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A General Communication Game

Data compression is the process of replacing a message with a smaller
message which can be reliably converted back to the original.

@ Sender & Receiver agree on code for each outcome ahead of time
(e.g., O for Heads; 1 for Tails)

@ Sender observes outcomes then codes and sends message

@ Receiver decodes message and recovers outcome sequence

@ Want small messages on average when outcomes are from a fixed,
known, but uncertain source (e.g., coin flips with known bias)

Heads, Tails, Heads, ...

Codlng Decodlng

‘010)

Message

Sender Receiver
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Definitions

Source Code

Given an ensemble X, the function ¢ : Ax — B is a source code for X.
The number of symbols in ¢(x) is the length /(x) of the codeword for x.
The extension of ¢ is defined by c(x1...x,) = c(x1)...c(xn)

Smallest -sufficient subset

Let X be an ensemble and for § > 0 define Ss to be the smallest subset of
Ax such that

| A\

P(xe€Ss)>1-0

Essential Bit Content
Let X be an ensemble then for § > 0 the essential bit content of X is

| A\

Hs(X) = log, |Ss|
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A Note on Lossy Codes & Missing Codewords

When talking about a uniform lossy code ¢ for Ax = {a, b, c} we write
c(a=0 c(b)=1 c(c)=-

where the symbol - means “no codeword”. This is shorthand for “the
receiver will decode this codeword incorrectly”.

For the purposes of these lectures, this is equivalent to the code
c(a)=0 c¢c(b)=1 c(c)=1

and the sender and receiver agreeing that the codeword 1 should always be
decoded as b.

Assigning the outcome a; the missing codeword “-" just means “it is not
possible to send a; reliably”.
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The Source Coding Theorem

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < 6 < 1, there exists a positive integer Ny such that for all N > Ny

‘%H(; (XN> —H|<e
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The Source Coding Theorem

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < 6 < 1, there exists a positive integer Ny such that for all N > Ny

‘%H(; (XN> —H|<e

In English:
@ Given outcomes drawn from X ...

Mark Reid and Aditya Menon (ANU) COMP2610 — Information Theory Semester 2, 2014



The Source Coding Theorem

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < 0 < 1, there exists a positive integer Ny such that for all N > Ny

1
‘NH(; (XN> —H| <e
In English:
@ Given outcomes drawn from X ...
@ ... no matter what reliability 1 — § and tolerance € you choose ...
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The Source Coding Theorem

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < < 1, there exists a positive integer Ny such that for all N > Ny

‘%H(; (XN> —H|<e

In English:
@ Given outcomes drawn from X ...
@ ... no matter what reliability 1 — § and tolerance € you choose ...
o ... there is always a length Ny so sequences XV longer than this . ..
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The Source Coding Theorem

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < 6 < 1, there exists a positive integer Ny such that for all N > Ny

H/H(; (X’V) . H' <e

In English:
@ Given outcomes drawn from X ...
@ ... no matter what reliability 1 — § and tolerance € you choose ...
o ... there is always a length Ny so sequences XV longer than this . ..
o ... have an average essential bit content & Hs(X") within € of H(X)
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The Source Coding Theorem

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < 6 < 1, there exists a positive integer Ny such that for all N > Ny

‘%H(; (X’V) - H‘ <e.

In English:
@ Given outcomes drawn from X ...
@ ... no matter what reliability 1 — § and tolerance € you choose ...
o ... there is always a length Ny so sequences XV longer than this . ..
o ... have an average essential bit content A Hs(X") within € of H(X)

Hs(XN) measures the fewest number of bits needed to uniformly code
smallest set of N-outcome sequence Ss with P(x € S5) > 1 —.
Mark Reid and Aditya Menon (ANU) COMP2610 — Information Theory Semester 2, 2014 5/18



© Introduction
@ Quick Review

© Extended Ensembles
@ Defintion and Properties
o Essential Bit Content

© The Source Coding Theorem
@ Statement of the Theorem
@ Typical Sets
@ The Asymptotic Equipartition Property
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Extended Ensembles (Review)

