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Expected Code Length

Expected Code Length
The expected length for a code C for ensemble X with
Ax ={a1,...,a/} and Px = {p1,...,p/} is

L(C,X) =Exup [l()] = Y P(x)(x) = Zp, i

xEAx
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Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
Ax ={a1,...,a/} and Px = {p1,...,p/} is

L(C,X) =Exup [l()] = Y P(x)(x) = Zp, i

xEAx

Example: X has Ax = {a,b,c,d} and P = {2, a 8,213
@ The code C¢; = {0001, 0010,0100, 1000} has

4
L(G,X) = Zpifi =4
i—1
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Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
Ax ={a1,...,a/} and Px = {p1,...,p/} is

L(C,X) =Exup [l()] = Y P(x)(x) = Zp, i

xEAx

Example: X has Ax = {a,b,c,d} and P = {2, a 8,213
@ The code C¢; = {0001, 0010,0100, 1000} has

4
L(G,X) = Zpifi =4
i—1

@ The code G, = {0,10,110,111} has

4

L(CX)=> pili=3x1+3x2+3x3+%x3=125
i=1
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Code Lengths and Probabilities

The Kraft inequality says that {{1,...,¢;} are prefix code lengths iff
i
RESES
i=1

Probabilities from Code Lengths

Given code lengths ¢ = {{1,...,¢;} such that Z,’-Zl 2=t < 1 we define
q9=1{q1,...,q/} the probabilities for ¢ by

s 1, _p = —0 :
g Z =27t  where z¥ 2 bi ensure that g; satisfy >igi=1
z

1

Note: this implies /; = log, Zlq
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Code Lengths and Probabilities

The Kraft inequality says that {{1,...,¢;} are prefix code lengths iff
i
RESES
i=1

Probabilities from Code Lengths

Given code lengths ¢ = {{1,...,¢;} such that Z,’-Zl 2=t < 1 we define
q9=1{q1,...,q/} the probabilities for ¢ by

def 1 def

gi = ;2_5’ where z= Z,Q‘e" ensure that g; satisfy ) ,qi =1

Note: this implies /; = log, Zlq

Examples:
Q Lengths {1,2,2} give z=1s0 q1 = % qp = %, and g3 = %
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Code Lengths and Probabilities

The Kraft inequality says that {{1,...,¢;} are prefix code lengths iff

|
Z 2t <1
i=1

Probabilities from Code Lengths

Given code lengths ¢ = {{1,...,¢;} such that Z,’-Zl 2=t < 1 we define
q9=1{q1,...,q/} the probabilities for ¢ by

e 1y . _e. .
& ;2 t where z¥ 2 bi ensure that g; satisfy >igi=1

Note: this implies ¢; = log, L

Examples:

Q Lengths {1,2,2} give z = 1 so q1 = 2, G2 =
@ Lengths {2,2,3} give z = 8 so g1 =
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Minimising Expected Code Length

Given an ensemble X with probabilities Px = p = {p1,...,p;} how can
we minimise the expected code length?
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Minimising Expected Code Length

Given an ensemble X with probabilities Px = p = {p1,...,p;} how can
we minimise the expected code length?

@ Suppose we use code C with lengths ¢ = {¢1,...,¢;} and
corresponding probabilities q = {q1, ..., g/} with g; = %24". Then,

X) = Zpiﬂi = Zpi log; (Zlq,>
- Yok (555)

Sale(a) e (5) o)

Z pi Iogz -+ Z pi Iogz + log, (é) > pi

i

1
= HX) + Dlpla) + logp_ 1
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Minimising Expected Code Length

e Soifq=1{qi,...,q;} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1,...,p/}

L(C.X) = H(X) + D(pl|a) + log, -
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Minimising Expected Code Length

e Soifq=1{qi,...,q;} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1,...,p/}

L(C.X) = H(X) + D(pl|a) + log, -

@ Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p|/q) =0 and log, £ =0

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 7 /20



Minimising Expected Code Length

e Soifq=1{qi,...,q;} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1,...,p/}

L(C.X) = H(X) + D(pl|a) + log, -

@ Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p|/q) =0 and log, £ =0

@ But the relative entropy D(p||q) > 0 with D(p|/q) =0iffq=p
(Gibb's inequality)
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Minimising Expected Code Length

e Soifq=1{qi,...,q;} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1,...,p/}

L(C.X) = H(X) + D(pl|a) + log, -

@ Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p|/q) =0 and log, £ =0

@ But the relative entropy D(p||q) > 0 with D(p|/q) =0iffq=p
(Gibb's inequality)

