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Abstract

Mixability is a property of a loss which characterizes when constant regret is possible in the game
of prediction with expert advice. We show that a key property of mixability generalizes, and the
exp and log operations present in the usual theory are not as special as one might have thought. In
doing so we introduce a more general notion of ®-mixability where ® is a general entropy (i.e.,
any convex function on probabilities). We show how a property shared by the convex dual of any
such entropy yields a natural algorithm (the minimizer of a regret bound) which, analogous to
the classical Aggregating Algorithm, is guaranteed a constant regret when used with ®-mixable
losses. We characterize which ® have non-trivial ®-mixable losses and relate ®-mixability and its
associated Aggregating Algorithm to potential-based methods, a Blackwell-like condition, mirror
descent, and risk measures from finance. We also define a notion of “dominance” between different
entropies in terms of bounds they guarantee and conjecture that classical mixability gives optimal
bounds, for which we provide some supporting empirical evidence.

Keywords: online learning, prediction with expert advice, convex analysis, aggregating algorithm

1. Introduction

The combination or aggregation of predictions is central to machine learning. Traditional Bayesian
updating can be viewed as a particular way of aggregating information that takes account of prior
information. This is known to be special case of more general and decision theoretic “aggregating
algorithms” (Vovk, 2001) which take into account loss functions when evaulating predictions. As
recent work by Gravin et al. (2014) shows, there are still a number of open questions about the
optimal algorithms for the aggregation of predictions from a finite number of experts. In this paper,
we attempt to address these by refining and generalizing the notion of “mixability” (Vovk, 1990,
1998), which plays a central role in the theory of prediction with expert advice, characterizing the
optimal learning rates in the asymptotic case of infinitely many experts.

We show there is an implicit design variable in mixability that to date has not been fully ex-
ploited. The aggregating algorithm makes use of a divergence between the current distribution and a
prior which serves as a regularizer. In particular the aggregating algorithm uses the KL-divergence.
We consider the general setting of an arbitrary loss and an arbitrary regularizer (in the form of a
Bregman divergence) and show that we recover the core technical result of traditional mixability: if
a loss is mixable in our generalized sense then there is a generalized aggregating algorithm which
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can be guaranteed to have constant regret. The generalized aggregating algorithm is developed by
optimizing the bound that defines our new notion of mixability.

Our approach relies heavily on the titular dual representations of convex “generalized entropy”
functions defined for distributions over a fixed number of experts. By doing so we gain new insight
into why the original mixability argument works and a broader understanding of when constant re-
gret guarantees are possible. In addition, we also make a number of interesting connections between
mixability, mirror descent algorithms, and notions of risk from mathematical finance.

1.1. Mixability in Prediction With Expert Advice Games

A prediction with expert advice game is defined by its loss, a collection of experts that the player
must compete against, and a fixed number of rounds. Each round the experts reveal their predictions
to the player and then the player makes a prediction. An observation is then revealed to the experts
and the player and all receive a penalty determined by the loss. The aim of the player is to keep its
total loss close to that of the best expert once all the rounds have completed. The difference between
the total loss of the player and the total loss of the best expert is called the regret and is typically
the focus of the analysis of this style of game. In particular, we are interested in when the regret is
constant, that is, independent of the number of rounds played.

More formally, let X denote a set of possible observations and let A denote a set of actions or
predictions the experts and player can perform. A loss £ : A — RX assigns the penalty ,(a) to
predicting a € A when 2 € X is observed. The finite set of experts is denoted' © and the set of
distributions © is denoted Ag. In each round ¢t = 1,...,T, each expert # € © makes a prediction
al € A. These are revealed to the player who makes a prediction a' € A. Once observation
z' € X is revealed the experts receive loss £,:(a) and the player receives loss £,:(a’). The aim
of the player is to minimize its regret Regret(T) := LT — ming L] where LT := Zthl O (at)
and L} = thl C,(aly). We will say the game has constant regret if there exists a player who
can always make predictions that guarantee Regret(7') < Ry g for all T" and all expert predictions
{az}thl where Ry g is a constant that may depend on ¢ and ©.

Vovk (1990, 1998) showed that if the loss for a game satisfies a condition called mixability then
a player making predictions using the aggregating algorithm (AA) will achieve constant regret.

Definition 1 (Mixability and the Aggregating Algorithm) Givenn > 0, a loss { : A — RX is
n-mixable if, for all expert predictions ag € A, 0 € O and all mixture distributions . € Ag over
experts there exists a prediction & € A such that for all outcomes x € X,

lo(a) < —n~"log y _exp (—nlx(ag)) po. (1)
0O

The aggregating algorithm starts with a mixture u° € Ag over experts. In round t, experts predict aé
and the player predicts the &' € A guaranteed by the n-mixability of £ so that (1) holds for p = p'="
and ag = ag. Upon observing ', the mixture ;i € Ag is set so that pfy o uz_lefnzzt(“é).

We note that our definition of mixability differs from the original in (Vovk, 1998) and instead
follows the presentation of mixability in (Cesa-Bianchi and Lugosi, 2006). In particular, the orig-
inal definition does not assume a fixed number of experts but instead quantifies (1) over all simple

1. We use this notation to emphasize two points: 1) that expert predictions are parametric models p(z|0) in the case of
Bayesian updating; and 2) many of our results generalize to infinite experts (cf. (Vovk, 1998, App. A)).
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distributions (i.e., with finite support) over actions, not experts. This departure from the original
definition means that our definition of mixability depends on both the loss and the number of ex-
perts rather than the loss alone. Crucially, this distinction allows us to formulate our generalization
using generalized entropies and focuses attention on understanding bounds in the fixed, finite expert
case.

As discussed in (Cesa-Bianchi and Lugosi, 2006, §3.3), mixability can be seen as a weakening
of exp-concavity that requires just enough of the loss to ensure constant regret.

Theorem 2 (Mixability implies constant regret Vovk (1998)) If a loss ¢ is n-mixable then the
aggregating algorithm will achieve Regret(T) < n~'log |0

A natural question is whether there are other, similar algorithms which also enjoy constant regret
guarantees or whether the specific definition in (1) is somehow special.

1.2. Contributions

The key contributions of this paper are as follows. We provide a new general definition (Defini-
tion 4) of mixability and an induced generalized aggregating algorithm (Definition 7) and show
(Theorem 9) that prediction with expert advice using a ®-mixable loss and the associated gener-
alized aggregating algorithm is guaranteed to have constant regret. The proof illustrates that the
particular form of (1) for the classical aggregating algorithm is not what guarantees constant regret,
but rather it is a translation invariant property of the convex conjugate of an entropy ¢ defined on a
probability simplex that is the crucial property.

We characterize (Theorem 6) for which entropies ® there exist ®-mixable losses via the Legen-
dre property. We show that ®-mixability of a loss can be expressed directly in terms of the Bayes
risk associated with the loss (Definition 13 and Theorem 15), reflecting the situation that holds
for classical mixability (van Erven et al., 2012). As part of this analysis we show that multiclass
proper losses are quasi-convex (Lemma 14) which, to the best of our knowledge appears to be a
new result. We also show (Theorem 11) how entropic duals relate to the potential-based analysis
of Cesa-Bianchi and Lugosi (2003).

