
COMP2610/6261 - Information Theory
Lecture 14: Source Coding Theorem for Symbol Codes

Mark Reid and Aditya Menon

Research School of Computer Science
The Australian National University

1 L O G O U S E G U I D E L I N E S
T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y

ANU Logo Use Guidelines

Deep Gold
C30 M50 Y70 K40

PMS Metallic 8620

PMS 463

Black
C0 M0 Y0 K100

PMS Process Black

Preferred logo Black version

Reverse version
Any application of the ANU logo on a coloured
background is subject to approval by the Marketing
Office, contact

brand@anu.edu.au

The ANU logo is a contemporary
reflection of our heritage.
It clearly presents our name,
our shield and our motto:

First to learn the nature of things.
To preserve the authenticity of our brand identity, there are
rules that govern how our logo is used.

Preferred logo - horizontal logo
The preferred logo should be used on a white background.
This version includes black text with the crest in Deep Gold in
either PMS or CMYK.

Black
Where colour printing is not available, the black logo can
be used on a white background.

Reverse
The logo can be used white reversed out of a black
background, or occasionally a neutral dark background.

September 3rd, 2014

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 1 / 20

1 Expected Code Length
Minimising Expected Code Length
Shannon Coding

2 The Source Coding Theorem for Symbol Codes

3 Huffman Coding
Algorithm and Examples
Advantages and Disadvantages

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 2 / 20

1 Expected Code Length
Minimising Expected Code Length
Shannon Coding

2 The Source Coding Theorem for Symbol Codes

3 Huffman Coding
Algorithm and Examples
Advantages and Disadvantages

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 3 / 20

Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
AX = {a1, . . . , aI} and PX = {p1, . . . , pI} is

L(C ,X) = Ex∼P [`(x)] =
∑
x∈AX

P(x) `(x) =
I∑

i=1

pi `i

Example: X has AX = {a, b, c, d} and P = {12 , 14 , 18 , 18}

1 The code C1 = {0001, 0010, 0100, 1000} has

L(C1,X) =
4∑

i=1

pi `i = 4

2 The code C2 = {0, 10, 110, 111} has

L(C2,X) =
4∑

i=1

pi `i = 1
2 × 1 + 1

4 × 2 + 1
8 × 3 + 1

8 × 3 = 1.25

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 4 / 20

Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
AX = {a1, . . . , aI} and PX = {p1, . . . , pI} is

L(C ,X) = Ex∼P [`(x)] =
∑
x∈AX

P(x) `(x) =
I∑

i=1

pi `i

Example: X has AX = {a, b, c, d} and P = {12 , 14 , 18 , 18}
1 The code C1 = {0001, 0010, 0100, 1000} has

L(C1,X) =
4∑

i=1

pi `i = 4

2 The code C2 = {0, 10, 110, 111} has

L(C2,X) =
4∑

i=1

pi `i = 1
2 × 1 + 1

4 × 2 + 1
8 × 3 + 1

8 × 3 = 1.25

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 4 / 20

Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
AX = {a1, . . . , aI} and PX = {p1, . . . , pI} is

L(C ,X) = Ex∼P [`(x)] =
∑
x∈AX

P(x) `(x) =
I∑

i=1

pi `i

Example: X has AX = {a, b, c, d} and P = {12 , 14 , 18 , 18}
1 The code C1 = {0001, 0010, 0100, 1000} has

L(C1,X) =
4∑

i=1

pi `i = 4

2 The code C2 = {0, 10, 110, 111} has

L(C2,X) =
4∑

i=1

pi `i = 1
2 × 1 + 1

4 × 2 + 1
8 × 3 + 1

8 × 3 = 1.25

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 4 / 20

Code Lengths and Probabilities

The Kraft inequality says that {`1, . . . , `I} are prefix code lengths iff

I∑
i=1

2−`i ≤ 1

Probabilities from Code Lengths

Given code lengths ` = {`1, . . . , `I} such that
∑I

i=1 2−`i ≤ 1 we define
q = {q1, . . . , qI} the probabilities for ` by

qi
def
=

1

z
2−`i where z

def
=
∑

i2
−`i ensure that qi satisfy

∑
iqi = 1

Note: this implies `i = log2
1
zqi

Examples:

