 02 03 04 05 06 07 08 09
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The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

The Source Coding Theorem for Uniform Codes

Let X be an ensemble with entropy H = H(X) bits. Given € > 0 and
0 < 6 < 1, there exists a positive integer Ny such that for all N > Ny

'%H(; (X’V) _ H‘ <e.
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The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

The Source Coding Theorem for Uniform Codes

Let X be an ensemble with entropy H = H(X) bits. Given € > 0 and
0 < 6 < 1, there exists a positive integer Ny such that for all N > Ny

'%H(; (X’V) _ H‘ <e.

o The term 4 Hs(XN) is the average number of bits per symbol required
to uniformly code all but a proportion § of length N sequences.

@ Given a tiny probability of error §, the average bits per symbol can be
made as close to H as required.

@ Even if we allow a large probability of error we cannot compress more
than H bits ber symbol.
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The Source Coding Theorem

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < d < 1, there exists a positive integer Ny such that for all N > Ny

'%H(; (X’V) _ H‘ <e

; ‘ ‘ ‘ ‘ @ Given a tiny probability of error
4, the average bits per outcome
can be made as close to H as
required.

%Hg(XN) 0.8

06 k.

0.4

o Even if we allow a large
probability of error we cannot
compress more than H bits per
outcome for large sequences.

02
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Typical Sets and the AEP

For “closeness” 3 > 0 the typical set Tyg for XN is

Tos & {x : ‘—% log, P(x) — H(X)' < 5}

The name “typical” is used since x € Tyg will have roughly pt N
occurences of symbol aj, po/N of az, ..., pxN of ak.

Mark Reid (ANU) Information Theory 1st Dec. 2014 36 / 63



Typical Sets and the AEP

For “closeness” 3 > 0 the typical set Tyg for XN is

Tos & {x ; ‘—% log, P(x) — H(X)’ < 5}

The name “typical” is used since x € Tyg will have roughly pt N
occurences of symbol aj, po/N of az, ..., pxN of ak.

Asymptotic Equipartition Property (Informal)

As N — oo, —% logy P(x1,...,xn) is close to H(X) with high probability.

For large block sizes “almost all sequences are typical” (i.e., in Tng).
This means Tyg can be made to “look like" Ss for any § by choosing N
large enough. This is useful since Ty is easy to count (size ~ 2VH(X))
while Ss is not (size varies with distribution)
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The Source Coding Theorem

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < d < 1, there exists a positive integer Ny such that for all N > Ny

'%HJ (X’V) . H’ <e

Neto — Proof ldea: As N increases

L Hy(XN) 08 o Tpnp has ~ 2NH(X) elements

06 k

@ almost all x are in Typg

0.4

@ S5 and Tyg increasingly overlap

02

@ so log, |Ss5| ~ NH

.
0.8 14
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© Key Results
@ The Source Coding Theorem for Lossy Uniform-Length Coding
@ The Source Coding Theorem for Lossless Variable-Length Coding
@ The Noisy-Channel Coding Theorem
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Lossless Codes: Unique Decodeability

Unique Decodeability

A code c for X is uniquely decodeable if no two strings from .A; have
the same codeword. That is, for all x,y € A;

x£y — cx) £ c(y)
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Lossless Codes: Unique Decodeability

Unique Decodeability
A code c for X is uniquely decodeable if no two strings from .A; have
the same codeword. That is, for all x,y € A;

x£y — cx) £ c(y)

Examples:
e (; = {0001,0010,0100,1000} is uniquely decodeable why

e (; ={0,10,110,111} is uniquely decodeable
e €} ={1,10,110,111} is not uniquely decodeable because

c(aaa) = c(d) =111 and c(ab) = c(c) =110
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}7 is said to be a prefix of another codeword
¢’ €{0,1}" if there exists a string t € {0,1}" such that ¢’ = ct.
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}7 is said to be a prefix of another codeword
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}" is said to be a prefix of another codeword
¢’ €{0,1}" if there exists a string t € {0,1}" such that ¢’ = ct.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code C ={c1,..., ¢} is a prefix code if for every codeword ¢; € C
there is no prefix of ¢; in C.

Examples:
o C = {0001,0010,0100,1000} is prefix-free
e (; ={0,10,110,111} is prefix-free
e €} ={1,10,110,111} is not prefix free since cz = 110 = ci1»
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Prefix Codes

a.k.a prefix-free or instantaneous codes

There is an simple property of codes that guarantees unique decodeability.