1.3. Related Work

The starting point for mixability and the aggregating algorithm is the work of Vovk (1998, 1990).
The general setting of prediction with expert advice is summarized in (Cesa-Bianchi and Lugosi,
2006, Chapters 2 and 3). There one can find a range of results that study different aggregation
schemes and different assumptions on the losses (exp-concave, mixable). Variants of the aggre-
gating algorithm have been studied for classically mixable losses, with a trade-off between tight-
ness of the bound (in a constant factor) and the computational complexity (Kivinen and Warmuth,
1999). Weakly mixable losses are a generalization of mixable losses. They have been studied by
Kalnishkan and Vyugin (2008) who show that there exists a variant of the aggregating algorithm
that achieves regret C/T for some constant C'. Vovk (2001, in §2.2) makes the observation that
his Aggregating Algorithm reduces to Bayesian mixtures in the case of the log loss game. See also
the discussion by Cesa-Bianchi and Lugosi (2006, page 330) relating certain aggregation schemes
to Bayesian updating.

The general form of updating we propose is similar to that considered by Kivinen and Warmuth
(1997, 1999) who consider finding a vector w minimizing d(w, s) + nL(y;, w - x;) where s is
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some starting vector, (x, ;) is the instance/label observation at round ¢ and L is a loss. The key
difference between their formulation and ours is that our loss term is (in their notation) w- L(y;, x¢) —
i.e., the linear combination of the losses of the x; at y; and not the loss of their inner product. Online
methods of density estimation for exponential families are discussed by Azoury and Warmuth (2001,
§3) where the authors compare the online and offline updates of the same sequence and make heavy
use of the relationship between the KL divergence between members of an exponential family and
an associated Bregman divergence between the parameters of those members. The analysis of
mirror descent by Beck and Teboulle (2003) shows that it achieves constant regret when the entropic
regularizer is used. However, there is no consideration regarding whether similar results extend to
other entropies defined on the simplex.

The idea of the more general regularization and updates is hardly new and connections between
entropic duality and more general potential-based methods (Cesa-Bianchi and Lugosi, 2006, 2003)
are readily made by choosing the potential to be an entropic dual, as discussed in §3.2. Interestingly,
such potentials are already well studied in the mathematical finance literature where they are called
convex risk measures (Follmer and Schied, 2004), as well as in the literature on prediction markets
where they are called cost functions (Abernethy et al., 2013). Thus, our work can be seen as extend-
ing existing connections between online learning and predication market mechanisms (Frongillo
et al., 2012; Chen and Vaughan, 2010), as discussed in §3.3.

The key novelty is our generalized notion of mixability, the name of which is justified by the
key new technical result (Theorem 9 — a constant regret bound assuming the general mixability
condition achieved via a generalized algorithm that is exactly the mirror descent algorithm (i.e.,
SANP) of Beck and Teboulle (2003) for the Bregman divergence generated by ®. Crucially, our
result depends on some properties of the conjugates of functions defined over affine spaces (e.g.,
probabilities) that do not hold for potential functions more generally. By separating the convex
geometry from the other special properties of classical entropy and mixability we hope to gain a
deeper understanding of which losses admit fast rates of learning.

2. Generalized Mixability and Aggregation via Convex Duality

In this section we introduce our generalizations of mixability and the aggregating algorithm. One
feature of our approach is the way the generalized aggregating algorithm falls out of the definition of
generalized mixability as the minimizer of the mixability bound. Our approach relies on concepts
and results from convex analysis. Terms not defined below can be found in a reference such as
Hiriart-Urruty and Lemaréchal (2001).

2.1. Definitions and Notation

A function ® : Ag — R is called an entropy (on Ag) if it is proper (i.e., —0o < & # +00),
convex?, and lower semi-continuous. For n > 0, we write @, := n~1®. In the following example
and elsewhere we use 1 to denote the vector 1y = 1 forall # € © and |©|711 € Ag to denote the
uniform distribution over ©. The distribution with unit mass on § € © will be denoted Jy.

Example 1 (Entropies) The (negative) Shannon entropy H (p) = ), pglog pg, the quadratic
entropy Q) = > o(ug — [©|711)2; the Tsallis entropies So(p) := a1 (3, ugtt — 1) for

2. While the information theoretic notion of Shannon entropy as a measure of uncertainty is concave, it is convenient
for us to work with convex functions on the simplex which can be thought of as certainty measures.
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a € (=1,0) U (0, 00); and the Rényi entropies Ro (1) = o™ (log 3", ugth), for a € (—1,0). We
note that both Tsallis and Rényi entropies limit to Shannon entropy o — 0, and that Rényi entropy
is convex for the given range (cf. Maszczyk and Duch (2008); van Erven and Harremoés (2014)).

Let (1, v) denote a bilinear functional or duality between 11 € Ag and v € A, where Ag and Ay
form a dual pair’. The Bregman divergence associated with a suitably differentiable entropy ® on
Ag is given by

Do (i, ') = ®(u) = ®(p') — (p — ', VO(i')) 2

forall u € Ag and i/ € relint(Ag), the relative interior of Ag. Given an entropy ¢ : Ag — R,
we define its entropic dual to be ®*(v) := sup,eca, (4, v) — ®(u) where v € Ag. Note that
one could also write the supremum over some larger space by setting ®(u) = +oo for u ¢ Ag
so that ®* is just the usual convex dual (cf. Hiriart-Urruty and Lemaréchal (2001)). Thus, all of
the standard results about convex duality also hold for entropic duals provided some care is taken
with the domain of definition (Frongillo, 2013). Importantly, we note that although the unrestricted
convex dual of H is v +— Y, exp(vy — 1) its entropic dual is H*(v) = log >, exp(vp).

For differentiable @, it is known (Hiriart-Urruty and Lemaréchal, 2001) that the supremum
defining ®* is attained at 4 = V®*(v). That is,

O*(v) = (VO*(v),v) — ®(VP*(v)). 3)

A similar result holds for ® by applying this result to ®* and using & = (®*)*. We will make
repeated use of the following easily established properties of affinely restricted convex conjugation,
of which entropic duality (i.e., conjugation of convex functions on the simplex) is a special case.
This is closely related to an observation by (Hiriart-Urruty and Lemaréchal, 2001, Prop. E.1.3.2),
however we include a statement of the general result and proof of this result in Appendix A for
completeness.

Lemma 3 [f ® is an entropy over Ag then 1) for all n > 0, &} (v) = 0~ ®*(nv); and 2) the
entropic dual ®* is translation invariant — i.e., for allv € A§ and a € R, ®*(v+al) = ®*(v) + «
and hence for differentiable ®*, VO* (v + al) = V&*(v).