1 Lengths {1, 2, 2} give z = 1 so q1 = 1
2 , q2 = 1

4 , and q3 = 1
4

2 Lengths {2, 2, 3} give z = 5
8 so q1 = 2

5 , q2 = 2
5 , and q3 = 1

5

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 5 / 20

Code Lengths and Probabilities

The Kraft inequality says that {`1, . . . , `I} are prefix code lengths iff

I∑
i=1

2−`i ≤ 1

Probabilities from Code Lengths

Given code lengths ` = {`1, . . . , `I} such that
∑I

i=1 2−`i ≤ 1 we define
q = {q1, . . . , qI} the probabilities for ` by

qi
def
=

1

z
2−`i where z

def
=
∑

i2
−`i ensure that qi satisfy

∑
iqi = 1

Note: this implies `i = log2
1
zqi

Examples:
1 Lengths {1, 2, 2} give z = 1 so q1 = 1

2 , q2 = 1
4 , and q3 = 1

4

2 Lengths {2, 2, 3} give z = 5
8 so q1 = 2

5 , q2 = 2
5 , and q3 = 1

5

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 5 / 20

Code Lengths and Probabilities

The Kraft inequality says that {`1, . . . , `I} are prefix code lengths iff

I∑
i=1

2−`i ≤ 1

Probabilities from Code Lengths

Given code lengths ` = {`1, . . . , `I} such that
∑I

i=1 2−`i ≤ 1 we define
q = {q1, . . . , qI} the probabilities for ` by

qi
def
=

1

z
2−`i where z

def
=
∑

i2
−`i ensure that qi satisfy

∑
iqi = 1

Note: this implies `i = log2
1
zqi

Examples:
1 Lengths {1, 2, 2} give z = 1 so q1 = 1

2 , q2 = 1
4 , and q3 = 1

4
2 Lengths {2, 2, 3} give z = 5

8 so q1 = 2
5 , q2 = 2

5 , and q3 = 1
5

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 5 / 20

Minimising Expected Code Length

Given an ensemble X with probabilities PX = p = {p1, . . . , pI} how can
we minimise the expected code length?

Suppose we use code C with lengths ` = {`1, . . . , `I} and
corresponding probabilities q = {q1, . . . , qI} with qi = 1

z 2−`i . Then,

L(C ,X) =
∑
i

pi`i =
∑
i

pi log2

(
1

zqi

)
=
∑
i

pi log2

(
1

zpi

pi

qi

)
=
∑
i

pi

[
log2

(
1

pi

)
+ log2

(
pi

qi

)
+ log2

(
1

z

)]
=
∑
i

pi log2
1

pi
+
∑
i

pi log2
pi

qi
+ log2

(
1

z

)∑
i

pi

= H(X) + D(p‖q) + log2
1

z
1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 6 / 20

Minimising Expected Code Length

Given an ensemble X with probabilities PX = p = {p1, . . . , pI} how can
we minimise the expected code length?

Suppose we use code C with lengths ` = {`1, . . . , `I} and
corresponding probabilities q = {q1, . . . , qI} with qi = 1

z 2−`i . Then,

L(C ,X) =
∑
i

pi`i =
∑
i

pi log2

(
1

zqi

)
=
∑
i

pi log2

(
1

zpi

pi

qi

)
=
∑
i

pi

[
log2

(
1

pi

)
+ log2

(
pi

qi

)
+ log2

(
1

z

)]
=
∑
i

pi log2
1

pi
+
∑
i

pi log2
pi

qi
+ log2

(
1

z

)∑
i

pi

= H(X) + D(p‖q) + log2
1

z
1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 6 / 20

Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X) = H(X) + D(p‖q) + log2
1

z

Thus, L(C ,X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X) ≥ H(X)

with equality only when C has code lengths `i = log2
1
pi

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 7 / 20

Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X) = H(X) + D(p‖q) + log2
1

z

Thus, L(C ,X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X) ≥ H(X)

with equality only when C has code lengths `i = log2
1
pi

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 7 / 20

Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X) = H(X) + D(p‖q) + log2
1

z

Thus, L(C ,X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X) ≥ H(X)

with equality only when C has code lengths `i = log2
1
pi

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 7 / 20

Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X) = H(X) + D(p‖q) + log2
1

z

Thus, L(C ,X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X) ≥ H(X)

with equality only when C has code lengths `i = log2
1
pi

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 7 / 20

Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X) = H(X) + D(p‖q) + log2
1

z

Thus, L(C ,X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X) ≥ H(X)

with equality only when C has code lengths `i = log2
1
pi

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 7 / 20

Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X) = H(X) + D(p‖q) + log2
1

z

Thus, L(C ,X) is minimal (and equal to the entropy H(X)) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X) ≥ H(X)

with equality only when C has code lengths `i = log2
1
pi

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 7 / 20

Shannon Codes

But log2
1
pi

is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with PX = {p1, . . . , pI} definea codelengths
` = {`1, . . . , `I} by

`i =

⌈
log2

1

pi

⌉
≥ log2

1

pi
.

