A Noise Resistant Model Inference System

Eric McCreath and Mark Reid

Artificial Intelligence Group, School of Computer Science and Engineering
The University of New South Wales, Sydney NSW 2052, Australia

{ericm,mreid}@cse.unsw.edu.au

Abstract. Within the empirical ILP setting we propose a method of
inducing definite programs from examples — even when those examples
are incomplete and occasionally incorrect. This system, named NRMIS,
is a top-down batch learner that can make use of intensional background
knowledge and learn programs involving multiple target predicates. It
consists of three components: a generalization of Shapiro’s contradiction
backtracing algorithm; a heuristic guided search of refinement graphs;
and a LIME-like theory evaluator. Although similar in spirit to MIS,
NRMIS avoids its dependence on an oracle while retaining the expres-
siveness of a hypothesis language that allows recursive clauses and func-
tion symbols. NRMIS is tested on domains involving noisy and sparse
data. The results illustrate NRMIS’s ability to induce accurate theories
in all of these situations.

1 Introduction

An inductive logic programming (ILP) system can be loosely characterized as
concept discovery tool that uses logic programs to describe its hypotheses. The
use of logic programs as a hypothesis language offers several advantages over
other choices of hypothesis representation such as clusters or decision trees.
These advantages include the ability to describe a very rich class of concepts
and a convenient way of providing systems with background knowledge about
a domain. Also, hypotheses output as logic programs are generally easier for
humans to understand and analyze.

There has been a recent trend in ILP to develop systems that can perform
well in a variety of domains that are grounded in practical settings. Difficulties
such as missing or inconsistent data are commonplace in these domains and have,
to an extent, prevented the successful application of ILP techniques to real world
problems.

The issue of inconsistent or noisy data has been addressed by systems such
as ForL [16], MFo1L [3,4], PrRoGOL [13] and LIME [11] to name but a few. A
common characteristic of these systems, besides their robustness, is that their
performance on training sets with missing or sparse data is fairly poor. On the
other hand, systems such as Mis [19], LOPSTER [8], CRUSTACEAN [1], SKILIT
[7], and FoIL-I [6] can learn from sparse data but do not handle noisy data at
all. Systems that are robust to noisy training data tend to be systems that use

extensional (example-based) cover when determining the fitness of a hypothesis.
Conversely, systems that use proof-based or intensional cover generally perform
well on sparse data.

There has also been a growing interest in multiple predicate learning within
ILP. A handful of systems (Mi1s[19], MPL[2], NMPL[5], and MULT_ICN[10]) can
correctly induce programs with multiple target predicates but none can handle
any amount of noise. All but MULT_ICN are intensional systems.

In this paper we propose an ILP system, NRMIS (pronounced “near-miss”),
which modifies Mis so it can learn from noisy examples and without an oracle.
NRMIS inherits from MIs, amongst other things, the ability to learn multiple
target predicates simultaneously while improving on the efficiency of the search
method of its predecessor. This can be seen as a step towards integrating noise
handling techniques with the benefits of an intensional system.

Central to the NRMIS algorithm presented in Section 3 are the refinement
graphs and markings described in Section 2. In Section 4 NRMIS is tested on
several domains, covering the range of difficulties discussed earlier. A discussion
of these results and future work is given in Section 5.

We use the following description of an ILP problem to set the scene and
introduce some notation. Any concepts not thoroughly defined here can be found
in [14].

Let L be a first-order logic derived from an alphabet which contains only
finitely many predicate and function symbols. A unknown model M assigns a
truth value to each ground fact in L. Ground facts of L are called examples
and those which are true (resp. false) in M are called positive (resp. negative)
examples. Given background knowledge B (a finite set of clauses true in M), a
set ET of positive examples, and a set £~ of negative examples we wish to find
a hypothesis X' (a finite set of clauses) that entails every positive example in E*
and none of the negative examples in £~ . Such a hypothesis is called correct.