The translation invariance of ®* is central to our analysis. It is what ensures our ®-mixability
inequality (4) “telescopes” when it is summed. The proof of the original mixability result (Theo-
rem 2) uses a similar telescoping argument that works due to the interaction of log and exp terms
in Definition 1. Our results show that this telescoping property is not due to any special properties
of log and exp, but rather because of the translation invariance of the entropic dual of Shannon en-
tropy, H. The remainder of our analysis generalizes that of the original work on mixability precisely
because this property holds for the dual of any entropy.

Representation results from mathematical finance show that entropic duals are closely related to
convex monetary risk measures (Follmer and Schied, 2004), where translation invariance is called
cash invariance. In particular, the function p(v) = ®*(—wv) for an entropy ® (a.k.a. a penalty
function) is convex risk measure and is shown to be monotonic (i.e., v < v’ pointwise implies
p(v) > p(v')). The risk measure corresponding to the Shannon entropy is known as entropic risk.

3. In the case of finite © the duality is just the standard inner product. For infinite Ag, Ag is a space of random
variables over ©. See (Aliprantis and Border, 2007, §5.14) for details.
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Furthermore, it can be shown that any measure of risk with these properties (convexity, mono-
tonicity, and cash invariance) must be the convex conjugate of what we call an entropy (Féllmer and
Schied, 2004, Theorem 4.15). We note these results hold for general spaces of probability measures,
which is why our presentation does not always assume a finite set of experts ©.

2.2. ®-Mixability and the Generalized Aggregating Algorithm

For convenience, we will use A € A® to denote the collection of expert predictions and 4y € A
to denote the prediction of expert f. Abusing notation slightly, we will write £(A) € RX*® for the
matrix of loss values [(;(A4g)].9, and £;(A) = [£,(Ag)]s € RO for the vector of losses for each
expert 6 on outcome z. In order to help distinguish between points, functions, distributions, etc.
associated with outcomes and those associated with experts we use Roman symbols (e.g., x, A, p)
for the former and Greek (e.g., 6, ®, u) for the latter.

Definition 4 (®-mixability) Let ® be an entropy on Ag. A loss £ : A — RX is ®-mixable if for
all A € A°, all u € Ag, there exists an G € A such that for all x € X

(@) < Mixg, (A, ) i= inf (4 La(A)) + Do (i, ). €
(]

The term on the right-hand side of (4) has some intuitive appeal. Since (1, A) = Eg, [(2(Ap)]
(i.e., the expected loss of an expert drawn at random according to ;') we can view the optimization as
a trade off between finding a mixture .’ that tracks the expert with the smallest loss upon observing
outcome x and keeping 4 close to ji, as measured by Dg. In the special case when ® is Shannon
entropy, ¢ is log loss, and expert predictions Ag € A x are distributions over X such an optimization
is equivalent to Bayesian updating (Williams, 1980; DeSantis et al., 1988).

To see that ®-mixability is indeed a generalization of Definition 1, we make use of an alternative
form for the right-hand side of the bound in the ®-mixability definition that “hides” the infimum
inside ®*. As shown in Appendix A this is a straight-forward consequence of (3).

Lemma 5 Forall A € Aand i € Ag, the mixability bound satisfies
Mix?, (4, 1) = O (VD (1)) — B (V(1) — £,(A)). )
Hence, for ® = n~'H, Mixzx(A, p) = —n~tlog >, exp(—nly(Ap)) o, the bound in Definition 1.

Later, we will use Mix¥ (4, 1) to denote the vector in R¥ with components Mix}ljgc (A, p),z € X.

2.3. On the existence of ®-mixable losses

A natural question at this point is do ®-mixable losses exist for entropies other than Shannon en-
tropy? If so, which ® admit ®-mixable losses? The next theorem answers both these questions,
showing that the existence of “non-trivial” ®-mixable losses is intimately related to the behaviour
of an entropy’s gradient at the simplex’s boundary. Specifically, we will say an entropy ® is Legen-
dre * if: a) ® is differentiable and strictly convex in relint(Ag); and b) || V® ()| — oo as u —

4. We note that our definition is slightly different (but similar in spirit) to the standard definition of Legendre function
(cf. (Rockafellar, 1997)) since it requires a function f be strictly convex on the inferior of dom(f) and that the
interior of dom( f) be non-empty, but the interior is empty in the case of dom(f) = Ae.
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for any s, on the boundary of Ag. We call a loss ¢ nontrivial if there exist z*, z’ and a*, a’ such
that

a’ € argmin{l,«(a) : {p(a) = ianL‘EI/(a)} and iniﬁx*(a) = Uy (a*) < Ly (d) . (6)
ac ac

Intuitively, this means that there exist distinct actions which are optimal for different outcomes
x*, x’. In particular, among all optimum actions for x’, a’ has the lowest loss on x*. This rules out
constant losses —i.e., /(a) = k € RX forall a € A - which are easily> seen to be ®-mixable for any
®. For technical reasons we will further restrict our attention to curved losses by which we mean
those losses with strictly concave Bayes risks — i.e., the function L(p) := inf,c 4 Epp [l (a)] is
strictly concave — though we conjecture that the following also holds for non-curved losses.

Theorem 6 Non-trivial, curved ®-mixable losses exist if and only if the entropy P is Legendre.

The proof is in Appendix A.4. We can apply this result to Example 1 and deduce that there are
no (Q-mixable losses. Also, since it is easy to show the derivatives V.S, and V R,, are unbounded
for « € (—1,0), the entropies S, and R, are Legendre. Thus there exist S,- and R,-mixable
losses when o € (—1,0). Due to this result we will henceforth restrict our attention to Legendre
entropies.

We now define a generalization of the Aggregating Algorithm of Definition 1 that very natu-
rally relates to our definition of ®-mixability: starting with some initial distribution over experts,
the algorithm repeatedly incorporates information about the experts’ performances by finding the
minimizer ' in (4).

Definition 7 (Generalized Aggregating Algorithm) The algorithm begins with a mixture distri-
bution 1i° € Ag over experts. On round t, after receiving expert predictions At € A®, the general-
ized aggregating algorithm (GAA) predicts any a € A such that {,(a) < Mixﬁx(At, pt=h) for all x
which is guaranteed to exist by the ®-mixability of {. After observing x* € X, the GAA updates the

mixture it =1 € Ag by setting
p' = argmin (i, (i (A")) + Do (p', ). (7

Wele

We now show that this updating process simply aggregates the per-expert losses £, (A) in the
dual space Ag with V®(ul) as the starting point. The GAA is therefore exactly the Subgradient
algorithm with nonlinear projections (SANP) for the Bregman divergence Dg (and a fixed step size

of 1) which is known to be equivalent to mirror descent (Beck and Teboulle, 2003) using updates
based on V&*.

Lemma 8 The GAA updates pi* in (7) satisfy V®(ut) = VO(ut=1) — £, (A?) for all t and so

T
VO(u") = V(') =Yl (A"), ®)
t=1

The proof is given in Appendix A. Finally, to see that the above is indeed a generalization of
the Aggregating Algorithm from Definition 1 we need only apply Lemma 8 and observe that for
® =n"tH,V®(u) = n~t(log(p) + 1) and so log p! = log =t — nl,:(A?). Exponentiating this
vector equality element-wise gives pu oc ub ! exp(—nly: (A5)).