A code C is called a Shannon code if it has codelengths `.

aHere dxe is “smallest integer not smaller than x”. e.g., d2.1e = 3, d5e = 5.

This gives us code lengths that are “closest” to log2
1
pi

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} so C = {0, 10, 11} is a Shannon
code (in fact, this is an optimal code)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} with Shannon code
C = {00, 10, 11} (or C = {01, 10, 11} . . .)

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 8 / 20

Shannon Codes

But log2
1
pi

is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with PX = {p1, . . . , pI} definea codelengths
` = {`1, . . . , `I} by

`i =

⌈
log2

1

pi

⌉
≥ log2

1

pi
.

A code C is called a Shannon code if it has codelengths `.

aHere dxe is “smallest integer not smaller than x”. e.g., d2.1e = 3, d5e = 5.

This gives us code lengths that are “closest” to log2
1
pi

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} so C = {0, 10, 11} is a Shannon
code (in fact, this is an optimal code)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} with Shannon code
C = {00, 10, 11} (or C = {01, 10, 11} . . .)

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 8 / 20

Shannon Codes

But log2
1
pi

is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with PX = {p1, . . . , pI} definea codelengths
` = {`1, . . . , `I} by

`i =

⌈
log2

1

pi

⌉
≥ log2

1

pi
.

A code C is called a Shannon code if it has codelengths `.

aHere dxe is “smallest integer not smaller than x”. e.g., d2.1e = 3, d5e = 5.

This gives us code lengths that are “closest” to log2
1
pi

Examples:
1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} so C = {0, 10, 11} is a Shannon

code (in fact, this is an optimal code)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} with Shannon code
C = {00, 10, 11} (or C = {01, 10, 11} . . .)

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 8 / 20

Shannon Codes

But log2
1
pi

is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with PX = {p1, . . . , pI} definea codelengths
` = {`1, . . . , `I} by

`i =

⌈
log2

1

pi

⌉
≥ log2

1

pi
.

A code C is called a Shannon code if it has codelengths `.

aHere dxe is “smallest integer not smaller than x”. e.g., d2.1e = 3, d5e = 5.

This gives us code lengths that are “closest” to log2
1
pi

Examples:
1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} so C = {0, 10, 11} is a Shannon

code (in fact, this is an optimal code)
2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} with Shannon code

C = {00, 10, 11} (or C = {01, 10, 11} . . .)

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 8 / 20

Shannon Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} and H(X) = 3
2 = L(C ,X)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} and
H(X) = log2 3 ≈ 1.58 ≤ L(C ,X) = 2 ≤ 2.58 ≈ H(X) + 1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 9 / 20

Shannon Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} and H(X) = 3
2 = L(C ,X)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} and
H(X) = log2 3 ≈ 1.58 ≤ L(C ,X) = 2 ≤ 2.58 ≈ H(X) + 1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 9 / 20

Shannon Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} and H(X) = 3
2 = L(C ,X)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} and
H(X) = log2 3 ≈ 1.58 ≤ L(C ,X) = 2 ≤ 2.58 ≈ H(X) + 1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 9 / 20

Shannon Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} and H(X) = 3
2 = L(C ,X)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} and
H(X) = log2 3 ≈ 1.58 ≤ L(C ,X) = 2 ≤ 2.58 ≈ H(X) + 1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 9 / 20

Shannon Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} and H(X) = 3
2 = L(C ,X)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} and
H(X) = log2 3 ≈ 1.58 ≤ L(C ,X) = 2 ≤ 2.58 ≈ H(X) + 1

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 9 / 20

1 Expected Code Length
Minimising Expected Code Length
Shannon Coding

2 The Source Coding Theorem for Symbol Codes

3 Huffman Coding
Algorithm and Examples
Advantages and Disadvantages

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 10 / 20

The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) ≤ L(C ,X) ≤ H(X) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X) = 1

Shannon codes do not necessarily have smallest expected length

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20

The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) ≤ L(C ,X) ≤ H(X) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X) = 1

