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A General Communication Game

Data compression is the process of replacing a message with a smaller
message which can be reliably converted back to the original.

Sender & Receiver agree on code for each outcome ahead of time
(e.g., 0 for Heads; 1 for Tails)

Sender observes outcomes then codes and sends message

Receiver decodes message and recovers outcome sequence

Want small messages on average when outcomes are from a fixed,
known, but uncertain source (e.g., coin flips with known bias)

Sender Receiver

Coding Decoding
010

Message

Heads, Tails, Heads, … Heads, Tails, Heads, …
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Definitions

Source Code

Given an ensemble X , the function c : AX → B is a source code for X .
The number of symbols in c(x) is the length l(x) of the codeword for x .
The extension of c is defined by c(x1 . . . xn) = c(x1) . . . c(xn)

Smallest δ-sufficient subset

Let X be an ensemble and for δ ≥ 0 define Sδ to be the smallest subset of
AX such that

P(x ∈ Sδ) ≥ 1− δ

Essential Bit Content

Let X be an ensemble then for δ ≥ 0 the essential bit content of X is

Hδ(X )
def
= log2 |Sδ|
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A Note on Lossy Codes & Missing Codewords

When talking about a uniform lossy code c for AX = {a, b, c} we write

c(a) = 0 c(b) = 1 c(c) = -

where the symbol - means “no codeword”. This is shorthand for “the
receiver will decode this codeword incorrectly”.

For the purposes of these lectures, this is equivalent to the code

c(a) = 0 c(b) = 1 c(c) = 1

and the sender and receiver agreeing that the codeword 1 should always be
decoded as b.

Assigning the outcome ai the missing codeword “-” just means “it is not
possible to send ai reliably”.

Mark Reid and Aditya Menon (ANU) COMP2610 – Information Theory Semester 2, 2014 4 / 18



The Source Coding Theorem
(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X ) bits. Given ε > 0 and
0 < δ < 1, there exists a positive integer N0 such that for all N > N0

∣∣∣∣
1

N
Hδ

(
XN

)
− H

∣∣∣∣ < ε.

In English:

Given outcomes drawn from X . . .

. . . no matter what reliability 1− δ and tolerance ε you choose . . .

. . . there is always a length N0 so sequences XN longer than this . . .

. . . have an average essential bit content 1
N Hδ(XN) within ε of H(X )

Hδ(XN) measures the fewest number of bits needed to uniformly code
smallest set of N-outcome sequence Sδ with P(x ∈ Sδ) ≥ 1− δ.
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Extended Ensembles (Review)

Instead of coding single outcomes, we now consider coding blocks and
sequences of blocks

Example (Coin Flips):

hhhhthhththh→ hh hh th ht ht hh (6 × 2 outcome blocks)

→ hhh hth hth thh (4 × 3 outcome blocks)

→ hhhh thht hthh (3 × 4 outcome blocks)

Extended Ensemble

The extended ensemble of blocks of size N is denoted XN . Outcomes
from XN are denoted x = (x1, x2, . . . , xN). The probability of x is defined
to be P(x) = P(x1)P(x2) . . .P(xN).

What is the entropy of XN?
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Extended Ensembles (Review)
Example: Bent Coin

Let X be an ensemble with outcomes
AX = {h, t} with ph = 0.9 and pt = 0.1.

Consider X 4 – i.e., 4 flips of the coin.

AX 4 = {hhhh, hhht, hhth, . . . , tttt}

What is the probability of

Four heads? P(hhhh) = (0.9)4 ≈ 0.656

Four tails? P(tttt) = (0.1)4 = 0.0001

What is the entropy and raw bit content of X 4?

The outcome set size is |AX 4 | = |{0000, 0001, 0010, . . . , 1111}| = 16

Raw bit content: H0(X 4) = log2 |AX 4 | = 4

Entropy: H(X 4) = 4H(X ) = 4. (−0.9 log2 0.9− 0.1 log2 0.1) = 1.88
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

x P(x) x P(x)
hhhh 0.656 thht 0.008
hhht 0.073 thth 0.008
hhth 0.073 tthh 0.008
hthh 0.073 httt 0.001
thhh 0.073 thtt 0.001
htht 0.008 ttht 0.001
htth 0.008 ttth 0.001
hhtt 0.008 tttt 0.000