5. The inequality in (4) reduces to 0 < inf,,s Dg (p', i) which is true for all Bregman divergences.
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3. Properties of ®-mixability

In this section we establish a number of key properties for ®-mixability, the most important of these
being that ®-mixability implies constant regret.

3.1. ®-mixability Implies Constant Regret

Theorem 9 If ¢ : A — RX is ®-mixable then there is a family of strategies parameterized by |1 €
Ag which, for any sequence of observations x*,...,x7 € X and sequence of expert predictions
Al AT € A®, plays a sequence @', . .., aT € A such that for all § € ©

T

T
Dy (@) < £ (Ah) + Do (g, ). )

t=1 t=1

The proof is in Appendix A.1 and is a straight-forward consequence of Lemma 5 and the trans-
lation invariance of ®*. The standard notion of mixability is recovered when & = %H forn > 0 and
H the Shannon entropy on Ag. In this case, Theorem 2 is obtained as a corollary for u = |©]~!1,
the uniform distribution over ©. A compelling feature of our result is that it gives a natural inter-
pretation of the constant Dg (dg, 1) in the regret bound: if 1 is the initial guess as to which expert is
best before the game starts, the “price” that is paid by the player is exactly how far (as measured by
Dg) the initial guess was from the distribution that places all its mass on the best expert. Kivinen
and Warmuth (1999) give a similar interpretation to the regret bound for the special case of ® being
Shannon entropy in their Theorem 3.

The following example computes mixability bounds for the alternative entropies introduced in
§2.1. They will be discussed again in §4.2 below.

Example 2 Consider games with K = |©| experts and the uniform distribution ; = K1 € Ae.
For the (negative) Shannon entropy, the regret bound from Theorem 9 is Dy (09, 1) = log K. For
the family of Tsallis entropies the regret bound given by Dg, (39, K1) = a~1(1 — K~%). For the
family of Rényi entropies the regret bound becomes D, (59, K1) = log K.

A second, easily established result concerns the mixability of scaled entropies. The proof follow
from the observation that in (4) the only term in the definition of Mixfg involving nis Dy, = %Dq;.
The quantification over A, u, G and x in the original definition has been translated into infima and
suprema.

Lemma 10 The function M (n) := inf 4 , sup, inf, , Mix‘;;(A, w) — £y (a) is non-increasing.

This implies that there is a well-defined maximal 1 > 0 for which a given loss £ is ®,-mixable
since ®,-mixability is equivalent to M (n) > 0. We call this maximal ) the ®-mixability constant
for £ and denote it (¢, ®) := sup{n > 0 : M(n) > 0}. This constant is central to the discussion in
Section 4.3 below.

3.2. Relationship to Potential-Based Methods and the Blackwell Condition

Much of the analysis of online learning in Chapters 2, 3, and 11 of the book by Cesa-Bianchi and
Lugosi (2006) is based on potential functions (Cesa-Bianchi and Lugosi, 2003) and their associated
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Bregman divergences. As shown below, when their potentials are entropic duals, we obtain some
connections with their analysis. In particular, we will see that if a loss satisfies ®-mixability then
the Blackwell condition for the potential ¥ = ®* is satisfied.

A loss function £ satisfies the Blackwell condition (cf. (Cesa-Bianchi and Lugosi, 2003)) for a
convex potential ¥ : R¥X — R if for all R € RX and A € A® there exists some & € A such that
sup,ex (VU(R),r;) < 0, where 7, = {,(a)l — £,(A). We now have the following result. The
proof is in Section A.2.

Theorem 11 Let ® : Ax — R be an entropy with entropic dual V = ®*. If { is a loss function
that is ®-mixable, then { satisfies the Blackwell condition for the convex potential function W.

3.3. ®-Mixability of Proper Losses and Their Bayes Risks

Entropies are known to be closely related to the Bayes risk of what are called proper losses or proper
scoring rules (Dawid, 2007; Gneiting and Raftery, 2007). Here, the predictions are distributions over
outcomes, i.e., points in A x. To highlight this we will use p, p and P instead of a, @ and A to denote
actions. If aloss £ : Ax — R is used to assign a penalty £, (p) to a prediction p upon outcome
it is said to be proper if its expected value under x ~ p is minimized by predicting p = p. That is,
forall p,p € Ax,

Eonp [(D)] = (9, £(B)) > (p, £(p)) = —F"(p),

where —F* is the Bayes risk of ¢ and is necessarily concave (van Erven et al., 2012), thus making
F': Ax — R convex and thus an entropy. The correspondence also goes the other way: given
any convex function F' : Ax — R we can construct a unique proper loss (Vernet et al., 2011). The
following representation can be traced back to Savage (1971) but is expressed here using convex
duality.

Lemma 12 IfF : Ax — R is a differentiable entropy then the loss t¥ : Ax — R defined by
(7 (p) := =V F(p) + F*(VF(p))L = =VF(p) + ((VE(p),p) — F(p)) 1 (10)
is proper.

By way of example, it is straight-forward to show that the proper loss associated with the nega-
tive Shannon entropy ® = H is the log loss, that is, £ (1) := — (log 11(6)) yco-

This connection between losses and entropies lets us define the ®-mixability of a proper loss
strictly in terms of its associated entropy. This is similar in spirit to the result by van Erven et al.
(2012) which shows that the original mixability (for & = H) can be expressed in terms of the
relative curvature of Shannon entropy and the loss’s Bayes risk. We use the following definition to
explore the optimality of Shannon mixability in Section 4.3 below.

Definition 13 An entropy F' : Ax — R is ®-mixable if

sup F* (= Mixfs (P.j0)) = sup F* ({9 (V8() — ££(P))}, = @' (Vo)1) <0 (D)

where (¥ is as in Lemma 12 and the supremum is over expert predictions P € Ag)( and mixtures
over experts |1 € Ag.
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Although this definition appears complicated due to the handling of vectors in R¥ and R®,
it has a natural interpretation in terms of risk measures from mathematical finance (Follmer and
Schied, 2004). Given some convex function o« : Ax — R, its associated risk measure is its dual
p(v) 1= sup,ea . (P, —v) — a(p) = a*(—v) where v is a position meaning v, is some monetary
value associated with outcome = occurring. Due to its translation invariance, the quantity p(v) is
often interpreted as the amount of “cash” (i.e., outcome independent value) an agent would ask for
to take on the uncertain position v. Observe that the risk p!” for when a = F satisfies p’ o £f' =0
so that £F'(p) is always a p!’-risk free position. If we now interpret * = V® (1) as a position over
outcomes in © and ®* as a risk for v = @ the term {®*(p* — Ef(P))}x — ®*(p*)1 can be seen
as the change in p® risk when shifting position p* to u* — ££'(P) for each possible outcome .
Thus, the mixability condition in (11) can be viewed as a requirement that a p’ -risk free change in
positions over © always be p®-risk free.