We will say a set of examples is noisy with respect to a target hypothesis
X if X is not correct with respect to the examples. In this situation the aim is
to find a hypothesis that has the same extension as the target hypothesis. The
noise model we will use in this paper is outlined in Section 4.2.

The system described in this paper addresses the ILP problem in the empir-
ical setting [2] which requires that: the entire example set be given in advance,
no queries are made of the underlying model M, and the initial hypothesis con-
tains no definitions for the predicates being learned. Also, we will only consider
the ILP problem for definite programs. This allows us to use SLD-refutation,
denoted by t, as the proof procedure to determine the intensional cover of a
theory. In order to guarantee the termination of this procedure we have imple-
mented it with a depth-bound which, in our experiments, is set large enough to
avoid any problems.

2 Refinements and markings

The problem of finding a correct hypothesis can be seen as a search of the space of
all definite clauses in L. This search space, we will call it Lqef, can be structured
through the use of a refinement operator [19].

Given a definite clause C and a refinement operator p the set p(C') contains all
of the most general specializations of C in L4er- The specialization order placed
on the clauses in Lger is that of Plotkin’s #-subsumption [15]. The refinement
operator and specialization order induce a refinement graph over the clauses in
Lges. This graph has a directed edge from clause C' to clause D if and only if
D € p(C), i.e., when D is a refinement of C.

even((s(0))). even(s(s(s(X))))- even(s(s(X)) <= even(X).

Fig. 1. A marking for Lgef’s refinement graph

A marking [19] is a structure that is used intensively by NRMIS when search-
ing for a correct hypothesis. It consists of three finite subsets of Lqes: the current
hypothesis Mcy,, a set of deleted clauses Mge1, and a set of clauses, Mpass, marked
passed. The marking consisting of these sets will be denoted M. A diagrammatic
example of a refinement graph and a marking is given in Figure 1. The alphabet
for L in this case consists of the predicate even/I, the function s/1 and the
constant 0. The refinement operator used here is named p, in [18] and is based
on a context-free transformation.

When the language L contains many predicates and function symbols the
sets p(C) can be quite large which causes the refinement graph for L to grow
extremely quickly. In order to keep the search of this graph managable NRMIS
makes use of user-provided mode and type information as well as the search
heuristics outlined in Section 3.3.

3 The NrRMIs algorithm

As the name suggests NRMIS is a modification of Shapiro’s Mis [19]. Both are
top-down intensional algorithms that form hypotheses by searching a space of

definite clauses using a refinement graph. Unlike MIS our system is not an in-
cremental learner, that is, all the training examples are given to our algorithm
in advance. Also, NRMIS does not require an oracle and can tolerate noise in the
training examples it is given. These advantages are due to a generalization of
Shapiro’s contradiction backtracing algorithm and a theory evaluation heuris-
tic similar to LIME’s [11], respectively. These are detailed in Section 3.2 and
Section 3.4.

An overview of NRMIS is given in Figure 2. Input to this algorithm consists
of background knowledge B in the form of a definite program, a set of positive
examples ET and a set of negative examples E~. The marking M is initialized
and specialization/generalization loop is entered. The following subsections de-
tail the function of the subroutines Decision, Generalize, Specialize, and
Compress.

NRMIS(B, ET,E™)
5\2/[6; E:m{ptél/ i)rlorlty duene NRBackTrace(e™,b)
Maer :={ } R :=a proof of e~
Mpass :={ } repeat
repeat (G,A,C) :=last(R)
E ,:={e €E |BUMcnFe} case Query truth value of A of
El,=E" —{et € ET|BU Mcu et} true: o:=0,7:=1
case Decision(E;, , B) of false: o:=1,7:=0
specialize: Specialize(M, E,_,) unknown: o := %, T = %
generalize: Generalize(M, E;") blame(C, b, o)
insert(Compress(Mcur), Q) b:=1b
until Ef ,UE, =0 R :=init(R)
output head of until (R is empty) V (b =0)
Fig. 2. The NRMIS Algorithm Fig. 3. NRBackTrace

Ideally, the NRMIS algorithm terminates when a correct hypothesis is found.
This is not always possible when noise is present in the training examples. To
overcome this the present implementation of NRMIS places an upper bound on
the number of times the body of the main loop can be executed. If this upper
bound is reached the best hypothesis in the priority queue @ is taken to be the
system’s final hypothesis. A hypothesis’ position in @ is determined by a ranking
given to it by Compress.