δ = 0 gives Hδ

(
X 4

)
= log2 16 = 4
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

x P(x) x P(x)
hhhh 0.656 thht 0.008
hhht 0.073 thth 0.008
hhth 0.073 tthh 0.008
hthh 0.073

httt 0.001

thhh 0.073

thtt 0.001

htht 0.008

ttht 0.001

htth 0.008

ttth 0.001

hhtt 0.008

tttt 0.000

δ = 0.005 gives Hδ

(
X 4

)
= log2 11 = 3.46
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

x P(x) x P(x)
hhhh 0.656

thht 0.008

hhht 0.073

thth 0.008

hhth 0.073

tthh 0.008

hthh 0.073

httt 0.001

thhh 0.073

thtt 0.001
htht 0.008 ttht 0.001
htth 0.008 ttth 0.001
hhtt 0.008 tttt 0.000

δ = 0.05 gives Hδ

(
X 4

)
= log2 5 = 2.32
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

x P(x) x P(x)
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δ = 0.25 gives Hδ

(
X 4

)
= log2 3 = 1.6
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Essential Bit Content of Extended Ensembles

What if we use a lossy uniform code on the extended ensemble?

x P(x) x P(x)
hhhh 0.656

thht 0.008

hhht 0.073

thth 0.008

hhth 0.073

tthh 0.008
hthh 0.073 httt 0.001
thhh 0.073 thtt 0.001
htht 0.008 ttht 0.001
htth 0.008 ttth 0.001
hhtt 0.008 tttt 0.000

δ = 0.25 gives Hδ

(
X 4

)
= log2 3 = 1.6

Unlike entropy, Hδ(X 4) 6= 4Hδ(X ) = 0
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Essential Bit Content of Extended Ensembles

What happens as N increases?

1
N Hδ(XN)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N=10
N=210
N=410
N=610
N=810
N=1010

δ

Recall that the entropy of a single coin flip with ph = 0.9 is H(X ) ≈ 0.47
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The Source Coding Theorem

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X ) bits. Given ε > 0 and
0 < δ < 1, there exists a positive integer N0 such that for all N > N0

∣∣∣∣
1

N
Hδ

(
XN

)
− H

∣∣∣∣ < ε.

1
N Hδ(XN)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N=10
N=210
N=410
N=610
N=810
N=1010

δ

Given a tiny probability of error
δ, the average bits per outcome
can be made as close to H as
required.

Even if we allow a large
probability of error we cannot
compress more than H bits per
outcome for large sequences.
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Typical Sets and the AEP (Review)

Typical Set

For “closeness” β > 0 the typical set TNβ for XN is

TNβ
def
=

{
x :

∣∣∣∣−
1

N
log2 P(x)− H(X )

∣∣∣∣ < β

}

The name “typical” is used since x ∈ TNβ will have roughly p1N
occurences of symbol a1, p2N of a2, . . ., pKN of aK .

Asymptotic Equipartition Property (Informal)

As N →∞, log2 P(x1, . . . , xN) is close to −NH(X ) with high probability.

For large block sizes “almost all sequences are typical” (i.e., in TNβ).
This means TNβ can be made to “look like” Sδ for any δ by choosing N
large enough. This is useful since TNβ is easy to count (size ≈ 2NH(X ))
while Sδ is not (size varies with distribution)
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Let X be an ensemble with entropy H = H(X ) bits. Given ε > 0 and
0 < δ < 1, there exists a positive integer N0 such that for all N > N0
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Proof Idea: As N increases

TNβ has ∼ 2NH(X ) elements

almost all x are in TNβ

Sδ and TNβ increasingly overlap

so log2 |Sδ| ∼ NH
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Proof of the SCT

The absolute value of a difference being bounded (e.g., |x − y | ≤ ε) says
two things:

1 When x − y is positive, it says x − y < ε which means x < y + ε

2 When x − y is negative, it says −(x − y) < ε which means x < y − ε
|x − y | < ε is equivalent to y − ε < x < y + ε

Using this, we break down the claim of the SCT into two parts: showing
that for any ε and δ we can find N large enough so that:

Part 1: 1
N Hδ(XN) < H + ε

Part 2: 1
N Hδ(XN) > H − ε

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

82 4 — The Source Coding Theorem

Chebyshev’s inequality 2. Let x be a random variable, and let α be a
positive real number. Then

P
(
(x − x̄)2 ≥ α

)
≤ σ2

x/α. (4.31)

Proof: Take t = (x − x̄)2 and apply the previous proposition. ✷

Weak law of large numbers. Take x to be the average of N independent
random variables h1, . . . , hN , having common mean h̄ and common vari-
ance σ2

h: x = 1
N

∑N
n=1 hn. Then

P ((x − h̄)2 ≥ α) ≤ σ2
h/αN. (4.32)

Proof: obtained by showing that x̄ = h̄ and that σ2
x = σ2

h/N . ✷

We are interested in x being very close to the mean (α very small). No matter
how large σ2

h is, and no matter how small the required α is, and no matter
how small the desired probability that (x − h̄)2 ≥ α, we can always achieve it
by taking N large enough.