The following theorem shows that the entropic version of ®-mixability Definition 13 is equiv-
alent to the loss version in Definition 4 in the case of proper losses. Its proof can be found in
Appendix A.3 and relies on Sion’s theorem and the facts that proper losses are quasi-convex (i.e.,
VA € [0,1], f(Az + (1 — AN)y) < max{f(z), f(y)}). This latter fact appears to be new so we state
it here as a separate lemma and prove it in Appendix A.

Lemma 14 If(: Ax — RX is proper then p' — (p, £(p')) is quasi-convex for all p € Ax.

Theorem 15 If ¢ : Ax — RX is proper and has Bayes risk —F then F is an entropy and ¢ is
®-mixable if and only if F' is ®-mixable.

The entropic form of mixability in (11) shares some similarities with expressions for the clas-
sical mixability constants given by Haussler et al. (1998) for binary outcome games and by van
Erven et al. (2012) for general games. Our expression for the mixability is more general than the
previous two being both for binary and non-binary outcomes and for general entropies. Computing
the optimizing argument is also more efficient than in (van Erven et al., 2012) since, for non-binary
outcomes, their approach requires inverting a Hessian matrix at each point in the optimization.

4. Conclusions and Open Questions

The main purpose of this work was to shed new light on mixability by casting it within the broader
notion of ®-mixability. We showed that the constant regret bounds enjoyed by mixable losses are
due to the translation invariance of entropic duals, and so are also enjoyed by any ®-mixable loss.
Our definitions and results allow us to now ask precise questions about alternative entropies and the
optimality of their associated aggregating algorithms.

4.1. Are All Entropies ‘“Equivalent”?

Since Theorem 6 shows the existence of ®-mixable losses for Legendre ®, we can ask about the
relationship between the sets of losses that are mixable for different choices of ®. For example, are
there losses that are H-mixable but not S,-mixable, or vice-versa? We conjecture that essentially
all entropies ® have the same ®-mixable losses up to a scaling factor.

Conjecture 16 Let ® be an entropy on Ag and ¢ be a ®-mixable loss. If V is a Legendre entropy
on Ag then there exists an 1 > 0 such that € is W, -mixable.

10
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Some intuition for this conjecture is derived from observing that Mixz’; =yt Mix%’& ., and that
as 7 — 0 the function 7¢ behaves like a constant loss and will therefore be mixable. This means
that scaling up Mixg’m by n~! should make it larger than Mixg?x. However, some subtlety arises in
ensuring that this dominance occurs uniformly. The discussion in Appendix B gives an example of

two entropies where this scaling trick does not work.

4.2. Asymptotic Behaviour

There is a lower bound due to Vovk (1998) for general losses ¢ which shows that if one is allowed
to vary the number of rounds 7" and the number of experts K = |©|, then no regret bound can be
better than the optimal regret bound obtained by Shannon mixability. Specifically, for a fixed loss
¢ with optimal Shannon mixability constant 7, suppose that for some 1’ > 7, we have a regret
bound of the form (log K) /1’ as well as some strategy L for the learner that supposedly satisfies
this regret bound. Vovk’s lower bound shows, for this 7’ and L, that there exists an instantiation
of the prediction with expert advice game with 7" large enough and K roughly exponential in 7°
(and both are still finite) for which the alleged regret bound will fail to hold at the end of the game
with non-zero probability. The regime in which Vovk’s lower bound holds suggests that the best
achievable regret with respect to the number of experts grows as log K. Indeed, there is a lower
bound for general losses ¢ that shows the regret of the best possible algorithm on games using ¢
must grow like (2(log K') (Haussler et al., 1998).

The above lower bound arguments apply when the number of experts is large (i.e., exponential
in the number of rounds) or if we consider the dynamics of the regret bound as K grows. This
leaves open the question of the best possible regret bound for moderate and possibly fixed K which
we formally state in the next section. This question serves as a strong motivation for the study of
generalized mixability considered here. Note also that the above lower bounds are consistent with
the fact that there cannot be non-trivial, ®-mixable losses for non-Legendre ® (e.g., the quadratic
entropy () since the growth of the regret bound as a function of K (cf. Example 2) is less than
log K and hence violates the above lower bounds.

4.3. Is There An “Optimal” Entropy?

Since we believe that $-mixability for Legendre ® yield the same set of losses, we can ask whether,
for a fixed loss ¢, some ® give better regret bounds than others. These bounds depend jointly on the
largest 7) such that ¢ is ®,-mixable and the value of Dg(dp, 11). We can define the optimal regret
bound one can achieve for a particular loss £ using the generalized aggregating algorithm with ®,,
for some n > 0. This allows us to compare entropies on particular losses, and we can say that
an entropy dominates another if its optimal regret bound is better for all losses £. Recalling the
definition of the maximal ®-mixability constant from Lemma 10, we can determine a quantity of
more direct interest: the best regret bound one can obtain using a scaled copy of ®. Recall that if ¢ is
®-mixable, then the best regret bound one can achieve from the generalized aggregating algorithm
is inf, supy Do (g, 1t). We can therefore define the best regret bound for £ on a scaled version of
® to be Ryp = n(¢,®)"tinf, supy D (dg, 1) where n(¢, @) denotes the ®-mixability constant
for £. Then Ry e simply corresponds to the regret bound for the entropy @, s 4). Note a crucial
property of R, ¢, which will be very useful in comparing entropies: R, ¢ = [y for all « > 0.
(This follows from the observation that (¢, a®) = n(¢, ®)/«.) That is, Ry ¢ is independent of the
particular scaling we choose for ®.

11
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We can now use Iy ¢ to define a scale-invariant relation over entropies. Define ® >, W if
Ry < Ryw,and ® >, Vif & >, ¥ for all losses £. In the latter case we say ® dominates V.
By construction, if one entropy dominates another its regret bound is guaranteed to be tighter and
therefore its aggregating algorithm will achieve better worst-case regret. As discussed above, one
natural candidate for a universally dominant entropy is the Shannon entropy.

Conjecture 17 For all choices of ©, the negative Shannon entropy dominates all other entropies.
That is, H >, ® for all © and all convex ® on Ae.

Although we have not been able to prove this conjecture we were able to collect some positive
evidence in the form of Table 1 in Appendix C. Here, we took the entropic form of ®-mixability
from Definition 13 and implemented it as an optimization problem and computed 1 (¢, ®) for F
and ® equal to the entropies introduced in Example 1 for two expert games with two outcomes. The
maximal 7 (and hence the optimal regret bounds) for each pair was found doing a binary search
for the zero-crossing of M (n) from Lemma 10 and then applying the bounds from Example 2.
Although we expected the dominant entropy for each loss ¢/ to be its “matching” entropy (i.e.,
® = F), the table shows the optimal regret bound for every loss was obtained in the column for H.