@ For q=p, we havezd:efziq,-:zip,-:land S0 Iog2%:0
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Minimising Expected Code Length

e Soifq=1{qi,...,q;} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1,...,p/}

L(C.X) = H(X) + D(pl|a) + log, -

@ Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p|/q) =0 and log, £ =0

@ But the relative entropy D(p||q) > 0 with D(p|/q) =0iffq=p
(Gibb's inequality)

@ For q=p, we havezdéfziq,-:zip,-:land S0 Iog2%:0

We have shown that for a code C with lengths corresponding to q
L(C,X) = H(X)

with equality only when C has code lengths ¢; = log, é
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Shannon Codes

But Iogzﬁ is not always an integer—a problem for code lengths!
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Shannon Codes

But IogQ% is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with Px = {pi,...,p;} define? codelengths
f= {f]_,. ..,6,} by

1 1
1= Png ;-‘ > log, —.

1 1

A code C is called a Shannon code if it has codelengths /.

“Here [x] is “smallest integer not smaller than x". e.g., [2.1] =3, [5] =5.

This gives us code lengths that are “closest” to log, %
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Shannon Codes

But IogQ% is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with Px = {pi,...,p;} define? codelengths
f= {f]_,. ..,8,} by

1 1
1= ['032 ;-‘ > log, —.

1 1

A code C is called a Shannon code if it has codelengths /.

“Here [x] is “smallest integer not smaller than x". e.g., [2.1] =3, [5] =5.

This gives us code lengths that are “closest” to log, %
Examples:

Q If Px ={3,3.3} then £ ={1,2,2} so C = {0,10,11} is a Shannon

code (in fact, this is an optimal code)
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Shannon Codes

But IogQ% is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with Px = {pi,...,p;} define? codelengths
f= {f]_,. ..,8,} by

1 1

1 1
1= ['032 ;-‘ > log, —.

A code C is called a Shannon code if it has codelengths /.

“Here [x] is “smallest integer not smaller than x". e.g., [2.1] =3, [5] =5.

This gives us code lengths that are “closest” to log, %
Examples:

Q If Px ={3,3.3} then £ ={1,2,2} so C = {0,10,11} is a Shannon

code (in fact, this is an optimal code)
@ If Px = {1,1, 1} then ¢ = {2,2,2} with Shannon code
C ={00,10,11} (or C ={01,10,11} ... )
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Shannon Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.
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Shannon Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.

Therefore, if we create a Shannon code C for p = {p1, ..., p;} with
b= [Iogz pl-‘ < log, % + 1 it will satisfy

L(C,X) = pili < Xoipilogs o +1=3;pjlogy 5 + X;pi
— H(X) +1
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Shannon Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.

Therefore, if we create a Shannon code C for p = {p1, ..., p;} with
b= {Iogz pl-‘ < log, % + 1 it will satisfy
L(C,X) = pili < Xoipilogs o +1=3;pjlogy 5 + X;pi

i

= H(X) +1

Furthermore, since ¢; > — log, p; we have 2—ti < Dlogy pi — pi, SO
32274 <3 pi = 1. By Kraft there is a prefix code with lengths ¢;
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Shannon Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.

Therefore, if we create a Shannon code C for p = {p1, ..., p;} with
b= {Iogz pl-‘ < log, % + 1 it will satisfy

L(C, X) = >_ipiti <) ;pilog, % +1=7%"pilog, % +22iPi
=H(X)+1

Furthermore, since ¢; > — log, p; we have 2—ti < Dlogy pi — pi, SO
32274 <3 pi = 1. By Kraft there is a prefix code with lengths ¢;

Examples:
O If Px ={1,% 2} then £ = {1,2,2} and H(X) = 3 = L(C, X)
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Shannon Codes

Since [x] is the smallest integer bigger than or equal to x it must be the
case that x < [x] < x+ 1.

Therefore, if we create a Shannon code C for p = {p1, ..., p;} with
l; = {Iogz pl-‘ < log, % + 1 it will satisfy

L(C, X) = >_ipiti <) ;pilog, % +1=7%"pilog, % +22iPi
=H(X)+1

Furthermore, since ¢; > — log, p; we have 2—ti < Dlogy pi — pi, SO
32274 <3 pi = 1. By Kraft there is a prefix code with lengths ¢;

Examples:
O If Px ={1,% 2} then £ = {1,2,2} and H(X) = 3 = L(C, X)
@ If Px ={%,%, 1} then ¢ ={2,2,2} and
H(X) = logy3~ 158 < L(C,X)=2<258~ H(X)+1
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© The Source Coding Theorem for Symbol Codes
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The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) < L(C,X) < H(X) + 1.