A codeword ¢ € {0,1}" is said to be a prefix of another codeword
¢’ €{0,1}" if there exists a string t € {0,1}" such that ¢’ = ct.

Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code C ={c1,..., ¢} is a prefix code if for every codeword ¢; € C
there is no prefix of ¢; in C.

Examples:
e (; ={0001,0010,0100,1000} is prefix-free
e (; ={0,10,110,111} is prefix-free
e €} ={1,10,110,111} is not prefix free since cz = 110 = ci1»
e CJ/={1,01,110,111} is not prefix free since ¢z = 110 = ¢;10
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Prefix Codes as Trees

Mark Reid (ANU)

C; = {0001, 0010,0100, 1000}
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Prefix Codes as Trees

G, = {0,10,110, 111}

0000
000 0001
00
0010
001
0011
0
0100
010
0101
01
0110
011
0111
1000
100
1001
10
1010
101
1011
1
1100
110
11 1101
1110
111
1111
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Prefix Codes as Trees

J = {1,10,110,111}

0000
000 T TE—
0001
00
0010
001 E—
0011
0
0100
010 0101
01
0110
011 E—
0111
1000
100 1001
10
1010
101 T TTE—
! 1011
1100
110 —
1 1101
1110
111 F———
1111
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Lengths for Prefix Codes

Suppose someone said “l| want codes with codewords lengths”:
o Ly ={4,4,4,4}
o L, ={1,2,3,3}
o [3=1{2,2,3,44}
o L,=1{1,3,3,3,3,4}
Could you construct such codes? Uniquely Decodeable? Prefix-free?
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Lengths for Prefix Codes

Suppose someone said “l want codes with codewords lengths”:
o Ly ={4,4,4,4} — C; = {0001,0010,0100, 1000}
e [, =1{1,2,3,3} — C ={0,10,110,111}
o L3=1{2,2,3,4,4} — G = {00,01,100,1010,1011}
e L, =1{1,3,3,3,3,4} — Impossible!
Could you construct such codes? Uniquely Decodeable? Prefix-free?

0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
1111
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00
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

@ 2 x 2-bit codewords: {00,01}
@ 4 x 3-bit codewords: {000,001,010,011}
@ 8 x 4-bit codewords: {0000,0001,...,0111}

@ In general, an /-bit codeword excludes
2k=t x k-bit codewords

For lengths L = {¢1,...,¢;} and ¢* = max{/(1,...,¢,}, there will be

i
22[*—5; < 2€*
i=1

excluded ¢*-bit codewords. But there are only 2" possible £*-bit codewords
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Prefixes Exclude Codes

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

@ 2 x 2-bit codewords: {00,01}
@ 4 x 3-bit codewords: {000,001,010,011}
@ 8 x 4-bit codewords: {0000,0001,...,0111}

@ In general, an /-bit codeword excludes
2k=t x k-bit codewords

For lengths L = {¢1,...,¢;} and ¢* = max{/(1,...,¢,}, there will be

|
Zz—él‘ <1
=1

excluded ¢*-bit codewords. But there are only 2" possible £*-bit codewords
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The Kraft Inequality

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths {¢1,..., ¢} satisfy

)
Y oti<u (1)
i=1

Conversely, if the set {1, ..., ¢} satisfy (1) then there exists a prefix code
C with those codeword lengths.

V.
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Examples:
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Kraft Inequality

For any prefix (binary) code C, its codeword lengths {¢1,..., ¢} satisfy

Zz—ff <1 (1)

Conversely, if the set {1, ..., ¢} satisfy (1) then there exists a prefix code
C with those codeword lengths.

V.

Examples:
O G = {0001,0010,0100,1000} is prefix and 37 274 =1 <1
@ G ={0,10,110,111} is prefix and 3°7 ;2 =1 + 1 4+ 2 =1
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The Kraft Inequality

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths {¢1,..., ¢} satisfy

Zz—ff <1 (1)

Conversely, if the set {1, ..., ¢} satisfy (1) then there exists a prefix code
C with those codeword lengths.

V.