3.1 Decision

In Shapiro’s MIs a generalization and specialization step is performed in every
iteration of its main loop. When noise is present in the data this approach is too

coarse and frequently overlooks good candidate hypotheses. By separating these
two steps NRMIS implements a finer search of the refinement graph.

Each repetition of the main loop in Figure 2 calculates E|_,, the set of
negative examples that are implied by M., and Eg'ad, the set of positive exam-
ples not implied by Mc,;. The routine Decision guides the search for a correct
hypothesis at a high level. It is a heuristic that simply aims to minimize the pro-
portion of bad positive or bad negative examples. If the proportion |E_,|/|E~|
is larger than |E; ,|/|E*| a specialization is performed this loop, otherwise a
generalization takes place!.

3.2 Specialize

The procedure Specialize is used to reduce the number of negative examples
covered by Mc,,. It modifies the marking M by moving clauses from My, to
Mge1. The clauses to be moved depend on what examples appear in E_ .

Specialize relies heavily on a modified version of Shapiro’s contradiction
backtracing algorithm [19]. We will refer to the original as BackTrace and the
modification NRBackTrace. The main difference between them is the former re-
quires access to an oracle — in the form of an enumeration of the underlying
model or a user answering queries — whereas NRBackTrace does not.

If a negative example e~ can be covered by My, then there must be a
SLD-refutation of e~ using clauses from the background knowledge and Mcy;.
We will represent an SLD-refutation of e~ as a sequence of resolution steps,
R; = (G4, A;,C;) fori = 1...n. Each G; is a goal (a definite clause with no
head literal), A; is an atom of G; and C; is a clause from M., U B such that its
head unifies with A;. For i =1...n — 1, G441 is the resolvent of G; and C; on
A;. Gy is the goal < e~ and G,, resolves with C), to form the empty clause .

If R=Ry...R, is a proof then we denote by last(R) the final resolution
step R, and the initial part of the proof, Ry ... R,_1, by init(R). We illustrate
this somewhat cumbersome definition with an example.

Ezample 1. Consider the following definite program X for the ternary predi-
cates representing addition, add/3, and multiplication, mult/3, in terms of the
successor function s/1:

wi: mult(A,B,B). ay1: add(A,0,A).
w2: mult(A,s(B),C)«mult(A,B,Z),add(A,Z,C). az: add(A,s(B),s(C))«add(A,B,C).
wz: mult(s(A),B,C)+mult(A,B,Z),add(B,Z,C).

This program is overgeneral due to the clause p;, hence we have an SLD-
refutation of mult(1,2,3) as seen in Figure 4. Each resolution in the sequence is

represented as i and each A; is underlined in G;.

We now detail our version of the backtracing algorithm, NRBackTrace, as
shown in Figure 3. It is used to allocate a given amount of “blame”, b, amongst

L. is used to denote the cardinality of a set.

o [+
‘ — mauli(1,2,3) ‘:3>‘ — mult(0,2,1), add(2,1,3) ‘ :2>‘ — mult(0,2,1), add(2,0,2) ‘

231 M2 o

:>‘ — mult(0,2,1) ‘:>‘ — mult(0,1,1), add(0,1,1) ‘ :2>‘ — mult(0,1,1), add(0,0,0) ‘
(09

=5 [uit(o,n,n) | £ O

Fig. 4. An SLD-resolution of mult(1,2,3) from ¥ (see Example 1)

the clauses used in the proof of a negative example e~. A proof, R=R; ... R,,
of e~ is found and the repeat loop is entered. Here the last resolution step,
(G,A,C), is examined. If A can be shown to be false in the underlying model
(via background knowledge or examples) then C must be false in the model as
its head is false while its body is true (the rest of the steps in the proof show that
each of C’s body literals is true). C is therefore given all of the blame currently
available by a call to blame(C, b, o) which adds o x b units of blame to the clause
C'. Thus, in the case when A is false o is set to 1.