In particular, Shannon codes C — those with lengths ¢; = {Iogz pl-| —
have expected code length within 1 bit of the entropy.
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Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) < L(C,X) < H(X) + 1.

In particular, Shannon codes C — those with lengths ¢; = {Iogz pl-| —
have expected code length within 1 bit of the entropy.

This is good, but is it optimal?
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The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) < L(C,X) < H(X) + 1.

In particular, Shannon codes C — those with lengths ¢; = {Iogz pi-| —
have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p; = 0.0001 and py = 0.9999. (Note H(X) ~ 0.0013)

@ The Shannon code C has lengths ¢; = [log, 10000] = 14 and

(2 = [log, ggg | =1

@ The expected length is L(C, X) = 14 x 0.0001 + 1 x 0.9999 = 1.0013
e But clearly C' = {0,1} is a prefix code and L(C', X) =1
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The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) < L(C,X) < H(X) + 1.

In particular, Shannon codes C — those with lengths ¢; = {Iogz pi-| —
have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p; = 0.0001 and py = 0.9999. (Note H(X) ~ 0.0013)
@ The Shannon code C has lengths ¢; = [log, 10000] = 14 and
(2 = [log, ggg | =1
@ The expected length is L(C, X) = 14 x 0.0001 + 1 x 0.9999 = 1.0013

e But clearly C' = {0,1} is a prefix code and L(C', X) =1

Shannon codes do not necessarily have smallest expected length
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© Huffman Coding
o Algorithm and Examples
@ Advantages and Disadvantages
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Constructing a Huffman Code

Huffman Coding is a procedure for making provably optimal prefix codes.
It assigns the longest codewords to least probable symbols by building up
the code by repeatedly merging the least probable symbols.

HUFFMAN(A, P):
Q If |A] =2 return C ={0,1}; else
Q Let a,a’ € A be least probable symbols.
Q Let A/'=A—{a,d}u{ad}
Q Let P' =P — {pa, par} U {pax} where poy = pa + pa
© Compute C' = HUFFMAN(A', P’)
@ Define C by
» c(a) = c'(ad’)0
» c(a') =c/(ad)l
» c(x) = c/(x) for x € A’
@ Return C

v
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Huffman Coding in Python

See full example code with examples at:

https://gist.github.com/mreid/fdf6353ec39d050e972b
def huffman(p):

"""Return a Huffman code for an ensemble with distribution p. " "’
assert(sum(p.values()) = 1.0) # Ensure probabilities sum to 1

# Base case of only two symbols, assign 0 or 1 arbitrarily
if(len(p) = 2):
return dict(zip(p.keys(), ['0", '1']))

# Create a new distribution by merging lowest prob.
p-prime = p.copy ()

al, a2 = lowest_prob_pair(p)

pl, p2 = p_prime.pop(al), p_prime.pop(a2)
p-prime[al + a2] = pl + p2

pair

# Recurse and construct code on new distribution
¢ = huffman(p_prime)

cala2 = c.pop(al + a2)

c[al], c[a2] = cala2 + '0’, cala2 + '1°

return c

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory

September 3rd, 2014 14 /20


https://gist.github.com/mreid/fdf6353ec39d050e972b

Huffman Coding: Example 1

Start with A = {a,b7 c} and P = {%’ %7 tll}
o HUFFMAN(A, P):

» b and c are least probable with p, = p, = %
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Huffman Coding: Example 1

Start with A = {a,b,c} and P = {3, 1,1}
e HUFFMAN(A, P):
> b and c are least probable with p, = p, =
» A'={a,bc} and P’ = {3,

1
4
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Huffman Coding: Example 1

Start with A = {a,b7 c} and P = {%’ %7 tll}
e HUFFMAN(A, P):
> b and c are least probable with p, = p, =
» A'={a,bc} and P’ = {1,
» Call HUFFMAN(A’, P’):
o Al = [{a,be}| =2
e Return code with ¢’(a) =0, ¢’(bc) =1

1
4
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Huffman Coding: Example 1

