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Expected Code Length

Expected Code Length

The expected length for a code C for ensemble X with
AX = {a1, . . . , aI} and PX = {p1, . . . , pI} is

L(C ,X ) = Ex∼P [`(x)] =
∑
x∈AX

P(x) `(x) =
I∑

i=1

pi `i

Example: X has AX = {a, b, c, d} and P = {12 , 14 , 18 , 18}

1 The code C1 = {0001, 0010, 0100, 1000} has

L(C1,X ) =
4∑

i=1

pi `i = 4

2 The code C2 = {0, 10, 110, 111} has

L(C2,X ) =
4∑

i=1

pi `i = 1
2 × 1 + 1

4 × 2 + 1
8 × 3 + 1

8 × 3 = 1.25
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Code Lengths and Probabilities

The Kraft inequality says that {`1, . . . , `I} are prefix code lengths iff

I∑
i=1

2−`i ≤ 1

Probabilities from Code Lengths

Given code lengths ` = {`1, . . . , `I} such that
∑I

i=1 2−`i ≤ 1 we define
q = {q1, . . . , qI} the probabilities for ` by

qi
def
=

1

z
2−`i where z

def
=
∑

i2
−`i ensure that qi satisfy

∑
iqi = 1

Note: this implies `i = log2
1
zqi

Examples:

1 Lengths {1, 2, 2} give z = 1 so q1 = 1
2 , q2 = 1

4 , and q3 = 1
4

2 Lengths {2, 2, 3} give z = 5
8 so q1 = 2

5 , q2 = 2
5 , and q3 = 1

5
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Minimising Expected Code Length

Given an ensemble X with probabilities PX = p = {p1, . . . , pI} how can
we minimise the expected code length?

Suppose we use code C with lengths ` = {`1, . . . , `I} and
corresponding probabilities q = {q1, . . . , qI} with qi = 1

z 2−`i . Then,

L(C ,X ) =
∑
i

pi`i =
∑
i

pi log2

(
1

zqi

)
=
∑
i

pi log2

(
1

zpi

pi

qi

)
=
∑
i

pi

[
log2

(
1

pi

)
+ log2

(
pi

qi

)
+ log2

(
1

z

)]
=
∑
i

pi log2
1

pi
+
∑
i

pi log2
pi

qi
+ log2

(
1

z

)∑
i

pi

= H(X ) + D(p‖q) + log2
1

z
1
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Minimising Expected Code Length

So if q = {q1, . . . , qI} are the probabilities for the code lengths of C
then under ensemble X with probabilities p = {p1, . . . , pI}

L(C ,X ) = H(X ) + D(p‖q) + log2
1

z

Thus, L(C ,X ) is minimal (and equal to the entropy H(X )) if we can
choose code lengths so that D(p‖q) = 0 and log2

1
z = 0

But the relative entropy D(p‖q) ≥ 0 with D(p‖q) = 0 iff q = p
(Gibb’s inequality)

For q = p, we have z
def
=
∑

i qi =
∑

i pi = 1 and so log2
1
z = 0

We have shown that for a code C with lengths corresponding to q

L(C ,X ) ≥ H(X )

with equality only when C has code lengths `i = log2
1
pi
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Shannon Codes

But log2
1
pi

is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with PX = {p1, . . . , pI} definea codelengths
` = {`1, . . . , `I} by

`i =

⌈
log2

1

pi

⌉
≥ log2

1

pi
.

A code C is called a Shannon code if it has codelengths `.

aHere dxe is “smallest integer not smaller than x”. e.g., d2.1e = 3, d5e = 5.

This gives us code lengths that are “closest” to log2
1
pi

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} so C = {0, 10, 11} is a Shannon
code (in fact, this is an optimal code)

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} with Shannon code
C = {00, 10, 11} (or C = {01, 10, 11} . . . )
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Shannon Codes

Since dxe is the smallest integer bigger than or equal to x it must be the
case that x ≤ dxe ≤ x + 1.