Examples:
@ G = {0001,0010,0100,1000} is prefix and Z, 127 4= % <1

Q@ G ={0,10,110,111} is prefix and z, 12 hi=1l4142=1
@ Lengths {1,2,2,3} give Zi:l 2l = § + Z + g > 1 so no prefix code
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Code Lengths and Probabilities

The Kraft inequality says that {{1,...,¢;} are prefix code lengths iff
i
RESES
i=1

Probabilities from Code Lengths

Given code lengths ¢ = {{1,...,¢;} such that Z,’-Zl 2=t < 1 we define
q9=1{q1,...,q/} the probabilities for ¢ by

def 1 def

;= 227h where z=3..27% ensure that g; satisfy 3,q; = 1
z

=

Note: this implies /; = log, Zlq
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Code Lengths and Probabilities

The Kraft inequality says that {{1,...,¢;} are prefix code lengths iff

I
Y oti<t
i=1
Probabilities from Code Lengths

Given code lengths ¢ = {{1,...,¢;} such that Z,’-Zl 2=t < 1 we define
q9=1{q1,...,q/} the probabilities for ¢ by

def 1 def

gi = ;2_5’ where z= Z,Q‘e" ensure that g; satisfy ) ,qi =1

Note: this implies /; = log, Zlq

Examples:
Q Lengths {1,2,2} give z=1s0 q1 = % qp = %, and g3 = %
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Code Lengths and Probabilities

The Kraft inequality says that {{1,...,¢;} are prefix code lengths iff

|
Z 2t <1
i=1

Probabilities from Code Lengths

Given code lengths ¢ = {{1,...,¢;} such that Z,’-Zl 2=t < 1 we define
q9=1{q1,...,q/} the probabilities for ¢ by

def 1 def

gi = ;2_5’ where z= Z,Q‘e" ensure that g; satisfy ) ,qi =1

Note: this implies /; = log, Zlq

Examples:
O Lengths {1,2,2} givez=1s0q1 =3, o = %
@ Lengths {2,2,3} give z = g S0 q1 = % G = %
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Minimising Expected Code Length

Given an ensemble X with probabilities Px = p = {p1,...,p;} how can
we minimise the expected code length?
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Minimising Expected Code Length

Given an ensemble X with probabilities Px = p = {p1,...,p;} how can
we minimise the expected code length?

@ Suppose we use code C with lengths ¢ = {¢1,...,¢;} and
corresponding probabilities q = {q1, ..., g/} with g; = %24". Then,

X)= Zpiﬂi = Zpi log, (Zlq,>
Som (32
SANTENEIG)
= Zp, Iogz -+ Zp, logz + log, (z) z’:p,

1
= HX) + Dlpla) + logp_ 1
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Minimising Expected Code Length

e Soifq=1{qi,...,q;} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1,...,p/}

L(C.X) = H(X) + D(pl|a) + log; -

@ Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p|/q) =0 and log, £ =0

e But the relative entropy D(p||q) > 0 with D(p|/q) =0iffq=p
(Gibb's inequality)

e For q=p, we havezdéfziq,-:zip,-:land s0 Iog2%:0
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Minimising Expected Code Length

e Soifq=1{qi,...,q;} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1,...,p/}

L(C.X) = H(X) + D(pl|a) + log; -

@ Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p|/q) =0 and log, £ =0

e But the relative entropy D(p||q) > 0 with D(p|/q) =0iffq=p
(Gibb's inequality)

e For q=p, we havezdéfziq,-:zip,- =1 and so Iog2% =0
We have shown that for a code C with lengths corresponding to q
L(C,X) > H(X)

with equality only when C has code lengths ¢; = log, é
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Shannon Codes

But Iogzﬁ is not always an integer—a problem for code lengths!
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Shannon Codes

But IogQ% is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with Px = {pi,...,p;} define? codelengths
f= {f]_,. ..,8,} by

1 1
;i = |logy o > log, o

1 1

A code C is called a Shannon code if it has codelengths /.

“Here [x] is “smallest integer not smaller than x". e.g., [2.1] =3, [5] =5.

This gives us code lengths that are “closest” to log, %
Examples:

Q If Px ={3,3.3} then £ ={1,2,2} so C = {0,10,11} is a Shannon
code (in fact, this is an optimal code)

@ If Px = {1,1, 1} then ¢ = {2,2,2} with Shannon code
C ={00,10,11} (or C ={01,10,11} ... )
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Source Coding Theorem for Symbol Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.
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Source Coding Theorem for Symbol Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.