One interesting feature for these matching entropy and loss cases is that the optimal 7 (shown in
parentheses) is always equal to 1. We conjectured that %" would always be F'-mixable with maximal
n = 1 but found the counterexample described in Appendix B. However, we have not been able to
rule out or prove the following weakenings of that conjecture. We observe that these cannot both be
true due to the counterexample just described.

Conjecture 18 Suppose |X| = |0| so that Ag = Ax and ® : Ag — R an entropy. Then if its
proper loss (% : Ax — RX is ®-mixable, the maximal 1 such that (® is n~'®-mixable is n = 1.

Conjecture 19 If Ag = Ax and ® is an entropy then (® is 7~ ®-mixable for some 1 > 0.

4.4. Future Work

Although Vovk’s original mixability result has the “asymptotic” converse described in §4.2, the
above conjectures highlight our lack of understanding of when fast rates of learning are achievable
in the non-asymptotic regime. As well as resolving these conjectures, we hope to use this work as a
basis for developing necessary conditions for constant regret for a fixed number of experts.

Finally, there have been some recent papers (Steinhardt and Liang, 2014; Orabona et al., 2015)
which introduce extra time-varying updates (“hints”) to the usual online mirror descent algorithms
for sequential prediction to obtain a wider variety of algorithms and bounds. Given that mixability
is already closely related to mirror descent, it would be interesting to see what extra structure and
guarantees entropic duals provide in this setting.
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Appendix A. Proofs

The following lemma is a generalization of Lemma 3.

Lemma 20 Let W be a compact convex set for which the affine hull of relint(W) is an (n — 1)-
dimensional affine subspace of R"™. Without loss of generality, assume that all p € W satisfy
(u,p) = cfor some u € R™\ {0} and some c € R. If ® is a proper, convex, L.s.c functions over W
and ®,, := n~'® denotes a scaled version of ® then 1) for all n > 0 we have Py (v) = n1®*(nv);
and 2) the convex conjugate ®* is translation invariant — i.e., for all v € W* and @ € R we have
O* (v + au) = ®*(v) + ca and hence for differentiable ®* we have V®* (v + au) = VO*(v).

Proof To show 1) we observe that (= '®)*(v) = sup, (v,p) — 7 '®(p) = n~'sup, (nv,p) —
®(p) = n~t®*(nv). For 2), we note that the definition of the dual implies ®*(v + au) =

suppew (s v+ au) — ®(p) = sup,ew (1, v) — ®(u) + ac = @*(v) + ac since (u,u) = ¢
Taking derivatives of both sides gives the final part of the lemma. |

Proof [Proof of Lemma 5] By definition ®*(V® (1) — v) = sup,rea, (1, V(1) — v) — O(1)
and using (3) gives ®*(V®(u)) = (u, V®(u)) — ®(p). Subtracting the former from the latter
gives (1, V() — ®() — [suprene (1, V(1) — v) — ®(u')] which, when rearranged gives
infreng (') — (1) — (VO(), 1" — p) + (1, v) establishing the result.

When & = H —i.e., ® is the (negative) Shannon entropy — we have that V®(u) = log u + 1,
that ®*(v) = log) ,exp(vg), and so V®*(v) = exp(v)/ ) ,exp(vy), where log and exp are
interpreted as acting point-wise on the vector u. By Lemma 3, ®*(V®(u)) = ®*(logp + 1) =
P*(log(p)) + 1 = 1 since ®*(log(ug)) = logdy pme = 0. Similarly, &*(V®(u) — £,(A)) =
P*(log(p) — €2 (A)) + 1 =log >, pg exp(—£;(A)) + 1. Substituting this into Lemma 5 and ap-
plying the second part of Lemma 3 shows that MixZ;lH(A, p) = —n"tlog >, exp(—nli(Ag)),
recovering the right-hand side of the inequality in Definition 1. |

Proof [Proof of Lemma 12] By eq. (3) we have F*(VF (p)) = (p, VF(p)) — F(p), establishing the
equality in the definition of (10) and giving us

(.7 0)) = (.07 (0)) = (0, VEW)) = F&) = (0, VF()))

~ (0. VF ) = Fp) — (0. VF(p)))
= Dr(p,p'),

from which propriety follows. |

Proof [Proof of Lemma 8] We prove a more general result for the case of an entropy over a
compact convex subset of an affine subspace W as in Lemma 3. By considering the Lagrangian
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L(p, ) = {p, £ (A)) + Do (p, ut=1) 4+ a({u, u) — ¢) and setting its derivative to zero we see that
the minimizing ;! must satisfy V®(u?) = VO (u!~1) — £, (A?) — alu where o € R is the dual
variable at step ¢.

For Legendre entropies &, it holds that V®*(V®(p)) = p, as can be seen from the fact that
Vo (Ve(p)) = argmax ey (g, VO(p)) — ®(gq). From the gradient-barrier property, it holds that
the maximum is obtained in the interior of W, and so setting the derivative of the objective to zero
we have V& (p) = V®(q). Since P is strictly convex and differentiable, V® is injective, and hence
the optimal ¢ is equal to p. Thus, V®*(V®(p)) = p. Now, for any p € W the maps V®* and VP
satisfy V&*(V®(p)) = p, so pu! = VO*(VO(u! 1)~ (AY) —alu) = VO* (VO (u! 1) — L, (A?))
by the translation invariance of ®* (Lemma 3). This means the constants o are arbitrary and can be
ignored. Thus, the mixture updates satisfy the relation in the lemma and summing overt = 1,...,T
gives (8). |

Proof [Proof of Lemma 14] Let n = |X]| and fix an arbitrary p € Ax. The function f,(¢q) =
(p,£(q)) is quasi-convex if its a sublevel sets Fii¥ := {q € Ax: (p,£(q)) < a} are convex for
all @ € R. Let g(p) := inf, f,(q) and fix an arbitrary o > g(p) so that F* # . Let Q5 :=
{v € R": (p,v) < a} so FY = {q € Ax:{(q) € Q,}. Denote by hqﬁ = {v: (v,q) = B}
the hyperplane in direction ¢ € Ax with offset 5 € R and by Hqﬁ = {v: (v,q) > B} the
corresponding half-space. Since / is proper, its superprediction set Sy = {\ € R" : 3q € AxVz €
XAy > 2:(q)} (see (Vernet et al., 2011, Prop. 17)) is supported at x = ¢(q) by the hyperplane hg(Q)

and furthermore since Sy is convex, Sy = [ GEAx Hg @,
bt (1))
— gt (v)) _
Vo= ﬂ HYY " = ﬂ Hg(q)
vel(Ax)NQY € ry

(see figure 1). Since V* is the intersection of halfspaces it is convex. Note that a given half-

(@) i5 supported by exactly one hyperplane, namely hZ(q). Thus the set of hyperplanes that

space Hj
support V" is {hg(q) : q € F'} If u € F then there is a hyperplane in direction u that supports V*

and its offset is given by

whereas if u ¢ F then for all 8 € R, K5 does not support V,;* and hence oy« (u) = —oo. Thus we
have shown

(ug W) & (vaa (u) = —oo) .