Therefore, if we create a Shannon code C for p = {p1, . . . , pI} with

`i =
⌈

log2
1
pi

⌉
≤ log2

1
pi

+ 1 it will satisfy

L(C ,X ) =
∑

ipi`i ≤
∑

ipi log2
1
pi

+ 1 =
∑

ipi log2
1
pi

+
∑

ipi

= H(X ) + 1

Furthermore, since `i ≥ − log2 pi we have 2−`i ≤ 2log2 pi = pi , so∑
i 2−`i ≤∑i pi = 1. By Kraft there is a prefix code with lengths `i

Examples:

1 If PX = {12 , 14 , 14} then ` = {1, 2, 2} and H(X ) = 3
2 = L(C ,X )

2 If PX = {13 , 13 , 13} then ` = {2, 2, 2} and
H(X ) = log2 3 ≈ 1.58 ≤ L(C ,X ) = 2 ≤ 2.58 ≈ H(X ) + 1
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The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X ) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X ) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X ) = 1

Shannon codes do not necessarily have smallest expected length

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20



The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X ) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X ) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X ) = 1

Shannon codes do not necessarily have smallest expected length

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20



The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X ) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X ) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X ) = 1

Shannon codes do not necessarily have smallest expected length

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20



The Source Coding Theorem for Symbol Codes

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1.

In particular, Shannon codes C — those with lengths `i =
⌈

log2
1
pi

⌉
—

have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

Example:Consider p1 = 0.0001 and p2 = 0.9999. (Note H(X ) ≈ 0.0013)

The Shannon code C has lengths `1 = dlog2 10000e = 14 and
`2 =

⌈
log2

10000
9999

⌉
= 1

The expected length is L(C ,X ) = 14× 0.0001 + 1× 0.9999 = 1.0013
But clearly C ′ = {0, 1} is a prefix code and L(C ′,X ) = 1

Shannon codes do not necessarily have smallest expected length
Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 11 / 20



1 Expected Code Length
Minimising Expected Code Length
Shannon Coding

2 The Source Coding Theorem for Symbol Codes

3 Huffman Coding
Algorithm and Examples
Advantages and Disadvantages

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory September 3rd, 2014 12 / 20



Constructing a Huffman Code

Huffman Coding is a procedure for making provably optimal prefix codes.
It assigns the longest codewords to least probable symbols by building up
the code by repeatedly merging the least probable symbols.

HUFFMAN(A,P):

1 If |A| = 2 return C = {0, 1}; else

2 Let a, a′ ∈ A be least probable symbols.

3 Let A′ = A− {a, a′} ∪ {aa′}
4 Let P ′ = P − {pa, pa′} ∪ {paa′} where paa′ = pa + pa′

5 Compute C ′ = HUFFMAN(A′,P ′)
6 Define C by

I c(a) = c ′(aa′)0
I c(a′) = c ′(aa′)1
I c(x) = c ′(x) for x ∈ A′

7 Return C
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Huffman Coding in Python

See full example code with examples at:
https://gist.github.com/mreid/fdf6353ec39d050e972b

def huffman ( p ) :
’ ’ ’ Return a Huffman code f o r an ensemble w i th d i s t r i b u t i o n p . ’ ’ ’
a s s e r t ( sum(p . v a l u e s ( ) ) == 1 . 0 ) # Ensure p r o b a b i l i t i e s sum to 1

# Base ca se o f on l y two symbols , a s s i g n 0 or 1 a r b i t r a r i l y
i f ( l e n ( p ) == 2 ) :

r e t u r n d i c t ( z i p ( p . key s ( ) , [ ’ 0 ’ , ’ 1 ’ ] ) )

# Create a new d i s t r i b u t i o n by merg ing l owe s t prob . p a i r
p pr ime = p . copy ( )
a1 , a2 = l ow e s t p r o b p a i r ( p )
p1 , p2 = p pr ime . pop ( a1 ) , p p r ime . pop ( a2 )
p pr ime [ a1 + a2 ] = p1 + p2

# Recur se and c o n s t r u c t code on new d i s t r i b u t i o n
c = huffman ( p pr ime )
ca1a2 = c . pop ( a1 + a2 )
c [ a1 ] , c [ a2 ] = ca1a2 + ’ 0 ’ , ca1a2 + ’ 1 ’

r e t u r n c
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Huffman Coding: Example 1

Start with A = {a, b, c} and P = {12 , 14 , 14}
HUFFMAN(A,P):

I b and c are least probable with pa = pb = 1
4

I A′ = {a,bc} and P ′ = { 12 , 1
2}

I Call HUFFMAN(A′,P ′):

|A| = |{a, bc}| = 2
Return code with c ′(a) = 0, c ′(bc) = 1

I Define

c(b) = c ′(bc)0 = 10
c(c) = c ′(bc)1 = 11
c(a) = c ′(a) = 0

I Return C = {0, 10, 11}
The constructed code has L(C ,X ) = 1

2 × 1 + 1
4 × (2 + 2) = 1.5.