Instead of coding single outcomes, we now consider coding blocks and
sequences of blocks

Example (Coin Flips):

hhhhthhththh — hh hh th ht ht hh (6 x 2 outcome blocks)
— hhh hth hth thh (4 x 3 outcome blocks)

— hhhh thht hthh (3 x 4 outcome blocks)
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Extended Ensembles (Review)

Instead of coding single outcomes, we now consider coding blocks and
sequences of blocks

Example (Coin Flips):

hhhhthhththh — hh hh th ht ht hh (6 x 2 outcome blocks)
— hhh hth hth thh (4 x 3 outcome blocks)
— hhhh thht hthh (3 x 4 outcome blocks)

Extended Ensemble

The extended ensemble of blocks of size N is denoted XV. Outcomes
from XN are denoted x = (x1, X2, ..., xn). The probability of x is defined
to be P(X) = P(X]_)P(Xz) ... P(XN).
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Extended Ensembles (Review)

Instead of coding single outcomes, we now consider coding blocks and
sequences of blocks

Example (Coin Flips):

hhhhthhththh — hh hh th ht ht hh (6 x 2 outcome blocks)
— hhh hth hth thh (4 x 3 outcome blocks)
— hhhh thht hthh (3 x 4 outcome blocks)

Extended Ensemble

The extended ensemble of blocks of size N is denoted XV. Outcomes
from XN are denoted x = (x1, X2, ..., xn). The probability of x is defined
to be P(X) = P(X]_)P(Xz) ... P(XN).

What is the entropy of XN?
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Extended Ensembles (Review)

Example: Bent Coin

Let X be an ensemble with outcomes
Ax = {h,t} with p, = 0.9 and p; = 0.1.

Consider X* — i.e., 4 flips of the coin.

Axa = {hhhh, hhht hhth, ... tttt}
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Extended Ensembles (Review)

Example: Bent Coin

Let X be an ensemble with outcomes
Ax = {h,t} with p, = 0.9 and p; = 0.1.

Consider X* — i.e., 4 flips of the coin.

Axa = {hhhh, hhht hhth, ... tttt}
What is the probability of
e Four heads? P(hhhh) = (0.9)* ~ 0.656
e Four tails? P(tttt) = (0.1)* = 0.0001

Mark Reid and Aditya Menon (ANU) COMP2610 — Information Theory Semester 2, 2014 8 /18



Extended Ensembles (Review)

Example: Bent Coin

Let X be an ensemble with outcomes
Ax = {h,t} with p, = 0.9 and p; = 0.1.

Consider X* — i.e., 4 flips of the coin.

Axa = {hhhh, hhht hhth, ... tttt}
What is the probability of
e Four heads? P(hhhh) = (0.9)* ~ 0.656
e Four tails? P(tttt) = (0.1)* = 0.0001

What is the entropy and raw bit content of X*?
@ The outcome set size is |Ax+| = |{0000,0001, 0010, ...,1111}| = 16
@ Raw bit content: Ho(X*) = log, |Axs| = 4
e Entropy: H(X*) =4H(X) =4.(-0.9log,0.9 — 0.1log,0.1) = 1.88
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

X P(x) X P(x)
hhhh  0.656 | thht 0.008 ¢
hhht 0.073 | thth 0.008 85

hhth 0.073 | tthh 0.008 (X" @

hthh 0.073 | httt 0.001 25 ]
thhh 0.073 | thtt 0.001 2 ]
htht 0.008 | ttht 0.001 5 ]
htth 0.008 | ttth 0.001 ! 1
hhtt 0.008 | tttt 0.000 05 1

0 L
0 005 01 015 02 025 03 035 04 ¢

0 = 0 gives Hs (X4) = log, 16 =4
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

X P(x) X P(x)
hhhh 0.656 | thht 0.008 ¢
hhht 0.073 | thth 0.008 e
nhth  0.073 | tthh 0.008 (X7 @
hthh 0.073 | httt 0.001 2s ]
thhh 0.073 | thtt 0.001 2 ]
htht 0.008 | ttht 0.001 5 ]
htth 0.008 | ttth 0.001 1 1
hhtt 0.008 08 - 1
N