Start with A = {a,b,c} and P = {%, %, 41'1}
e HUFFMAN(A, P):
> b and c are least probable with p, = p, =
» A'={a,bc} and P’ = {1,
» Call HUFFMAN(A’, P’):
o |A| = [{a,bc}| =2
e Return code with ¢’(a) =0, ¢’(bc) =1
> Define
e c(b) = c’(bc)0 =10
e ¢(c)=c'(bc)1 =11
e clay=c'(a) =0

1
4
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Huffman Coding: Example 1

Start with A = {a,b7 c} and P = {%’ %7 tll}

e HUFFMAN(A, P):

> b and c are least probable with p, = p, =

A’ ={a,bc} and P' = {3, 1
Call HUFFMAN(A’, P'):

o |A] = [{a,bc}| = 2

e Return code with ¢’(a) =0, ¢’(bc) =1
Define

e c(b) =c'(bc)0=10

e ¢(c)=c'(bc)1 =11

° c(a)=c'(a) =0
Return C = {0,10,11}

1
4

vy

\4

v
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Huffman Coding: Example 1

Start with A = {a,b7 c} and P = {%’ %7 tll}

e HUFFMAN(A, P):

> b and c are least probable with p, = p, =

A’ ={a,bc} and P' = {3, 1
Call HUFFMAN(A’, P'):

o |A] = [{a,bc}| = 2

e Return code with ¢’(a) =0, ¢’(bc) =1
Define

e c(b) =c'(bc)0=10

e ¢(c)=c'(bc)1 =11

° c(a)=c'(a) =0
Return C = {0,10,11}

1
4

vy

\4

v
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Huffman Coding: Example 1

Start with A = {a,b,c} and P = {3, 1,1}
e HUFFMAN(A, P):
> b and c are least probable with p, = pp =
» A'={a,bc} and P’ = {1,
> Call HUFFMAN(A', P'):
o |A] = [{a,bc}| = 2
e Return code with ¢’(a) =0, ¢’(bc) =1
> Define
e c(b) =c'(bc)0=10
e ¢(c)=c'(bc)1 =11
o c(a)=c'(a)=0
» Return C ={0,10,11}
The constructed code has L(C,X) = 3 x 1+ % x (2+2) = 1.5.
The entropy is H(X) = 1.5.

1
4
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Huffman Coding: Example 2

Start with A = {a,b,c,d,e} and P = {0.25,0.25,0.2,0.15,0.15}
o HUFFMAN(A, P):
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Huffman Coding: Example 2

Start with A = {a,b,c,d,e} and P = {0.25,0.25,0.2,0.15,0.15}
o HUFFMAN(A, P):
» A’ = {a,b,c,de} and P’ = {0.25,0.25,0.2,0.3}
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Huffman Coding: Example 2

Start with A = {a,b,c,d,e} and P = {0.25,0.25,0.2,0.15,0.15}
o HUFFMAN(A, P):

» A = {a,b7 c,de} and P’/ = {0.25, 0.25, 0.2,0.3}
» Call HUFFMAN(A/,'P'):
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Huffman Coding: Example 2

Start with A = {a,b,c,d,e} and P = {0.25,0.25,0.2,0.15,0.15}
o HUFFMAN(A, P):

» A = {a,b7 c,de} and P’/ = {0.25, 0.25, 0.2,0.3}
» Call HUFFMAN(A', P’):
e A” ={a,bc,de} and P’ = {0.25,0.45,0.3}
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Huffman Coding: Example 2

Start with A = {a,b,c,d, e} and P = {0.25,0.25,0.2,0.15,0.15}
e HUFFMAN(A, P):
» A ={a,b,c,de} and P’ = {0.25,0.25,0.2,0.3}
» Call HUFFMAN(A', P’):
o A" ={a,bc,de} and P” = {0.25,0.45,0.3}
o Call HUFFMAN(A”, P"):
- A" = {ade,bc} and P = {0.55,0.45}
- Return ¢”’(ade) = 0, (bc) =1
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Huffman Coding: Example 2

Start with A = {a,b,c,d,e} and P = {0.25,0.25,0.2,0.15,0.15}
o HUFFMAN(A, P):

» A ={a,b,c,de} and P’ = {0.25,0.25,0.2,0.3}
» Call HUFFMAN(A', P’):
o A" ={a,bc,de} and P” = {0.25,0.45,0.3}
o Call HUFFMAN(A”, P"):
- A" = {ade,bc} and P = {0.55,0.45}
- Return ¢”’(ade) = 0, (bc) =1
o Return ¢’(a) =00, ¢”(bc) =1, ¢’(de) =01
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» Return ¢’(a) =00, ¢’/(b) =10, ¢’(c) =11, ¢’(de) =01
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Huffman Coding: Example 2