If A is true the blame is passed back to the resolution step that led to G by
setting 7 to 1 and the process continues. Finally, if there is conflicting evidence
for A’s truth value or it is simply not known, half the blame is given to C' and
the rest is propagated back through the proof. An example of this process can
be found in Example 2.

Note that if the truth values of every atom in the proof are known then
NRBackTrace will allocate all the blame to exactly one clause. In this sense
NRBackTrace can be seen to generalize Shapiro’s BackTrace algorithm to an
oracle-free setting.

Ezample 2. Suppose we have the following sets of (noisy) positive and negative
examples,

E*T = { mult(0,2,1),add(0,0,0),add(2,0,2) },
E™ = { mult(0,2,1),mult(1,2,3)) },
and our hypothesis is the theory X' given in Example 1. The result of calling the

procedure NRBackTrace with inputs b = 1 and e~ = mult(1, 2, 3) is given in the
table below.

Clause||p1 |p2|pes| o |z
Lipl|2

1 5
8 16 16

Blame

o | —

A description of the procedure Specialize can now be given. For each e~ €
E., ., a call to NRBackTrace is made and blame is accumulated between calls
(i.e., the blame is summed over every proof of a negative example a clause is
involved in). At the end of this the most “guilty” clauses are removed from Me,,
and placed in Mge1- The most guilty clauses will be in some way responsible for

the hypothesis covering negative examples, therefore their removal from My,
will result in a specialization.

A brief discussion of the time complexity of these algorithms is instructive
at this point. The most time consuming part of the Specialize procedure is
determining if negative examples are covered by its current hypothesis. As NRr-
MIS uses intensional cover, if a negative example is not covered by a hypothesis
H , every possible depth-bounded SLD-refutation must be tried before returning
a negative result (this is a version of negation by finite failure [14]). When H
contains many interrelated and complicated clauses this search can be very in-
efficient. Care is taken when generalizing hypotheses to minimize this problem
through the use of mode and type information as well as a bias for the addition
of simple clauses over more complicated ones.

Once a proof of a negative example is found the NRBackTrace procedure’s
time complexity is roughly linear in the number of resolution steps in the proof.
For each resolution step an additional expense is incurred when determining
whether or not the atom resolved upon is true or false. This expense is dependent
on the complexity of the background knowledge and can be reduced somewhat
through standard dynamic programming techniques.

3.3 Generalize

The Generalize procedure used in the NRMIS algorithm (Figure 2) is much like
that found in M1S. When there are positive examples not covered by M., clauses
need to be added to the hypothesis. Clauses from Mge; are moved to Mpags and
the refinement operator p is applied to them. New clauses are chosen from these
refinement sets and added to Mcy;.

As the refinement graph can grow exponentially in the worst case it is imper-
ative to keep the overall search efficient. A heuristic is therefore used to decide in
which order the clauses in Mge should be refined. Given a way of measuring the
“size” and “utility” of a clause preference is given to smaller and more useful
clauses. We use the following definition for the size of a clause: The size of a
clause is equal to the number of symbols, including punctuation, that appear in
a clause minus the number of distinct variables (cf. [17]). A useful property of
this size measure is that there are only finitely many clauses of any given size.

Like the notion of guilt used by Specialize, the utility of a clause is based
on its involvement in the proof of examples. Each deleted clause C' has a set
covers}; (C) of positive examples it helped cover when it was part of the hypoth-
esis H. The utility of C' is then defined to be the number of examples the sets
coversj;(C)) and E;f, ; have in common. Thus, a clause is considered useful if, in
a past hypothesis H, it was used to cover several positive examples that are not
covered by the current hypothesis Mcy;.