Therefore, if we create a Shannon code C for p = {p1, ..., p;} with
b= {Iogz pl-‘ < log, % + 1 it will satisfy
L(C,X) = pili < X ipilogy o +1=3;pjlogy 5 + X;pi
= H(X) +1

Furthermore, since ¢; > — log, p; we have 2—ti < Dlogy pi — pi, SO
3274 <3 pi = 1. By Kraft there is a prefix code with lengths ¢;
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Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.

Therefore, if we create a Shannon code C for p = {p1, ..., p;} with
l; = {Iogz pl-‘ < log, % + 1 it will satisfy
L(C,X) = pili < X ipilogy o +1=3;pjlogy 5 + X;pi
= H(X) +1

Furthermore, since ¢; > — log, p; we have 2—ti < Dlogy pi — pi, SO
3274 <3 pi = 1. By Kraft there is a prefix code with lengths ¢;

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) < L(C,X) < H(X) + 1.
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Source Coding Theorem for Symbol Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.

Therefore, if we create a Shannon code C for p = {p1, ..., p;} with
l; = {Iogz pl-‘ < log, % + 1 it will satisfy
L(C,X) = pili < X ipilogy o +1=3;pjlogy 5 + X;pi
= H(X) +1

Furthermore, since ¢; > — log, p; we have 2—ti < Dlogy pi — pi, SO
3274 <3 pi = 1. By Kraft there is a prefix code with lengths ¢;

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) < L(C,X) < H(X) + 1.

Shannon codes are “good” but not optimal — cf. Huffman coding
Mark Reid (ANU) Information Theory 1st Dec. 2014 49 / 63



© Key Results
@ The Source Coding Theorem for Lossy Uniform-Length Coding
@ The Source Coding Theorem for Lossless Variable-Length Coding
@ The Noisy-Channel Coding Theorem
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A discrete channel Q consists of an input alphabet X = {a1,...,a;}, an

output alphabet Y = {b1, ..., by} and transistion probabilities P(y|x).
The channel @ can be expressed as a matrix

Qi = P(y = bj|x = a))

Mark Reid (ANU)
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A discrete channel Q consists of an input alphabet X = {a1,...,a;}, an

output alphabet Y = {b1, ..., by} and transistion probabilities P(y|x).
The channel @ can be expressed as a matrix

Qi = P(y = bj|x = a))

Example: A channel Q with inputs X = {a1, a, a3}, outputs
Y = {b1, bo}, and transition probabilities expressed by the matrix

o [08 05 02
~ 102 05 08

So P(b1]a1) =0.8= P(bg‘a3) and P(b1|32) = P(bg‘ag) = 0.5.
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The Binary Symmetric Channel & The Z-Channel

Binary Symmetric Channel |55 ¥ = {0,1}; Outputs Y = {0,1};

0 - °  Transition probabilities with P(flip) = f
f
1—-f f
X Y .
f Q= [ f 1- f]
1 i 1
, Z-Channel . Inputs X = {0,1}; Outputs Y = {0, 1};
Transition probabilities
X Y _ 1 f
- Q= [0 1—f
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Communicating over Noisy Channels

Suppose we know we have to communicate over some channel @ and we
want build an encoder/decoder pair to reliably send a message s over Q.

Encoder Q Decoder
S: > X >y > S

out
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Communicating over Noisy Channels

Suppose we know we have to communicate over some channel @ and we
want build an encoder/decoder pair to reliably send a message s over Q.

Encoder Q Decoder

S, > X >y —————>|S

out

Reliability is measured via probability of error — that is, the probability
of incorrectly decoding so,: given sj, as input:

P(Sout 7é Sin) = Z P(sout 7& 5in|5in)P(sin)

Mark Reid (ANU) Information Theory 1st Dec. 2014 54 / 63



Communicating over Noisy Channels

Suppose we know we have to communicate over some channel @ and we
want build an encoder/decoder pair to reliably send a message s over Q.

Encoder Q Decoder
S: > X >y > S

out

Reliability is measured via probability of error — that is, the probability
of incorrectly decoding s, given s;, as input:

P(Sout 7é Sin) = Z P(sout 7& 5in|5in)P(sin)

Example:
Let S = {a, b}, with encoder- a — 0 ; b — 1, decoder. 0 — a ; 1 — b.
For binary symmetric Q with f = 0.1 and (pa, pp) = (0.5,0.5)

P(sin #sout) = P(y =1x=0)pa.+ P(y =0/x=1)p, =f =0.1
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A Simple Coding Scheme

Suppose s € {a,b} and we encode by a — 000 and b — 111.
To decode we count the number of 1s and Os and set all bits to the
majority count to determine s

000,001,010,100 — a and 111,110,101,011 — b
A B
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A Simple Coding Scheme

Suppose s € {a,b} and we encode by a — 000 and b — 111.