Start with A = {a,b,c,d,e} and P = {0.25,0.25,0.2,0.15,0.15}
o HUFFMAN(A, P):

» A’ = {a,b,c,de} and P’ = {0.25,0.25,0.2,0.3}
> Call HUFFMAN(A’, P'):

e A” ={a,bc,de} and P’ = {0.25,0.45,0.3}
o Call HUFFMAN(A", P"):

- A" = {ade,bc} and P = {0.55,0.45}
- Return ¢”’(ade) = 0, (bc) =1
o Return ¢’(a) =00, ¢”(bc) =1, ¢’(de) =01
» Return ¢’(a) = 00, ¢/(b) = 10, ¢’(c) =11, ¢’(de) = 01
@ Return c(a) = 00, c(b) = 10, c(c) =11, ¢(d) = 010, c(e) = 011
The constructed code is C = {00,10,11,010,011}.

It has L(C,X) =2 x (0.25 + 0.25 + 0.2) + 3 x (0.15 + 0.15) = 2.3.
Note that H(X) ~ 2.29.
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Huffman Coding: Example 2
As a diagram

Ax = {a,b,c,d, e} and Px = {0.25,0.25,0.2,0.15,0.15}

x stepl step2 step3 step4

0 0

a 025 025~ 0.25—7 0.55—~ 1.0
0 S

b 0257 035~ 7 045/ 04571

c 0.2 T 0.2 "1

d 0157703 — 03 1

e 01571

From Example 5.15 of MacKay
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Huffman Coding: Example 3

English letters — Monogram statistics

@ o logmE L cla) ’ Pla)
a 0057 11 4 0000 a 0.0575
b 0.0128 63 6 001000 b 0.0128
¢ 0.0263 52 5 00101 ¢ 0.0263
4 00285 51 5 10000 d 0.0285
e 00913 35 4 1100 e 0.0913
£ 00173 59 6 111000 £ 0.0173
g 00133 62 6 001001 g 0.0133
h  0.0313 50 5 10001 h 0.0313
i 0.0599 41 4 1001 i 0.0599
j  0.0006 10.7 10 1101000000 J 0.0006
k  0.0084 6.9 7 1010000 k 0.0084
1 0.0335 49 5 11101 1 0.0335
n o 0.0235 54 6 110101 m 0.0235
n 00596 41 4 0001 n 0.0596
o 0.0689 39 4 1011 o 0.0689
p 0.0192 57 6 111001 P 0.0192
q 0.0008 10.3 9 110100001 q 0.0008
T 0.0508 43 5 11011 r 0.0508
s 0.0567 41 4 oo11 s 0.0567
£ 0.0706 38 4 1111 t 0.0706
u o 0.0334 49 5 10101 u 0.0334
v 0.0069 72 8 11010001 v 0.0069
w 00119 64 7 1101001 W 0.0119
x  0.0073 7.1 7 1010001 b'd 0.0073
y 00164 59 6 101001 y 0.0164
z 00007 104 10 1101000001 2z 0.0007
- 01928 24 2 ot — 0.1928
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Advantages and Disadvantages

Advantages:
@ Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]

@ Algorithm is simple and efficient
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@ Assumes a fixed distribution of symbols
@ The extra bit in the SCT

» If H(X) is large — not a problem
» If H(X) is small (e.g., ~ 1 bit for English) codes are 2x optimal
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Advantages:
@ Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]
@ Algorithm is simple and efficient

Disadvantages:

@ Assumes a fixed distribution of symbols
@ The extra bit in the SCT

» If H(X) is large — not a problem
» If H(X) is small (e.g., ~ 1 bit for English) codes are 2x optimal

Huffman codes are the best possible symbol code
but symbol coding is not always the best type of code

Next Time: Stream Codes!
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Key Concepts:

@ The expected code length L(C, X) =), pili

@ Probabilities and codelengths are interchangeable
qgi = 27t — = log, %

© Relative entropy D(p|lq) measures excess bits over the entropy H(X)
for using the wrong code q for probabilities p

@ The Source Coding Theorem for symbol codes: There exists prefix
(Shannon) code C for ensemble X with ¢; = [Iog2 %W so that

H(X) < L(C,X) < H(X) +1

© Huffman codes are optimal symbol codes
Reading:

@ §5.3-5.7 of MacKay

@ §5.3-5.4, §5.6 & §5.8 of Cover & Thomas
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