L
0 005 01 015 02 025 03 035 04 ¢

§ = 0.0001 gives Hs (X*) = log, 15 = 3.91
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

X P(x) X P(x)
hhhh 0.656 | thht 0.008 ¢
hhht 0.073 | thth 0.008 e
nhth  0.073 | tthh 0.008 (X7 @
hthh 0.073 2s 1
thhh 0.073 2 1
htht 0.008 5 A
htth 0.008 1 1
hhtt 0.008 os r 1
N

L
0 005 01 015 02 025 03 035 04 ¢

6 = 0.005 gives Hs (X*) = log, 11 = 3.46
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

e P(x) X P(x)

hhhh 0.656
hhht 0.073
hhth 0.073
hthh 0.073 i
thhh 0.073 1

0 L L L L L I L
0 005 01 015 02 025 03 035 04 ¢

6 = 0.05 gives Hs (X4) =log, 5 =2.32
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

e P(x) X P(x)

hhhh  0.656
hhht 0.073
hhth 0.073

0 L L L L L I L
0 005 01 015 02 025 03 035 04 ¢

0 = 0.25 gives H; (X4) =log,3=1.6
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

e P(x) X P(x)

hhhh  0.656
hhht 0.073 1
hhth 0.073 1

0 L I L I L I L
0 005 01 015 02 025 03 035 04 ¢

0 = 0.25 gives H; (X4) =log,3=1.6
Unlike entropy, Hs(X*) # 4Hs(X) =0
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Essential Bit Content of Extended Ensembles

What happens as N increases?

1 T

1 H(;(XN) 0.8

2|

0.4

0.2

o

Recall that the entropy of a single coin flip with p, = 0.9 is H(X) ~ 0.47

Mark Reid and Aditya Menon (ANU) COMP2610 — Information Theory Semester 2, 2014 10 / 18



© The Source Coding Theorem
@ Statement of the Theorem
@ Typical Sets
@ The Asymptotic Equipartition Property
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The Source Coding Theorem

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < d < 1, there exists a positive integer Ny such that for all N > Ny

'%H(; (X’V) _ H‘ <e

; ‘ ‘ ‘ ‘ @ Given a tiny probability of error
4, the average bits per outcome
can be made as close to H as
required.

%Hg(XN) 0.8

06 |

0.4

o Even if we allow a large
probability of error we cannot
compress more than H bits per
outcome for large sequences.

02
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Typical Sets and the AEP (Review)

For “closeness” 3 > 0 the typical set Tyg for XN is

Thng & {x : ‘—% log, P(x) — H(X)' < ,8}

The name “typical” is used since x € Tyg will have roughly pt N
occurences of symbol aj, poN of ap, ..., pxN of ak.
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Typical Sets and the AEP (Review)

For “closeness” 3 > 0 the typical set Tyg for XN is

Thng & {x : ‘—% log, P(x) — H(X)) < ﬂ}

The name “typical” is used since x € Tyg will have roughly pt N
occurences of symbol a;, ppN of ap, ..., pxN of ak.

Asymptotic Equipartition Property (Informal)
As N — o, logy P(x1,...,xy) is close to —NH(X) with high probability.

For large block sizes “almost all sequences are typical” (i.e., in Tng).
This means Tyg can be made to “look like" Ss for any § by choosing N
large enough. This is useful since Tyg is easy to count (size ~ 2NH(X))
while S5 is not (size varies with distribution)
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The Source Coding Theorem

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given ¢ > 0 and
0 < d < 1, there exists a positive integer Ny such that for all N > Ny

'%HJ (X’V) . H’ <e

Neto — Proof ldea: As N increases

L Hy(XN) 08 o Tpnp has ~ 2NH(X) elements

06 k

@ almost all x are in Typg

0.4

@ S5 and Tyg increasingly overlap

02

@ so log, |Ss5| ~ NH

.
0.8 14
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Proof of the SCT

The absolute value of a difference being bounded (e.g., |x — y| <€) says
two things:

@ When x — y is positive, it says x — y < € which means x < y + ¢
@ When x — y is negative, it says —(x — y) < € which means x <y — ¢
|x —y| <€ isequivalentto y—e<x<y-+e
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Proof of the SCT

The absolute value of a difference being bounded (e.g., |x — y| <€) says
two things:

@ When x — y is positive, it says x — y < € which means x < y + ¢
@ When x — y is negative, it says —(x — y) < € which means x <y — ¢
|x —y| <€ isequivalentto y—e<x<y-+e

Using this, we break down the claim of the SCT into two parts: showing
that for any € and § we can find N large enough so that:

Part 1: LHs(XV) < H+e Ho)
H+e
Part 2: & Hs(XN) > H —e %EH
H—¢
0 1 6
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Proof of the SCT (Part 1)

For ¢ > 0 and § > 0, want N large enough so & Hs(X") < H(X) +c.
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Proof of the SCT (Part 1)

For ¢ > 0 and § > 0, want N large enough so & Hs(X") < H(X) +c.
Recall (see Lecture 10) for the typical set Tyg we have for any N, 3 that
| Ths| < oN(H(X)+5) (1)

and, by the AEP, for any 3 as N — oo we have P(x € Tyg) — 1.
So for any § > 0 we can always find an N such that P(x € Tng) > 1 — 9.
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Proof of the SCT (Part 1)

For ¢ > 0 and § > 0, want N large enough so & Hs(X") < H(X) +c.
Recall (see Lecture 10) for the typical set Tyg we have for any N, 3 that
| Ths| < oN(H(X)+5) (1)

and, by the AEP, for any 3 as N — oo we have P(x € Tyg) — 1.
So for any § > 0 we can always find an N such that P(x € Tng) > 1 — 9.

Now recall the definition of the smallest d-sufficient subset Ss: it is the
smallest subset of outcomes such that P(x € S55) > 1 —6 so |Ss| < | Tngl.
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Proof of the SCT (Part 1)

For ¢ >0 and § > 0, want N large enough so 1 Hs(X") < H(X) + e.

Recall (see Lecture 10) for the typical set Ty we have for any N, 5 that
| Tng| < 2NHEOTH) (1)

and, by the AEP, for any 3 as N — oo we have P(x € Tng) — 1.
So for any § > 0 we can always find an N such that P(x € Tyg) > 1 — 6.

Now recall the definition of the smallest d-sufficient subset Ss: it is the
smallest subset of outcomes such that P(x € S55) > 1 —6 so |Ss| < | Tngl.

So, given any 0 and 3 we can find an N large enough so that, by (1)

1S5 < | Twg| < N(H(X)+5)
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Proof of the SCT (Part 1)

For ¢ >0 and § > 0, want N large enough so 1 Hs(X") < H(X) + e.

Recall (see Lecture 10) for the typical set Ty we have for any N, 5 that
| Tng| < 2NHEOTH) (1)

and, by the AEP, for any 3 as N — oo we have P(x € Tng) — 1.
So for any § > 0 we can always find an N such that P(x € Tyg) > 1 — 6.

Now recall the definition of the smallest d-sufficient subset Ss: it is the
smallest subset of outcomes such that P(x € S55) > 1 —6 so |Ss| < | Tngl.

So, given any 0 and 3 we can find an N large enough so that, by (1)

log, [S5] < loga [ Tws| < N(H(X) + )
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Proof of the SCT (Part 1)

For ¢ > 0 and § > 0, want N large enough so & Hs(X") < H(X) + .
Recall (see Lecture 10) for the typical set Tng we have for any N, 5 that
| Ths| < oN(H(X)+5) (1)

and, by the AEP, for any 3 as N — oo we have P(x € Tyg) — 1.
So for any § > 0 we can always find an N such that P(x € Tyg) > 1 —6.

Now recall the definition of the smallest d-sufficient subset Ss: it is the
smallest subset of outcomes such that P(x € 55) > 1 —6 so |Ss| < | Tngl.