To decode we count the number of 1s and Os and set all bits to the
majority count to determine s

000,001,010,100 — a and 111,110,101,011 — b
A

B

If the channel @ is binary symmetric with f = 0.1 again

P(sin # sout) = P(y € B|000) p, + P(y € A|111) py
= [F*+3F2(1 = )]pa + [F> + 3F3(1 — f)]ps
= 3 +3f3(1—f) =0.028
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A Simple Coding Scheme

Suppose s € {a,b} and we encode by a — 000 and b — 111.
To decode we count the number of 1s and Os and set all bits to the
majority count to determine s

000,001,010,100 — a and 111,110,101,011 — b

A B

If the channel @ is binary symmetric with f = 0.1 again

P(sin # sout) = P(y € B|000) p, + P(y € A|111) py
= [F*+3F2(1 = )]pa + [F> + 3F3(1 — f)]ps
= 3 +3f3(1—f) =0.028

So the error has dropped from 0.1 to 0.028
but so has the rate: from 1 symbol/bit to 1/3 symbol/bit.
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A Simple Coding Scheme

Suppose s € {a,b} and we encode by a — 000 and b — 111.
To decode we count the number of 1s and Os and set all bits to the
majority count to determine s

000,001,010,100 — a and 111,110,101,011 — b

A B

If the channel @ is binary symmetric with f = 0.1 again

P(sin # sout) = P(y € B|000) p, + P(y € A|111) py
= [ +3F(1 = )lpa + [F* +3F2(1 = )]py
= 3 +3f3(1—f) =0.028
So the error has dropped from 0.1 to 0.028

but so has the rate: from 1 symbol/bit to 1/3 symbol/bit.
Can we make the error arbitrarily small without the rate going to zero?
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Channel Capacity

A key quantity when using a channel is the mutual information between its
inputs X and outputs Y:

I(X: Y) = H(X) — H(X|Y) = H(Y) = H(Y|X)

This measures how much what was received reduces uncertainty about
what was transmitted.
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Channel Capacity

A key quantity when using a channel is the mutual information between its
inputs X and outputs Y:

I(X: Y) = H(X) — H(X|Y) = H(Y) = H(Y|X)

This measures how much what was received reduces uncertainty about
what was transmitted.

Examples (See MacKay §9.5)

e For noiseless channel H(X|Y) =0so I(X;Y) = H(X).
If px = (0.9,0.1) then /(X; Y) = 0.47 bits.

@ For binary symmetric channel with f = 0.15 and px as above we have
H(Y)=10.76 and H(Y|X) = 0.61 so /(X; Y) = 0.15 bits

@ For Z channel with f = 0.15 and same px we have H(Y) = 0.42,
H(Y|X) = 0.061 so /(X; Y) = 0.36 bits
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Channel Capacity

A key quantity when using a channel is the mutual information between its
inputs X and outputs Y:

I(X: Y) = H(X) — H(X|Y) = H(Y) = H(Y|X)

This measures how much what was received reduces uncertainty about
what was transmitted.

Examples (See MacKay §9.5)

e For noiseless channel H(X|Y) =0so I(X;Y) = H(X).
If px = (0.9,0.1) then /(X; Y) = 0.47 bits.

@ For binary symmetric channel with f = 0.15 and px as above we have
H(Y)=10.76 and H(Y|X) = 0.61 so /(X; Y) = 0.15 bits

@ For Z channel with f = 0.15 and same px we have H(Y) = 0.42,
H(Y|X) =0.061 so /(X;Y) = 0.36 bits

So, intuitively, the reliability is “noiseless > Z > symmetric”
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Channel Capacity

The mutual information measure for a channel depends on the choice of
input distribution px. If H(X) is small then /(X; Y) < H(X) is small.
The largest possible reduction in uncertainty achievable across a channel is
its capacity.

