COMP2610/6261 - Information Theory Lecture 14: Source Coding Theorem for Symbol Codes

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

September 3rd, 2014

- Minimising Expected Code Length
- Shannon Coding

2 The Source Coding Theorem for Symbol Codes

3 Huffman Coding

- Algorithm and Examples
- Advantages and Disadvantages

- Minimising Expected Code Length
- Shannon Coding

The Source Coding Theorem for Symbol Codes

3 Huffman Coding

- Algorithm and Examples
- Advantages and Disadvantages

Expected Code Length

The **expected length** for a code *C* for ensemble *X* with $A_X = \{a_1, \ldots, a_I\}$ and $\mathcal{P}_X = \{p_1, \ldots, p_I\}$ is

$$L(C,X) = \mathbb{E}_{x \sim P} \left[\ell(x) \right] = \sum_{x \in \mathcal{A}_X} P(x) \,\ell(x) = \sum_{i=1}^{l} p_i \,\ell_i$$

Expected Code Length

The **expected length** for a code *C* for ensemble *X* with $A_X = \{a_1, \ldots, a_l\}$ and $\mathcal{P}_X = \{p_1, \ldots, p_l\}$ is

$$L(C,X) = \mathbb{E}_{x \sim P} \left[\ell(x) \right] = \sum_{x \in \mathcal{A}_X} P(x) \,\ell(x) = \sum_{i=1}^{l} p_i \,\ell_i$$

Example: X has $A_X = \{a, b, c, d\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$ The code $C_1 = \{0001, 0010, 0100, 1000\}$ has

$$L(C_1, X) = \sum_{i=1}^4 p_i \ell_i = 4$$

Expected Code Length

The **expected length** for a code *C* for ensemble *X* with $A_X = \{a_1, \ldots, a_l\}$ and $\mathcal{P}_X = \{p_1, \ldots, p_l\}$ is

$$L(C,X) = \mathbb{E}_{x \sim P} \left[\ell(x) \right] = \sum_{x \in \mathcal{A}_X} P(x) \,\ell(x) = \sum_{i=1}^{l} p_i \,\ell_i$$

Example: X has $A_X = \{a, b, c, d\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$ The code $C_1 = \{0001, 0010, 0100, 1000\}$ has

$$L(C_1, X) = \sum_{i=1}^{4} p_i \, \ell_i = 4$$

2 The code $C_2 = \{0, 10, 110, 111\}$ has

$$L(C_2, X) = \sum_{i=1}^{4} p_i \,\ell_i = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = 1.25$$

Code Lengths and Probabilities

The Kraft inequality says that $\{\ell_1, \ldots, \ell_I\}$ are prefix code lengths iff

 $\sum_{i=1}^{l} 2^{-\ell_i} \le 1$

Probabilities from Code Lengths

Given code lengths $\ell = \{\ell_1, \ldots, \ell_l\}$ such that $\sum_{i=1}^l 2^{-\ell_i} \le 1$ we define $\mathbf{q} = \{q_1, \ldots, q_l\}$ the probabilities for ℓ by

$$q_i \stackrel{\text{\tiny def}}{=} \frac{1}{z} 2^{-\ell_i}$$
 where $z \stackrel{\text{\tiny def}}{=} \sum_i 2^{-\ell_i}$ ensure that q_i satisfy $\sum_i q_i = 1$

Note: this implies $\ell_i = \log_2 \frac{1}{zq_i}$

Code Lengths and Probabilities

The Kraft inequality says that $\{\ell_1,\ldots,\ell_I\}$ are prefix code lengths iff

 $\sum_{i=1}^{l} 2^{-\ell_i} \le 1$

Probabilities from Code Lengths

Given code lengths $\ell = \{\ell_1, \ldots, \ell_l\}$ such that $\sum_{i=1}^l 2^{-\ell_i} \le 1$ we define $\mathbf{q} = \{q_1, \ldots, q_l\}$ the probabilities for ℓ by

$$q_i \stackrel{\text{\tiny def}}{=} \frac{1}{z} 2^{-\ell_i}$$
 where $z \stackrel{\text{\tiny def}}{=} \sum_i 2^{-\ell_i}$ ensure that q_i satisfy $\sum_i q_i = 1$

Note: this implies $\ell_i = \log_2 \frac{1}{zq_i}$

Examples:

• Lengths
$$\{1,2,2\}$$
 give $z=1$ so $q_1=rac{1}{2}$, $q_2=rac{1}{4}$, and $q_3=rac{1}{4}$

Code Lengths and Probabilities

The Kraft inequality says that $\{\ell_1,\ldots,\ell_I\}$ are prefix code lengths iff

 $\sum_{i=1}^{l} 2^{-\ell_i} \le 1$

Probabilities from Code Lengths

Given code lengths $\ell = \{\ell_1, \ldots, \ell_l\}$ such that $\sum_{i=1}^l 2^{-\ell_i} \le 1$ we define $\mathbf{q} = \{q_1, \ldots, q_l\}$ the probabilities for ℓ by

$$q_i \stackrel{\text{def}}{=} \frac{1}{z} 2^{-\ell_i}$$
 where $z \stackrel{\text{def}}{=} \sum_i 2^{-\ell_i}$ ensure that q_i satisfy $\sum_i q_i = 1$

Note: this implies $\ell_i = \log_2 \frac{1}{zq_i}$

Examples:

• Lengths {1,2,2} give
$$z = 1$$
 so $q_1 = \frac{1}{2}$, $q_2 = \frac{1}{4}$, and $q_3 = \frac{1}{4}$
• Lengths {2,2,3} give $z = \frac{5}{8}$ so $q_1 = \frac{2}{5}$, $q_2 = \frac{2}{5}$, and $q_3 = \frac{1}{5}$

Given an ensemble X with probabilities $\mathcal{P}_X = \mathbf{p} = \{p_1, \dots, p_l\}$ how can we minimise the expected code length?