So, given any § and 3 we can find an N large enough so that, by (1)

Hs(X") = log, 5] < logy | Tl < N(H(X) + )

Setting 3 = € and dividing through by N gives result.
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Proof of the SCT (Part 2)

For e > 0 and § > 0, want N large enough so + Hs(X") > H(X) — .

Suppose this was not the case — that is, for every N we have

%H(;(X’V) < H(X) — € e |S5] < 2MH)—0)
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Proof of the SCT (Part 2)

For e > 0 and § > 0, want N large enough so + Hs(X") > H(X) — .

Suppose this was not the case — that is, for every N we have

%Hé(x'v) < H(X) — € e |S5] < 2MH)—0)

Let's look at what this says about P(x € Ss) by writing

P(x € S5) = P(x € Ss N Tng) + P(x € SgﬂT_Ng)
< [S5127NHF) 1 P(x € Typ)

since every x € Tyg has P(x) < 2-N(H=5) and Ss N Tng C Thg.
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Proof of the SCT (Part 2)

For e > 0 and § > 0, want N large enough so + Hs(X") > H(X) — .

Suppose this was not the case — that is, for every N we have

%Hé(x'v) < H(X) — e = || < 2MHO—)

Let's look at what this says about P(x € Ss) by writing

P(x € S5) = P(x € Ss N Tng) + P(x € SgﬂT_Ng)
< [S5127NHF) 1 P(x € Typ)

since every x € Tyg has P(x) < 2-N(H=5) and Ss N Tng C Thg.

So
P(x € S5) < 2NH=<)p=N(H=5) L p(x € Typz)
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Proof of the SCT (Part 2)

For e > 0 and § > 0, want N large enough so + Hs(X") > H(X) — .

Suppose this was not the case — that is, for every N we have

%Hé(x'v) < H(X) — € e |S5] < 2MH)—0)

Let's look at what this says about P(x € Ss) by writing

P(x € S5) = P(x € Ss N Tng) + P(x € SgﬂT_Ng)
< [S5127NHF) 1 P(x € Typ)

since every x € Tyg has P(x) < 2-N(H=5) and Ss N Tng C Thg.

So
P(x € S5) < 2~ NH=H+<=0) 4 p(x € Typ)
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Proof of the SCT (Part 2)

For ¢ > 0 and § > 0, want N large enough so & Hs(X") > H(X) —c.

Suppose this was not the case — that is, for every N we have
1
NH(;(XN) < H(X) — € « |S5] < 2NHX)=<)

Let’s look at what this says about P(x € Ss) by writing

P(x € 55) = P(x € Ss N Tng) + P(x € S5 N Trg)
< |Ss[27NH=B) 1 P(x € Thp)
since every x € Tyg has P(x) < 2-N(H=5) and S5 N Tng C Tng.

So
P(x € S5) <27NEP) 4 P(x € Tyg) — 0as N — oo

since P(X € TNﬁ) — 1.
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Proof of the SCT (Part 2)

For ¢ > 0 and § > 0, want N large enough so & Hs(X") > H(X) —c.

Suppose this was not the case — that is, for every N we have
1
NH(;(XN) < H(X) — € <= |S5] < 2NHO=9)

Let’s look at what this says about P(x € Ss) by writing

P(x € 55) = P(x € Ss N Tng) + P(x € S5 N Trg)
< |Ss[27NH=B) 1 P(x € Thp)
since every x € Tyg has P(x) < 2-N(H=5) and S5 N Tng C Tng.

So
P(x € S5) <27NA) 4 P(x € Tyg) — 0as N — oo

since P(x € Tng) — 1. But P(x € Ss) > 1 — 4, by defn. Contradiction
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Interpretation of the SCT

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given € > 0 and
0 < 6 < 1, there exists a positive integer Ny such that for all N > Ny

'%H(; (X’V) _ H‘ <e

If you want to uniformly code blocks of N symbols drawn i.i.d. from X

@ If you use more than NH(X) bits per block you can do so without
almost no loss of information as N — oo

o If you use less than NH(X) bits per block you will almost certainly
lose information as N — oo
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