Channel Capacity

The capacity C of a channel Q is the largest mutual information between
its input and output for any choice of input ensemble. That is,

C =maxI(X;Y)
Px

Example: For binary symmetric channel (f = .15), /(X; Y) is maximal for
px = (0.5,0.5), so C = 0.39 bits (cf. /(X;Y)=0.15 for px = (0.9,0.1))
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Block Codes

We now formalise codes that make repeated use of a noisy channel to
communicate a predefined set of 5 messages.

Each s € {1,2,...,S} is paired with a unique block of symbols x € XN,

(N, K) Block Code

Given a channel @ with inputs X and outputs ), an integer N > 0, and
K >0, an (N, K) Block Code for @ is a list of S = 2K codewords

S = {x(l), x®_ ,x(2K)}

where each x(®) € XN consists of N symbols from X. The rate of such a
block code is K/N bits per channel use.

Examples (for Binary Symmetric Channel Q)

e A (1,1) block code: S ={0,1} — Rate: 1

e A (3,2) block code: S = {000,001,100,111} — Rate: 2
o A (3,log, 3) block code: S = {001,010,100} — Rate: &3 ~ 0.53
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Decoding Block Codes

An (N, K) block code sends each message s € {1,2,...,2X} over a
channel @ as x° € XN and the block y € YV is received. How does the
receiver determine which s was transmitted?

Block Decoder

A decoder for a (N, K) block code is a mapping that associates each
y € YNV with an 5 € {1,2,...,2K}.

Example The (2,1) block code S = {000,111} and majority vote decoder
d:{0,1}3 — {1,2} defined by

d(000) = d(001) = d(010) = d(100) = 1
d(111) = d(110) = d(101) = d(011) = 2
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Reliability

Want an encoder/decoder pair to reliably send a messages over channel Q.

Encoder Q Decoder

Sl-n P> X >y—>s

out

Probability of (Block) Error
Given a channel Q the probability of (block) error for a code is

pPB = P(sout # Sin) = Z ’D(SOUf # si”|si”)P(si”)

Sin
and its maximum probability of (block) error is

PBM = n;ax P(Sout # Sinlsin)

As P(sout 7 sin|sin) < pam for all sj, we get pg < > o pemP(sin) = Pem
and so if pgy — 0 then pg — 0.
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Achievable Rates

If it is possible to construct codes with rate R for a channel that can have
arbitrarily small error the rate R is said to be achievable. Formally:

Achievable Rate

A rate R over a channel Q is said to be achievable if, for any € > 0 there
is a (N, K) block code and decoder such that its rate K/N > R and its
maximum probability of block error satisfies

pem = max P(Sout 7 Sinsin) < ¢
m

The main “trick” to minimising pgy is to construct a (N, K) block code
with (almost) non-confusable codes. That is, a code such that the set of
y that each x(*) are sent to by Q have low probability intersection.
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.

Example:
@ We saw that BSC @ with f = 0.15 has capacity C = 0.39 bits.
@ Suppose we want error less than ¢ = 0.05 and rate R > 0.25

@ The NCCT tells us there should be, for N large enough, an (N, K)
code with K/N > 0.25

Indeed, we showed the code & = {000, 111} with majority vote decoder
has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Brief)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.

Example:
@ We saw that BSC @ with f = 0.15 has capacity C = 0.39 bits.
@ Suppose we want error less than ¢ = 0.05 and rate R > 0.25

@ The NCCT tells us there should be, for N large enough, an (N, K)
code with K/N > 0.25

Indeed, we showed the code S = {000, 111} with majority vote decoder
has probability of error 0.028 < 0.05 for Q and rate 1/3 > 0.25.

@ For N = 3 there is a (3,1) code meeting the requirements.
@ But there is no code with arbitrarily small € and rate 1/2 > 0.39 = C.
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Inequalities
@ Probabilistic: Markov, Chebyshev, Law of Large Numbers
@ Information Theoretic: Gibbs, “Data doesn't hurt”, Data-Processing
> (Aside: All driven by concavity of entropy)

Main Results
@ Source Coding Theorems
» For Lossy Block Coding: Reliability/compression trade-off is
asymptotically controlled by entropy of source.
> For Lossless Variable-Length Coding: Can always find code with
expected size within 1 bit of entropy of source
@ Noisy-Channel Coding Theorem
» The trade-off between reliability and rate of communication over a
noisy channel is determined by capacity of channel (i.e., maxmimum
mutual information between input and output).
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