The entropy is H(X ) = 1.5.
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Huffman Coding: Example 2

Start with A = {a, b, c, d, e} and P = {0.25, 0.25, 0.2, 0.15, 0.15}
HUFFMAN(A,P):

I A′ = {a, b, c,de} and P ′ = {0.25, 0.25, 0.2, 0.3}
I Call HUFFMAN(A′,P ′):

A′′ = {a, bc, de} and P ′′ = {0.25, 0.45, 0.3}
Call HUFFMAN(A′′,P ′′):
- A′′′ = {ade, bc} and P ′′′ = {0.55, 0.45}
- Return c ′′′(ade) = 0, c ′′′(bc) = 1
Return c ′′(a) = 00, c ′′(bc) = 1, c ′′(de) = 01

I Return c ′(a) = 00, c ′(b) = 10, c ′(c) = 11, c ′(de) = 01

Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is C = {00, 10, 11, 010, 011}.
It has L(C ,X ) = 2× (0.25 + 0.25 + 0.2) + 3× (0.15 + 0.15) = 2.3.
Note that H(X ) ≈ 2.29.
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Huffman Coding: Example 2
As a diagram

AX = {a, b, c, d, e} and PX = {0.25, 0.25, 0.2, 0.15, 0.15}
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The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX | − 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.
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0.55
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1
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"
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x step 1 step 2 step 3 step 4

The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00

b 0.25 2.0 2 10

c 0.2 2.3 2 11

d 0.15 2.7 3 010

e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.

From Example 5.15 of MacKay
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Huffman Coding: Example 3
English letters – Monogram statistics

ai pi log2
1
pi

li c(ai)

a 0.0575 4.1 4 0000
b 0.0128 6.3 6 001000
c 0.0263 5.2 5 00101
d 0.0285 5.1 5 10000
e 0.0913 3.5 4 1100
f 0.0173 5.9 6 111000
g 0.0133 6.2 6 001001
h 0.0313 5.0 5 10001
i 0.0599 4.1 4 1001
j 0.0006 10.7 10 1101000000
k 0.0084 6.9 7 1010000
l 0.0335 4.9 5 11101
m 0.0235 5.4 6 110101
n 0.0596 4.1 4 0001
o 0.0689 3.9 4 1011
p 0.0192 5.7 6 111001
q 0.0008 10.3 9 110100001
r 0.0508 4.3 5 11011
s 0.0567 4.1 4 0011
t 0.0706 3.8 4 1111
u 0.0334 4.9 5 10101
v 0.0069 7.2 8 11010001
w 0.0119 6.4 7 1101001
x 0.0073 7.1 7 1010001
y 0.0164 5.9 6 101001
z 0.0007 10.4 10 1101000001
– 0.1928 2.4 2 01

p
f

i

o
e

t

u
y

r

l

s
−

w
v
q

m

a
n

c

d
h

g
b

k
x

j
z

x P (x)

a 0.0575
b 0.0128
c 0.0263
d 0.0285
e 0.0913
f 0.0173
g 0.0133
h 0.0313
i 0.0599
j 0.0006
k 0.0084
l 0.0335
m 0.0235
n 0.0596
o 0.0689
p 0.0192
q 0.0008
r 0.0508
s 0.0567
t 0.0706
u 0.0334
v 0.0069
w 0.0119
x 0.0073
y 0.0164
z 0.0007
− 0.1928
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Advantages and Disadvantages

Advantages:

Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]

Algorithm is simple and efficient

Disadvantages:

Assumes a fixed distribution of symbols

The extra bit in the SCT
I If H(X ) is large – not a problem
I If H(X ) is small (e.g., ∼ 1 bit for English) codes are 2× optimal

Huffman codes are the best possible symbol code
but symbol coding is not always the best type of code

Next Time: Stream Codes!
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Summary

Key Concepts:

1 The expected code length L(C ,X ) =
∑

i pi`i
2 Probabilities and codelengths are interchangeable

qi = 2−`i ⇐⇒ `i = log2
1
qi

3 Relative entropy D(p‖q) measures excess bits over the entropy H(X )
for using the wrong code q for probabilities p

4 The Source Coding Theorem for symbol codes: There exists prefix

(Shannon) code C for ensemble X with `i =
⌈

log2
1
pi

⌉
so that

H(X ) ≤ L(C ,X ) ≤ H(X ) + 1

5 Huffman codes are optimal symbol codes

Reading:

§5.3-5.7 of MacKay

§5.3-5.4, §5.6 & §5.8 of Cover & Thomas
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