Proof of theorem 4.1 (p.78)

We apply the law of large numbers to the random variable 1
N log2

1
P (x) defined

for x drawn from the ensemble XN . This random variable can be written as
the average of N information contents hn = log2(1/P (xn)), each of which is a
random variable with mean H = H(X) and variance σ2 ≡ var[log2(1/P (xn))].
(Each term hn is the Shannon information content of the nth outcome.)

We again define the typical set with parameters N and β thus:

TNβ =

{
x ∈ AN

X :

[
1

N
log2

1

P (x)
− H

]2

< β2

}
. (4.33)

For all x ∈ TNβ, the probability of x satisfies

2−N(H+β) < P (x) < 2−N(H−β). (4.34)

And by the law of large numbers,

P (x ∈ TNβ) ≥ 1 − σ2

β2N
. (4.35)

We have thus proved the ‘asymptotic equipartition’ principle. As N increases,
the probability that x falls in TNβ approaches 1, for any β. How does this
result relate to source coding?

We must relate TNβ to Hδ(X
N ). We will show that for any given δ there

is a sufficiently big N such that Hδ(X
N ) ≃ NH.

Part 1: 1
N Hδ(X

N ) < H + ϵ.

The set TNβ is not the best subset for compression. So the size of TNβ gives
an upper bound on Hδ. We show how small Hδ(X

N ) must be by calculating
how big TNβ could possibly be. We are free to set β to any convenient value.
The smallest possible probability that a member of TNβ can have is 2−N(H+β),
and the total probability contained by TNβ can’t be any bigger than 1. So

|TNβ | 2−N(H+β) < 1, (4.36)

that is, the size of the typical set is bounded by

|TNβ | < 2N(H+β). (4.37)

If we set β = ϵ and N0 such that σ2

ϵ2N0
≤ δ, then P (TNβ) ≥ 1 − δ, and the set

TNβ becomes a witness to the fact that Hδ(X
N ) ≤ log2 |TNβ | < N(H + ϵ).

1

N
Hδ(X

N )

H0(X)

0 1 δ

H − ϵ

H

H + ϵ

Figure 4.13. Schematic illustration
of the two parts of the theorem.
Given any δ and ϵ, we show that
for large enough N , 1

N Hδ(XN)
lies (1) below the line H + ϵ and
(2) above the line H − ϵ.
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ance σ2

h: x = 1
N

∑N
n=1 hn. Then

P ((x − h̄)2 ≥ α) ≤ σ2
h/αN. (4.32)

Proof: obtained by showing that x̄ = h̄ and that σ2
x = σ2

h/N . ✷

We are interested in x being very close to the mean (α very small). No matter
how large σ2

h is, and no matter how small the required α is, and no matter
how small the desired probability that (x − h̄)2 ≥ α, we can always achieve it
by taking N large enough.

Proof of theorem 4.1 (p.78)

We apply the law of large numbers to the random variable 1
N log2

1
P (x) defined

for x drawn from the ensemble XN . This random variable can be written as
the average of N information contents hn = log2(1/P (xn)), each of which is a
random variable with mean H = H(X) and variance σ2 ≡ var[log2(1/P (xn))].
(Each term hn is the Shannon information content of the nth outcome.)

We again define the typical set with parameters N and β thus:

TNβ =

{
x ∈ AN

X :

[
1

N
log2

1

P (x)
− H

]2

< β2

}
. (4.33)

For all x ∈ TNβ, the probability of x satisfies

2−N(H+β) < P (x) < 2−N(H−β). (4.34)

And by the law of large numbers,

P (x ∈ TNβ) ≥ 1 − σ2

β2N
. (4.35)

We have thus proved the ‘asymptotic equipartition’ principle. As N increases,
the probability that x falls in TNβ approaches 1, for any β. How does this
result relate to source coding?

We must relate TNβ to Hδ(X
N ). We will show that for any given δ there

is a sufficiently big N such that Hδ(X
N ) ≃ NH.

Part 1: 1
N Hδ(X

N ) < H + ϵ.