Once a clause C' € My is chosen for refinement all the clauses in p(C') — Mpass
are added to Mcy,,. Clauses in Mpae are not considered for addition to the
hypothesis as they have already been considered and deleted. Clause C' is moved
from Mge1 to Mpass before the main loop of the NRMIS algorithm is executed
again.

In Mis smaller clauses are also refined before larger ones but there is no
method of choosing one clause over another should a tie occur. Instead, MIis
refines all the smallest clauses and adds the resulting clauses to the overspe-
cific hypothesis. By only adding the refinements of a single clause each time
Generalize is called our system implements a much finer and more directed
search for new hypotheses. As these hypotheses tend to be smaller, deciding
what examples a hypothesis covers is usually less complicated in NRMIS.

3.4 Compress

Finally, the procedure Compress plays an important role in making NRMIS noise
resistant and reducing the redundancy of the programs it outputs.

When a percentage of the examples given to a learning system are misclassi-
fied there is a tendency for the system to output hypotheses that explain these
noisy examples. A common feature of these overzealous hypotheses is their large
size. Striking a balance between accuracy and size is therefore a reasonable way
of assessing the quality, Q(H), of a hypothesis H. This philosophy is embodied
in the Q-heuristic used in LIME [11]. Compress uses this heuristic to find an
accurate and concise hypothesis Myest C Mcyr. This is done using the following
greedy strategy: An initial pruning of M., takes place in which only clauses
that are involved in proofs of positive examples are kept. This results in a set
Hy={Cy,...,Cp } C M¢y,. Foreachi=1...nwelet H,=Hy—{ C; }. If
Q(Hoy) > Q(H;) for all i then Compress returns Hy as the best hypothesis. Oth-
erwise, the H; with the highest quality is pruned and made the new Hy and the
procedure repeats. As this is a greedy search only O(n?) subsets of the original
n clause Hy are considered before the procedure terminates.

It is important to note that Compress does not actually modify the marking
M in any way, rather, it outputs a compressed version of M., along with a
number indicating its quality. It is this quality estimate which determines the
hypothesis’ position in the priority queue used in Figure 2.

4 Experimental Results

The focus of our experimental results is to demonstrate NRMIS’s ability to cor-
rectly identify relations from training sets that are either incomplete or noisy.
For these experiments we used an implementation of NRMIS written in the func-
tional language Haskell which was generally an order of magnitude slower than
the other systems.

4.1 Sparse data

In [6] a series of experiments are conducted that compare the performance of
FoirL, PrRoGoL and FOIL-1I on sparse or incomplete training sets. Table 4.1 shows
how NRMIS and SKILIT [7] compare to these systems when tested on the same
domains.

The domains used were member/2, length/2, last/2 and nth/3. For each do-
main a complete initial portion of examples is generated. For example, in the
member/2 domain all possible ground facts involving the constants a,b and c
and lists of length at most three were used. A training set drawn from this initial
portion is said to have density 80% if the number of positive examples in the
training set makes up 80% of the positive examples of the initial portion and the
number of negative examples in the training set makes up 80% of the negative
examples in the initial portion. For each density fifty random training sets are
generated and each system’s output on these training sets is checked for its cor-
rectness. The number of training sets the system correctly induced a hypothesis
on is given in Table 4.1. 2

Table 1. Comparing the performance of Nrmis, Foir-1, FoiL, SKILIT and PROGOL
when learning from sparse data in various domains. The results for all the systems
apart from NRMIS and SKILIT are taken from [6]