Observe that oy (u) = —sya(—u) where s¢(u) = sup,ec (u, v) is the support function of a set
C. It is known (Valentine, 1964, Theorem 5.1) that the “domain of definition” of a support function
{u € R": s¢(u) < +oo} for a convex set C'is always convex. Thus G := {u € Ax: oya(u) >
—oo} = {u € R": oya(u) > —oo} N Ay is always convex because it is the intersection of convex
sets. Finally by observing that

Gy ={peAx:lp) e l(Ax)NQy} = F

we have shown that FI? is convex. Since p € Ax and a € R were arbitrary we have thus shown
that f, is quasi-convex for all p € Ax.
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Figure 1: Visualization of construction in proof of Lemma 14.

A.1. Proof of Theorem 9

Proof Applying Lemma 5 to the assumption that ¢ is ®-mixable means that for x4 equal to the
updates y! from Definition 7 and A! equal to the expert predictions at round ¢, there must exist an
at € Ax such that

ly(a') < @ (VO(p'™) = X (V(u'™") — £e(A"))

for all z! € X. Summing these bounds overt = 1,...,T gives

T T
D L) <D (VR(UT) = @ (VE(HTT) — £ (AY))
t=1

t=1
=" (VO (p")) — 2*(VO(u")) (12)
— / t /0
—H}gAf@ It ,;@T(A )> + Do (1, 1) (13)
< <,u’, Zéxt (At)> + Do (i, 1i°) forall i’ € Ag (14)
t=1
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Line (12) above is because V®(u!) = V& (ut~1) — £,:(A') by Lemma 8 and the series telescopes.
Line (13) is obtained by applying (7) from Lemma 8 and matching equations (5) and (4). Setting
1/ = 89 and noting (8, £(A')) = £,+(Al) gives the required result. [ |

A.2. Proof of Theorem 11

By definition, the Blackwell condition is that for all R € RX, A € A®, there exists @ € A such that
forallz € X

(VO*(R),r;) <0. (15)
Since @ is an entropic dual with respect to the simplex, V®*(R) € Ag, and so

<V(I)*(R)a rx) = EGNV(I)*(R) [ea:(d) - éx(AG)]
= lz(a) — Egva«(r) [l(A0)] -

Thus, (15) is equivalent to

lx(a) < Egovaer(r) [lz(A0)]
= Egvae () [l(49)] + Do (VO*(R), VE*(R)).

On the other hand, ¢ is ®-mixable if, for all R € RX, A € A®, there exists @ € A such that for
all z € X:

£a(@) < inf Egy [£:(A9)] + Do (11, VO (R)).
Clearly,

inf Egvy [€o(A9)] + Do, VE* (B))

< Egovar(r) [le(Ag)] + Do (VE*(R), VO*(R)),

and so the ®-mixability condition implies the Blackwell condition.

A.3. Proof of Theorem 15

We first establish a general reformulation of ®-mixability that holds for arbitrary ¢ by converting the
quantifiers in the definition of ®-mixability from Lemma 5 for ¢ into an expression involving infima
and suprema. We then further refine this by assuming ¢ = ¢*" is proper (and thus quasi-convex) and
has Bayes risk F'.

inf sup inf ®*(V®(u)) — ®*(VO(u) — £ (A)) —£E(a) >0

Hooq z
« infsupinf (p, {2"(Ve(n)) - 2"(VE(n) - (L (P)},) — (ptr(P))y >0 (16)
’ a
where the term in braces is a vector in RX. The infimum over z is switched to an infimum over

distributions over p € Ax because the optimization over p will be achieved on the vertices of the
simplex as it is just an average over random variables over X .
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From here on we assume that ¢ = ¢%" is proper and adjust our notation to emphasise that actions
a = p and A = P are distributions. Note that the new expression is linear — and therefore convex
in p — and, by Lemma 14, we know ¢ is quasi-convex and so the function being optimized in (16)
is quasi-concave in p. We can therefore apply Sion’s theorem to swap inf;, and sup,; which means
¢F is ®-mixable if and only if

inf inf sup (0 { 2" (VO(W) — @ (VO (1) — £ (P))},) — (p L5 (B)) 2 0

= infinf @' (T8() = (p.{&"(TE(0) — £(P)},) + F(p) 2 0

= inf & (VO(p)) - F*({@*(Ve(u) — £ (P))},) 2 0

The second line above is obtained by recalling that, by the definition of ¢¥, its Bayes risk is F. We
now note that the inner infimum over p passes through ®*(V®(yx)) so that the final two terms are
just the convex dual for F evaluated at {®*(V® () — ¢£ (P))} . Finally, by translation invariance
of F’* we can pull the ®*(7*) term inside F'™* to simplify further so that the loss /" with Bayes risk
F'is ®-mixable if and only if

inf —F* ({9"(V(u) — ¢£(P))}, — & (T8()1) = 0.

Applying Lemma 12 to write ¥ in terms of F' and passing the sign through the infimum and
converting it to a supremum gives the required result.
A.4. Proof of Theorem 6

We will make use the following formulation of mixability,

1
M = f f AN+ =D -
(n) AGAH:rGA@ 228 ueAlg,xEX (s £(A)) n o (u, ) — Lx(a), a7

so that £ is ®,-mixable if and only if M (n) > 0.

Lemma 21 Suppose ¢ has a strictly concave Bayes risk L. Then given any distinct u*, i’ € Aeg,
there is some A € A and xv*,2' € X such that for all a € A we have at least one of the following:

(M*>€x* (A)> < g:c* (&) ) <,u/, gm’(A)> < Ew’ (&) : (18)

Proof Let 6* be an expert such that  := 5. > py. =: 3, which exists as p* # /. Pick arbitrary
x*,2' € X and let p*,p’ € Ax with support only on {z*,z'} and pi. = a/(a + B), pl- =
(1—-0a)/(2—a—p). Now let a* = argmin,c 4 Eyp+ [(z(a)], o’ = argmin,c 4 E;py [l2(a)],
and set A such that Ag« = a* and Ay = a’ for all other § € O.

Now suppose there is some & € A violating eq. (18). Then in particular,

%@x*(a)wz«a))é%( *<A> (' b (4)))
= L (0l (a*) + (1 — @)l (') + Bl () + (1 — B)lw (a))
= otb (awﬁx*(a*) a+ﬁ v (a )) + 2gF (21; a-plar (a’)+%£$/(a’))
oc-l—BL )+ (1 O""ﬁ) ) .
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Letting p € Ax with py+ = P,y = 1/2, observe that p = aTJrﬁp* +(1- O‘—;“B)p’. But by the above

calculation, we have L(p) < C“—gﬂL(p*) +(1- Cv—Jgﬁ)L(p’ ), thus violating strict concavity of L. W

NON-LEGENDRE = NO NONTRIVIAL MIXABLE ¢ WITH STRICTLY CONVEX BAYES RISK:

To show that no non-constant ®-mixable losses exist, we must exhibita ™ € Ag and an A € A such
that forall @ € Awecanfindapu € Ag and z € X satisfying (u, £, (A))+ %D@(M, ) —Lz(a) < 0.
Since ® is non-Legendre it must either (1) fail strict convexity, or (2) have a point on the boundary
with bounded derivative; we will consider each case separately.