The set TNβ is not the best subset for compression. So the size of TNβ gives
an upper bound on Hδ. We show how small Hδ(X

N ) must be by calculating
how big TNβ could possibly be. We are free to set β to any convenient value.
The smallest possible probability that a member of TNβ can have is 2−N(H+β),
and the total probability contained by TNβ can’t be any bigger than 1. So

|TNβ | 2−N(H+β) < 1, (4.36)

that is, the size of the typical set is bounded by

|TNβ | < 2N(H+β). (4.37)

If we set β = ϵ and N0 such that σ2

ϵ2N0
≤ δ, then P (TNβ) ≥ 1 − δ, and the set

TNβ becomes a witness to the fact that Hδ(X
N ) ≤ log2 |TNβ | < N(H + ϵ).

1

N
Hδ(X

N )

H0(X)

0 1 δ

H − ϵ

H

H + ϵ

Figure 4.13. Schematic illustration
of the two parts of the theorem.
Given any δ and ϵ, we show that
for large enough N , 1

N Hδ(XN)
lies (1) below the line H + ϵ and
(2) above the line H − ϵ.
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Proof of the SCT (Part 1)

For ε > 0 and δ > 0, want N large enough so 1
N Hδ(XN) < H(X ) + ε.

Recall (see Lecture 10) for the typical set TNβ we have for any N, β that

|TNβ| ≤ 2N(H(X )+β) (1)

and, by the AEP, for any β as N →∞ we have P(x ∈ TNβ)→ 1.
So for any δ > 0 we can always find an N such that P(x ∈ TNβ) ≥ 1− δ.

Now recall the definition of the smallest δ-sufficient subset Sδ: it is the
smallest subset of outcomes such that P(x ∈ Sδ) ≥ 1− δ so |Sδ| ≤ |TNβ|.

So, given any δ and β we can find an N large enough so that, by (1)
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Proof of the SCT (Part 1)

For ε > 0 and δ > 0, want N large enough so 1
N Hδ(XN) < H(X ) + ε.

Recall (see Lecture 10) for the typical set TNβ we have for any N, β that

|TNβ| ≤ 2N(H(X )+β) (1)

and, by the AEP, for any β as N →∞ we have P(x ∈ TNβ)→ 1.
So for any δ > 0 we can always find an N such that P(x ∈ TNβ) ≥ 1− δ.

Now recall the definition of the smallest δ-sufficient subset Sδ: it is the
smallest subset of outcomes such that P(x ∈ Sδ) ≥ 1− δ so |Sδ| ≤ |TNβ|.
So, given any δ and β we can find an N large enough so that, by (1)

Hδ(XN) = log2 |Sδ| ≤ log2 |TNβ| ≤ N(H(X ) + β)

Setting β = ε and dividing through by N gives result.
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Proof of the SCT (Part 2)

For ε > 0 and δ > 0, want N large enough so 1
N Hδ(XN) > H(X )− ε.

Suppose this was not the case – that is, for every N we have

1

N
Hδ(XN) ≤ H(X )− ε ⇐⇒ |Sδ| ≤ 2N(H(X )−ε)

Let’s look at what this says about P(x ∈ Sδ) by writing

P(x ∈ Sδ) = P(x ∈ Sδ ∩ TNβ) + P(x ∈ Sδ ∩ TNβ)

≤ |Sδ|2−N(H−β) + P(x ∈ TNβ)

since every x ∈ TNβ has P(x) ≤ 2−N(H−β) and Sδ ∩ TNβ ⊂ TNβ.

So
P(x ∈ Sδ) ≤ 2N(H−ε)2−N(H−β) + P(x ∈ TNβ)
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So
P(x ∈ Sδ) ≤ 2−N(ε−β) + P(x ∈ TNβ)→ 0 as N →∞

since P(x ∈ TNβ)→ 1.

But P(x ∈ Sδ) ≥ 1− δ, by defn. Contradiction
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Interpretation of the SCT

The Source Coding Theorem

Let X be an ensemble with entropy H = H(X ) bits. Given ε > 0 and
0 < δ < 1, there exists a positive integer N0 such that for all N > N0

∣∣∣∣
1

N
Hδ

(
XN

)
− H

∣∣∣∣ < ε.

If you want to uniformly code blocks of N symbols drawn i.i.d. from X

If you use more than NH(X ) bits per block you can do so without
almost no loss of information as N →∞
If you use less than NH(X ) bits per block you will almost certainly
lose information as N →∞
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