Correct theories (out of 50) Correct theories (out of 50)
NrMis|SKILIT|FoIL-1{FoIL| PROGOL NrMmis|FoIL-1{FoIiL|PROGOL
Density Density
member length
80%| 50 50 50 | 41 26 80%| 41 38 | 38 39
50%| 50 50 50 | 36 20 50%| 29 18 18 13
30%| 50 46 50 16 5 30%| 22 6 4 0
20%| 50 44 49 8 2 20%| 17 4 2 0
10%| 41 38 38 3 0 10%| 0 0 0 0
7% 31 23 22 0 0

last nth

80%| 50 50 50 | 45 21 80%| 50 50 0 43
50%| 50 44 44 | 24 6 50%| 47 49 6 43
30%| 50 33 33 | 25 0 30%| 28 46 5 19
20%| 49 29 23 13 0 20%| 33 27 0 0
10%| 28 7 2 2 0 10%| 13 1 0 0

We were unable to obtain sensible results from SKILIT on the length/2 and
nth/3 domains hence these results have been omitted from the table. This is
most probably due to problems with our configuration of SKILIT rather than a
shortcoming of the system itself.

Unlike FoIL-1 and SKILIT, NRMIS was not specifically developed to induce
logic programs from sparse examples. Nevertheless, its performance on these
training sets compares favourably against other two systems. This is a testament
to the generality of the top-down refinement graph search used in NRMIS.

2 For more information these experiments and some example training sets the reader
is referred to [6] and http://www-itolab.ics.nitech.ac.jp/research/ilp/foili.html

4.2 Noisy data

NRMIS’s noise handling ability is demonstrated when it is required to learn add/3,
the addition relation. Its target concept can be found in Example 1.

Noise-free positive examples are generated by randomly choosing an instance
of add/% and checking to see if it is true with respect to the target concept. If so,
it is taken as a positive example. If not, another random instance is generated and
this process continues until a positive example is found. An analagous process is
used to generate noise-free negative examples. A noise rate of v € [0, 1] means,
with probability v, an instance of add/3 will be drawn randomly and classified
as positive (negative) without consulting the target concept.

0 0.2 0.4 0.6 0.8 1
Introduced Noise

Fig. 5. Predictive Error vs Noise on the addition domain

Figure 5 compares the predictive error vs. noise rate curves for NRMIS,
LiME[11,12], PrRoGOL[13], and FoIL[16] 3. For each noise rate, each of the sys-
tems are given a training set of 200 positive and 200 negative randomly gener-
ated, noisy examples. The predictive error for each hypothesis is approximated by
averaging the proportion of misclassified positive and negative examples. These
examples are drawn from a noise-free set of all possible instantiations of add/3
with entries no greater than six (28 positive and 315 negative examples). Twenty
of these trials are performed at each noise rate and the predictive error shown
in the graph is averaged over these trials. As can be seen NRMIS performed
similarly to LIME which also uses a theory evaluator based on the @-heuristic.

5 Discussion and Future Work

We have presented in this paper an ILP system called NrRMIS which is both
noise-resistant and based on an intensional notion of cover. ILP systems in the

3 We are using CProgol4.4 with the intensional cover flag set and Foil6.4

past have only ever met one of these two criteria and so have trouble with one or
more of: multiple predicate learning, learning from sparse data, and learning from
noisy data. The experiments outlined in this paper show NRMIS to be capable
of performing well on the last two of these. In addition, we have been able to
get NRMIS to correctly induce programs for the mutually recursive predicates
male-ancestor/2 and female-ancestor/2 (as described in [2]) as well as odd/!
and even/1.

The success of NRMIS is due to judicious use of the @-heuristic and a modifi-
cation of Shapiro’s contradiction backtracing algorithm which removes the need
for an oracle. Combined with the elegance of M1s’s method of searching refine-
ment graphs we have produced a system that uses a rich language to represent its
hypotheses — recursive logic programs involving function symbols. This expres-
siveness comes with one major drawback, however, and that is the inefficiency
of the search which is particularly apparent when the language consists of a
large number of predicates and function symbols. Some progress has been made
towards taming this problem both here and in other systems. We have managed
to obtain large improvements in speed over a simple Mis-like refinement graph
search while keeping the search complete. To get further improvement it may be
necessary to consider greedy, incomplete strategies.