(1) Assume that @ is not strictly convex; then we have some p* # ' such that Dg (pu*, 1i') = 0.
By Lemma 21 with these two distributions, we have some A and z*, 2" such that for all a, either
(@) (u*, L= (A)) < Ly=(a) or (i) (i, Ly (A)) < Ly(a). We set m = ' in case (i) we take u = p*
and z = z*, and in (ii) we take p = p/ and x = 2/, but as %Dq;(u, m) = 0 in both cases, we have
M (n) < 0 for all 7.

(2) Now assume instead that we have some p’ on the boundary of Ag with bounded | V® (/) || =
C < oo. Because 1 is on the boundary of Ag there is at least one expert §* € © for which yu. = 0.
Pick z*, 2/, a*, a’ from the definition of nontrivial, eq. (6). In particular, note that £« (a*) < £, (a’).
Let 7 = 1/ and A € A such that Ayg- = a* and Ay = o’ for all other 6.

Now suppose & € A has ¢,/(a) > ¢,(a’). Then taking 1 = 7 puts all weights on experts
predicting @’ while keeping D¢ (1, 7) = 0, so choosing 2 = 2’ gives M (n) < 0 for all . Otherwise,
Ly (@) = £y (a’), which by eq. (6) implies £+ (a) > £+ (a’). Let u® = m + a(dg= — 7), where dgp=
denotes the point distribution on #*. Calculating, we have

M(n) = (u®, le+ (A)) + 3 Do (u®,m) — Ly (@)
loe(a’) + by (a”) + Do (u®, 7) — €y (a)
Co (@) + by (a”) + § Do () — Lo (@)
a(ly-(a®) — Ly (a)) + %Df(a,O),

where f(a) = ®(u®) = ®(m+a(dg-—)). As VP is bounded, sois f/(0). Now as lim_,o D ¢(z+
e,x)/e = 0 for any scalar convex f with bounded f/(x) (see e.g. (Rockafellar, 1997, Theorem 24.1)
and Abernethy and Frongillo (2012)), we see that for any ¢ > 0 we have some o > 0 such that
Dy¢(a,0) < ca. Taking ¢ = n(€y+(a) — £y=(a*)) > 0 then gives M (n) < 0.

LEGENDRE = 3 MIXABLE /:

Assuming ® is Legendre, we need only show that some non-constant ¢ is ®-mixable. As VP is
infinite on the boundary, m must be in the relative interior of Ag; otherwise Dg (i, 7) = oo for
p#

Take A = Ax and {(p,r) = ||p — 6.* to be the 2-norm squared loss. Now for all z in
the interior of Ag and P € AY, we have (i, £,(P)) = Y g uallPs — 62> > |Ip — 62||* by
convexity, where p = Z@ o Ppg. In fact, as p is in the interior, this inequality is strict, and remains
so if replace p by p/ with ||g/ — u|| < € for some e sufficiently small. Now for all u, P the
algorithm can take p = p, and we can always choose 1 = inf, .,/ —uj=c Do (1, 1) /(€lmax) > 0,
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so either ||[;n — 7|| < € in which case we are fine by the above, or p is far enough away that the
Dg term dominates the algorithm’s loss. (Here /y,x is just maxy, ; £;(p), which is bounded, and
Do (1, 1) > 0 as ® is strictly convex.) So if ® is Legendre, squared loss is ®-mixable.

Appendix B. A Loss with Bayes Risk — 5 that is not B-Mixable

Letb : R — R be b(p) := (logp)(1 — 1 logp) and for p € Ax define the “bentropy”® B(p) :=
> P f(pz). For binary outcomes expert and learner predictions are of the form (p,1 — p) € A,
and the loss associated with B (the “bentropic loss”), constructed using Lemma 12

P(p,1-p) = (—f(p) + (1 —p)log (1%,,) ,—f(1—=p)+plog (1_7”)) (19)
has Bayes risk —B(p). One can verify that B is Legendre since B'(p) = 3 ((log p)> — (log(1 — p))?),

— 2
and that B (p) = les=p)+U-p)logp
. p)= . p(lfp) o .
Using the analysis of mixability in §4.1 of (van Erven et al., 2012), a proper, binary loss ¢ has

a mixability constant 7, given by the smallest ratio of curvatures between the Bayes risk for log

loss and the Bayes risk for £. That is, n; = inf,c(o ) % where H is Shannon entropy and

H"(p) = [p(1 — p)]~L. For F = B we see 15 = inf, 7p10g(17p)17(17p) ogp = 0- We have thus
establised the following:

Lemma 22 The binary proper loss (B defined in (19) is not classically mixable.

However, we were able to determine numerically that £7 is also not B-mixable. We did so by
considering the two outcome/two expert case and looking for specific expert predictions (p?, 1—p?)
and (p?,1 — p?) and mixture (y, 1 — p) so that the bound in (11) is violated. We found one in the
case where p* = 0.4, pP = 0.01, and ;1 = 0.4 which gives the value 0.145 on the left side of (11).

Finally, to give some intuition as to why Conjecture 16 is subtle, we note that the mixabil-
ity Mixg’ only depends of ® through the Bregman divergence term Dg (4, 1t). Since a Bregman
divergence is the second-order and higher tail of the Taylor series expansion of ® about u, the
ability to scale the mixability term for ® so that it dominates Mix"¥ depends on whether the ratio

U” /®" can be uniformly bounded. In the case consider here, where ¥ = B and ® = H we have

_If,?,u(g;) = —plog(1 — p) — (1 — p) log p which is unbounded for p € (0, 1).

6. The name was chosen to highlight the new entropy similar to regular entropy but “bent” by the 1 — é log p terms.
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Appendix C. Table of Maximum Mixability Constants and Regrets

Table 1 is discussed in Section 4.3.

Table 1: Mixability and optimal regrets for pairs of losses and entropies in 2 outcome/2 experts
games. Entries show the regret bound ! Dg (Jg, %]l) for the maximum 7 (in parentheses).

Entropy
Loss H Sf.l 57.5 57.9 Rf.l R7,5 Rf.g
log 0.69 (1%) 0.74 (97) 1.17(71) 5.15(.19) 0.77 (0.9) 1.38(0.5) 6.92(0.1)
@ 0.34 (2) 0.37(1.9) 0.58(1.4) 257(0.4)  038(1.8) 0.69(1) 3.45(0.2)
05-5 049 (1.4) 0.53(1.4) 0.82(1*) 3.64(.26) 0.54 (1.3) 0.98 (.71) 4.90 (.14)
(R-5 034 (2) 037(1.9) 0.58(1.4) 257(37)  038(1.8) 0.69(1*) 3.46(0.2)
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