Shannon codes do not necessarily have smallest expected length

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20

The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) ≤ L(C ,X) ≤ H(X) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X) = 1

Shannon codes do not necessarily have smallest expected length

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20

The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X) ≤ L(C ,X) ≤ H(X) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X) = 1

Shannon codes do not necessarily have smallest expected length
Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20

1 Expected Code Length
Minimising Expected Code Length
Shannon Coding

2 The Source Coding Theorem for Symbol Codes

3 Huffman Coding
Algorithm and Examples
Advantages and Disadvantages

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 12 / 20

Constructing a Huffman Code

Huffman Coding is a procedure for making provably optimal prefix codes.
It assigns the longest codewords to least probable symbols by building up
the code by repeatedly merging the least probable symbols.

HUFFMAN(A,P):

1 If |A| = 2 return C = {0, 1}; else

2 Let a, a′ ∈ A be least probable symbols.

3 Let A′ = A− {a, a′} ∪ {aa′}
4 Let P ′ = P − {pa, pa′} ∪ {paa′} where paa′ = pa + pa′

5 Compute C ′ = HUFFMAN(A′,P ′)
6 Define C by

I c(a) = c ′(aa′)0
I c(a′) = c ′(aa′)1
I c(x) = c ′(x) for x ∈ A′

7 Return C

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 13 / 20

Huffman Coding in Python

See full example code with examples at:
https://gist.github.com/mreid/fdf6353ec39d050e972b

def huffman (p) :
’ ’ ’ Return a Huffman code f o r an ensemble w i th d i s t r i b u t i o n p . ’ ’ ’
a s s e r t (sum(p . v a l u e s ()) == 1 . 0) # Ensure p r o b a b i l i t i e s sum to 1

Base ca se o f on l y two symbols , a s s i g n 0 or 1 a r b i t r a r i l y
i f (l e n (p) == 2) :

r e t u r n d i c t (z i p (p . key s () , [’ 0 ’ , ’ 1 ’]))

Create a new d i s t r i b u t i o n by merg ing l owe s t prob . p a i r
p pr ime = p . copy ()
a1 , a2 = l ow e s t p r o b p a i r (p)
p1 , p2 = p pr ime . pop (a1) , p p r ime . pop (a2)
p pr ime [a1 + a2] = p1 + p2

Recur se and c o n s t r u c t code on new d i s t r i b u t i o n
c = huffman (p pr ime)
ca1a2 = c . pop (a1 + a2)
c [a1] , c [a2] = ca1a2 + ’ 0 ’ , ca1a2 + ’ 1 ’

r e t u r n c

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 14 / 20

https://gist.github.com/mreid/fdf6353ec39d050e972b

Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}
The constructed code has L(C ,X) = 1

2 × 1 + 1
4 × (2 + 2) = 1.5.

The entropy is H(X) = 1.5.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 15 / 20

Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}
The constructed code has L(C ,X) = 1

2 × 1 + 1
4 × (2 + 2) = 1.5.

The entropy is H(X) = 1.5.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 15 / 20

Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}
The constructed code has L(C ,X) = 1

2 × 1 + 1
4 × (2 + 2) = 1.5.

The entropy is H(X) = 1.5.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 15 / 20

Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}
The constructed code has L(C ,X) = 1

2 × 1 + 1
4 × (2 + 2) = 1.5.

The entropy is H(X) = 1.5.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 15 / 20

Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}

The constructed code has L(C ,X) = 1
2 × 1 + 1

4 × (2 + 2) = 1.5.
The entropy is H(X) = 1.5.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 15 / 20

Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}

The constructed code has L(C ,X) = 1
2 × 1 + 1

4 × (2 + 2) = 1.5.
The entropy is H(X) = 1.5.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 15 / 20

Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}
The constructed code has L(C ,X) = 1

2 × 1 + 1
4 × (2 + 2) = 1.5.

The entropy is H(X) = 1.5.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 15 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}

I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}

Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1

Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X) ≈ 2.29.

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 16 / 20

Huffman Coding: Example 2
As a diagram

AX = {a, b, c, d, e} and PX = {0.25, 0.25, 0.2, 0.15, 0.15}

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.5: Optimal source coding with symbol codes: Huffman coding 99

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX | − 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.

0.25

0.25

0.2

0.15

0.15

0.25

0.25

0.2

0.3

0.25

0.45

0.3

0.55

0.45

1.0a

b

c

d

e

0

1

0

1

0

1

0

1

!
!