We have done some preliminary tests of NRMIS on larger domains such as
document understanding [9] with some promising, though inconclusive, results.
The biggest hurdle here is that the domain consists of over fifty predicates which
means the refinement graph for this domain gets large very quickly. Further com-
pounding the problem is the large number of examples that must be considered.
We believe that, in principle, the NRMIS algorithm is capable of inducing an
accurate hypothesis in this domain but our current implementation needs some
optimizing before this will happen. This is our main focus for the near future.

Other ongoing work includes looking at formalisms that can provide theo-
retical basis for our modified backtrace algorithm, especially within a multiple
predicate learning framework.

6 Acknowledgements

The authors would like to thank Alipio Jorge and Nobuhiro Inuzuka for as-
sistance in using their respective systems SKILIT and FOIL-I as well as Arun
Sharma and Eric Martin for their input while writing this paper. Eric McCreath
was supported by ARC Large Grant A49600456 to Arun Sharma and Mark Reid
was supported by an Australian Postgraduate Award.

References

1. D. Aha, S. Lapointe, C. Ling, and S. Matwin. Learning singly recursive relation
from small datasets. In F. Bergadano, L. DeRaedt, S. Matwin, and S. Muggleton,
editors, Proc. of the IJCAI-93 Workshop on Inductive Logic Programming, pages
47-58, Chambery, France, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

L. De Raedt, N. Lavra¢, and S. Dzeroski. Multiple predicate learning. In Proceed-
ings of the Thirteenth International Joint Conference on Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1993.

. S Dzeroski. Handling noise in inductive logic programming. Master’s thesis, Faculty

of Electrical Engineering and Computer Science, University of Ljubljana, Slovenia,
1991.

. S. Dzeroski and I. Bratko. Handling noise in inductive logic programming. In Pro-

ceedings of the Second International Workshop on Inductive Logic Programming,
1992. Tokyo, Japan. ICOT TM-1182.

. L. Fogel and G. Zaverucha. Normal programs and multiple predicate learning. In

David Page, editor, Proceedings of the 8th International Conference on Inductive
Logic Programming, Wisconsin,USA, July 1998.

. N. Inuzuka et al. Top-down induction of logic programs from incomplete samples.

In Proceedings of the Sizth International Inductive Logic Programming Workshop.
Springer, 1996.

. A. Jorge and P. Brazdil. Architecture for iterative learning of recursive definitions.

In L. De Raedt, editor, Advances in Inductive Logic Programming. I0S Press, 1996.

. S. Lapointe and S. Matwin. Sub-unification : A tool for efficient induction of recur-

sive programs. In Proceedings of the Ninth International Conference on Machine
Learning, pages 273-281, Aberdeen, Scotland, 1992. Morgan Kaufmann.

D. Malerba. Document understanding: A machine learning approach. Technical
report, Esprit Project 5203 INTREPID, 1993.

Lionel Martin and Christel Vrain. MULTIICN: an empirical multiple predicate
learner. In Luc De Raedt, editor, Proceedings of the Fifth International Workshop
on Inductive Logic Programming, pages 129-144, 1995.

E. McCreath and A. Sharma. ILP with noise and fixed example size: A Bayesian
approach. In Fifteenth International Joint Conference on Artificial Intelligence,
volume 2, pages 1310-1315, 1997.

E. McCreath and A. Sharma. Lime: A system for learning relations. In The 9th
International Workshop on Algorithmic Learning Theory. Springer-Verlag, October
1998.

Stephen Muggleton. Inverse entailment and progol. New Generation Computing
Journal, 13, May 1995.

S.H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming. LNAI Tutorial 1228. Springer-Verlag, 1997.

G. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153-163,
1970.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239-266, 1990.

John C. Reynolds. Transformational systems and the algebraic structure of atomic
formulas. Machine Intelligence, 5:135-151, 1970.

E. Shapiro. Inductive inference of theories from facts. Technical Report 192,
Computer Science Department, Yale University, 1981.

E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

