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Last time

Mutual information chain rule

Jensen’s inequality

“Information cannot hurt”

Data processing inequality
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Review: Data-Processing Inequality

Theorem

if X → Y → Z then: I (X ;Y ) ≥ I (X ;Z )

X is the state of the world, Y is the data gathered and Z is the
processed data

No “clever” manipulation of the data can improve the inferences that
can be made from the data

No processing of Y , deterministic or random, can increase the
information that Y contains about X

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 3 / 37



This time

Markov’s inequality

Chebyshev’s inequality

Law of large numbers
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Outline

1 Properties of expectation and variance

2 Markov’s inequality

3 Chebyshev’s inequality

4 Law of large numbers

5 Wrapping Up
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Expectation and Variance

Let X be a random variable over X , with probability distribution p

Expected value:

E[X ] =
∑
x∈X

x · p(x).

Variance:

V[X ] = E[(X − E[X ])2]

= E[X 2]− (E[X ])2.

Standard deviation is
√

V[X ]
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Properties of expectation

A key property of expectations is linearity:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] .

This holds even if the variables are dependent!

We have for any a ∈ R,
E[aX ] = a · E[X ].
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Properties of variance

We have linearity of variance for independent random variables:

V

[
n∑

i=1

Xi

]
=

n∑
i=1

V [Xi ] .

Does not hold if the variables are dependent

We have for any a ∈ R,

V[aX ] = a2 · V[X ].
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Markov’s Inequality
Motivation

1000 school students sit an examination

The busy principal is only told that the average score is 40 out of 100

The principal wants to estimate the maximum number of students who
scored more than 80

Would it make sense to ask about the minimum number of students?
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Markov’s Inequality
Motivation

Call x the number of students who score more than 80

We know:
40 · 1000 = 80x + S ,

where S is the total score of students scoring less than 80

Exam scores are nonnegative, so certainly S ≥ 0

Thus, 80x ≤ 40 · 1000, or
x ≤ 500.

Can we formalise this more generally?
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Markov’s Inequality

Theorem

Let X be a nonnegative random variable. Then, for any λ > 0,

p(X ≥ λ) ≤ E[X ]

λ
.

Bounds probability of observing a large outcome
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Markov’s Inequality
Alternate Statement

Corollary

Let X be a nonnegative random variable. Then, for any λ > 0,

p(X ≥ λ · E[X ]) ≤ 1

λ
.

Observations of nonnegative random variable unlikely to be much larger
than expected value
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Markov’s Inequality
Proof

E[X ] =
∑
x∈X

x · p(x)

=
∑
x<λ

x · p(x) +
∑
x≥λ

x · p(x)

≥
∑
x≥λ

x · p(x) nonneg. of random variable

≥
∑
x≥λ

λ · p(x)

= λ · p(X ≥ λ).
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Markov’s Inequality
Illustration from http://justindomke.wordpress.com/
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Markov’s Inequality
Illustration from http://justindomke.wordpress.com/

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 17 / 37



Markov’s Inequality
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Markov’s Inequality
Illustration from http://justindomke.wordpress.com/
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Chebyshev’s Inequality
Motivation

Markov’s inequality only uses the mean of the distribution

What about the spread of the distribution (variance)?

0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20
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Chebyshev’s Inequality

Theorem

Let X be a random variable with E[X ] <∞. Then, for any λ > 0,

p(|X − E[X ]| ≥ λ) ≤ V[X ]

λ2
.

Bounds the probability of observing an “unexpected” outcome

Do not require non negativity

Two-sided bound
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Chebyshev’s Inequality
Alternate Statement

Corollary

Let X be a random variable with E[X ] <∞. Then, for any λ > 0,

p(|X − E[X ]| ≥ λ ·
√

V[X ]) ≤ 1

λ2
.

Observations are unlikely to occur several standard deviations away from
the mean
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Chebyshev’s Inequality
Proof

Define
Y = (X − E[X ])2.

Then, by Markov’s inequality, for any ν > 0,

p(Y ≥ ν) ≤ E[Y ]

ν
.

But,
E[Y ] = V[X ].

Also,
Y ≥ ν ⇐⇒ |X − E[X ]| ≥

√
ν.

Thus, setting λ =
√
ν,

p(|X − E[X ]| ≥ λ) ≤ V[X ]

λ2
.
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Chebyshev’s Inequality
Illustration

For a binomial with N trials and success probability θ, we have e.g.

p(|X − Nθ| ≥
√

2Nθ(1− θ)) ≤ 1

2
.
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Chebyshev’s Inequality
Example

Suppose we have a coin with bias θ, i.e. p(X = 1) = θ

Say we flip the coin n times, and observe x1, . . . , xn ∈ {0, 1}

We use the maximum likelihood estimator of θ:

θ̂n =
x1 + . . .+ xn

n

Estimate how large n should be such that

p(|θ̂n − θ| ≥ 0.05) ≤ 0.01?

1% probability of a 5% error
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Chebyshev’s Inequality
Example

Observe that

E[θ̂n] =

∑n
i=1 E[xi ]

n
= θ

V[θ̂n] =

∑n
i=1V[xi ]

n2
=
θ(1− θ)

n
.

Thus, applying Chebyshev’s inequality to θ̂n,

p(|θ̂n − θ| > 0.05) ≤ θ(1− θ)

(0.05)2 · n
.

We are guaranteed this is less than 0.01 if

n ≥ θ(1− θ)

(0.05)2(0.01)
.

When θ = 0.5, n ≥ 10, 000!
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Independent and Identically Distributed

Let X1, . . . ,Xn be random variables such that:

Each Xi is independent of Xj

The distribution of Xi is the same as that of Xj

Then, we say that X1, . . . ,Xn are independent and identically distributed
(or iid)

Example: For n independent flips of an unbiased coin, X1, . . . ,Xn are iid
from Bernoulli

(
1
2

)
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Law of Large Numbers

Theorem

Let X1, . . . ,Xn be a sequence of iid random variables, with

E[Xi ] = µ

and V[Xi ] <∞. Define

X̄n =
X1 + . . .+ Xn

n
.

Then, for any ε > 0,

lim
n→∞

p(|X̄n − µ| > ε) = 0.

Given enough trials, the empirical “success frequency” will be close to the
expected value

Mark Reid and Aditya Menon (ANU) COMP2610/COMP6261 - Information Theory Semester 2 30 / 37



Law of Large Numbers
Proof

Since Xi ’s are identically distributed,

E[X̄n] = µ.

Since the Xi ’s are independent,

V[X̄n] = V
[
X1 + . . .+ Xn

n

]
=

V [X1 + . . .+ Xn]

n2

=
nσ2

n2

=
σ2

n
.
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Law of Large Numbers
Proof

Applying Chebyshev’s inequality to X̄n,

p(|X̄n − µ| ≥ ε) ≤
V[X̄n]

ε2

=
σ2

nε2
.

As n→∞, the right hand side → 0.

Thus,
p(|X̄n − µ| < ε)→ 1.
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Law of Large Numbers
Illustration

N = 1000 trials with Bernoulli random variable with parameter 1
2
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Law of Large Numbers
Illustration

N = 50000 trials with Bernoulli random variable with parameter 1
2
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Summary & Conclusions

Markov’s inequality

Chebyshev’s inequality

Law of large numbers
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Next time

Ensembles and sequences

Typical sets

Approximation Equipartition (AEP)
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