!
!

"
"

"
"
"

!
!

x step 1 step 2 step 3 step 4

The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00

b 0.25 2.0 2 10

c 0.2 2.3 2 11

d 0.15 2.7 3 010

e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.

From Example 5.15 of MacKay

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 17 / 20

Huffman Coding: Example 3
English letters – Monogram statistics

ai pi log2
1
pi

li c(ai)

a 0.0575 4.1 4 0000
b 0.0128 6.3 6 001000
c 0.0263 5.2 5 00101
d 0.0285 5.1 5 10000
e 0.0913 3.5 4 1100
f 0.0173 5.9 6 111000
g 0.0133 6.2 6 001001
h 0.0313 5.0 5 10001
i 0.0599 4.1 4 1001
j 0.0006 10.7 10 1101000000
k 0.0084 6.9 7 1010000
l 0.0335 4.9 5 11101
m 0.0235 5.4 6 110101
n 0.0596 4.1 4 0001
o 0.0689 3.9 4 1011
p 0.0192 5.7 6 111001
q 0.0008 10.3 9 110100001
r 0.0508 4.3 5 11011
s 0.0567 4.1 4 0011
t 0.0706 3.8 4 1111
u 0.0334 4.9 5 10101
v 0.0069 7.2 8 11010001
w 0.0119 6.4 7 1101001
x 0.0073 7.1 7 1010001
y 0.0164 5.9 6 101001
z 0.0007 10.4 10 1101000001
– 0.1928 2.4 2 01

p
f

i

o
e

t

u
y

r

l

s
−

w
v
q

m

a
n

c

d
h

g
b

k
x

j
z

x P (x)

a 0.0575
b 0.0128
c 0.0263
d 0.0285
e 0.0913
f 0.0173
g 0.0133
h 0.0313
i 0.0599
j 0.0006
k 0.0084
l 0.0335
m 0.0235
n 0.0596
o 0.0689
p 0.0192
q 0.0008
r 0.0508
s 0.0567
t 0.0706
u 0.0334
v 0.0069
w 0.0119
x 0.0073
y 0.0164
z 0.0007
− 0.1928

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 18 / 20

Advantages and Disadvantages

Advantages:

Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]

Algorithm is simple and efficient

Disadvantages:

Assumes a fixed distribution of symbols

The extra bit in the SCT
I If H(X) is large – not a problem
I If H(X) is small (e.g., ∼ 1 bit for English) codes are 2× optimal

Huffman codes are the best possible symbol code
but symbol coding is not always the best type of code

Next Time: Stream Codes!

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 19 / 20

Advantages and Disadvantages

Advantages:

Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]

Algorithm is simple and efficient

Disadvantages:

Assumes a fixed distribution of symbols

The extra bit in the SCT
I If H(X) is large – not a problem
I If H(X) is small (e.g., ∼ 1 bit for English) codes are 2× optimal

Huffman codes are the best possible symbol code
but symbol coding is not always the best type of code

Next Time: Stream Codes!

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 19 / 20

Advantages and Disadvantages

Advantages:

Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]

Algorithm is simple and efficient

Disadvantages:

Assumes a fixed distribution of symbols

The extra bit in the SCT
I If H(X) is large – not a problem
I If H(X) is small (e.g., ∼ 1 bit for English) codes are 2× optimal

Huffman codes are the best possible symbol code
but symbol coding is not always the best type of code

Next Time: Stream Codes!

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 19 / 20

Summary

Key Concepts:

1 The expected code length L(C ,X) =
∑

i pi`i
2 Probabilities and codelengths are interchangeable

qi = 2−`i ⇐⇒ `i = log2
1
qi

3 Relative entropy D(p‖q) measures excess bits over the entropy H(X)
for using the wrong code q for probabilities p

4 The Source Coding Theorem for symbol codes: There exists prefix

(Shannon) code C for ensemble X with `i =
⌈

log2
1
pi

⌉
so that

H(X) ≤ L(C ,X) ≤ H(X) + 1

5 Huffman codes are optimal symbol codes

Reading:

§5.3-5.7 of MacKay

§5.3-5.4, §5.6 & §5.8 of Cover & Thomas

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 20 / 20

	Expected Code Length
	Minimising Expected Code Length
	Shannon Coding

	The Source Coding Theorem for Symbol Codes
	Huffman Coding
	Algorithm and Examples
	Advantages and Disadvantages