Given an ensemble X with probabilities $\mathcal{P}_X = \mathbf{p} = \{p_1, \dots, p_I\}$ how can we minimise the expected code length?

• Suppose we use code C with lengths $\ell = \{\ell_1, \dots, \ell_I\}$ and corresponding probabilities $\mathbf{q} = \{q_1, \dots, q_I\}$ with $q_i = \frac{1}{z}2^{-\ell_i}$. Then,

$$L(C, X) = \sum_{i} p_{i}\ell_{i} = \sum_{i} p_{i}\log_{2}\left(\frac{1}{zq_{i}}\right)$$
$$= \sum_{i} p_{i}\log_{2}\left(\frac{1}{zp_{i}}\frac{p_{i}}{q_{i}}\right)$$
$$= \sum_{i} p_{i}\left[\log_{2}\left(\frac{1}{p_{i}}\right) + \log_{2}\left(\frac{p_{i}}{q_{i}}\right) + \log_{2}\left(\frac{1}{z}\right)\right]$$
$$= \sum_{i} p_{i}\log_{2}\frac{1}{p_{i}} + \sum_{i} p_{i}\log_{2}\frac{p_{i}}{q_{i}} + \log_{2}\left(\frac{1}{z}\right)\sum_{i} p_{i}$$
$$= H(X) + D(\mathbf{p}||\mathbf{q}) + \log_{2}\frac{1}{z} - 1$$

$$L(C, X) = H(X) + D(p||q) + \log_2 \frac{1}{z}$$

So if q = {q₁,..., q_l} are the probabilities for the code lengths of C then under ensemble X with probabilities p = {p₁,..., p_l}

$$L(C, X) = H(X) + D(p||q) + \log_2 \frac{1}{z}$$

• Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D(\mathbf{p}||\mathbf{q}) = 0$ and $\log_2 \frac{1}{z} = 0$

$$L(C, X) = H(X) + D(p||q) + \log_2 \frac{1}{z}$$

- Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D(\mathbf{p}||\mathbf{q}) = 0$ and $\log_2 \frac{1}{z} = 0$
- But the relative entropy $D(\mathbf{p} \| \mathbf{q}) \ge 0$ with $D(\mathbf{p} \| \mathbf{q}) = 0$ iff $\mathbf{q} = \mathbf{p}$ (Gibb's inequality)

$$L(C, X) = H(X) + D(p||q) + \log_2 \frac{1}{z}$$

- Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D(\mathbf{p}||\mathbf{q}) = 0$ and $\log_2 \frac{1}{z} = 0$
- But the relative entropy $D(\mathbf{p} \| \mathbf{q}) \ge 0$ with $D(\mathbf{p} \| \mathbf{q}) = 0$ iff $\mathbf{q} = \mathbf{p}$ (Gibb's inequality)
- For $\mathbf{q} = \mathbf{p}$, we have $z \stackrel{\text{def}}{=} \sum_{i} q_i = \sum_{i} p_i = 1$ and so $\log_2 \frac{1}{z} = 0$

$$L(C, X) = H(X) + D(p||q) + \log_2 \frac{1}{z}$$

- Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D(\mathbf{p}||\mathbf{q}) = 0$ and $\log_2 \frac{1}{z} = 0$
- But the relative entropy $D(\mathbf{p} \| \mathbf{q}) \ge 0$ with $D(\mathbf{p} \| \mathbf{q}) = 0$ iff $\mathbf{q} = \mathbf{p}$ (Gibb's inequality)
- For $\mathbf{q} = \mathbf{p}$, we have $z \stackrel{\text{def}}{=} \sum_{i} q_i = \sum_{i} p_i = 1$ and so $\log_2 \frac{1}{z} = 0$

So if q = {q₁,..., q_I} are the probabilities for the code lengths of C then under ensemble X with probabilities p = {p₁,..., p_I}

$$L(C, X) = H(X) + D(p||q) + \log_2 \frac{1}{z}$$

- Thus, L(C, X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D(\mathbf{p}||\mathbf{q}) = 0$ and $\log_2 \frac{1}{z} = 0$
- But the relative entropy $D(\mathbf{p} \| \mathbf{q}) \ge 0$ with $D(\mathbf{p} \| \mathbf{q}) = 0$ iff $\mathbf{q} = \mathbf{p}$ (Gibb's inequality)

• For
$$\mathbf{q} = \mathbf{p}$$
, we have $z \stackrel{\text{def}}{=} \sum_i q_i = \sum_i p_i = 1$ and so $\log_2 \frac{1}{z} = 0$

We have shown that for a code C with lengths corresponding to \mathbf{q}

$$L(C,X) \geq H(X)$$

with equality only when C has code lengths $\ell_i = \log_2 \frac{1}{p_i}$

But $\log_2 \frac{1}{p_i}$ is not always an integer—a problem for code lengths!

But $\log_2 \frac{1}{p_i}$ is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with $\mathcal{P}_X = \{p_1, \dots, p_I\}$ define^a codelengths $\ell = \{\ell_1, \dots, \ell_I\}$ by

$$\mathcal{E}_i = \left|\log_2 \frac{1}{p_i}\right| \geq \log_2 \frac{1}{p_i}.$$

A code C is called a **Shannon code** if it has codelengths ℓ .

^aHere $\lceil x \rceil$ is "smallest integer not smaller than x". e.g., $\lceil 2.1 \rceil = 3$, $\lceil 5 \rceil = 5$.

This gives us code lengths that are "closest" to $\log_2 \frac{1}{p_i}$

But $\log_2 \frac{1}{p_i}$ is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with $\mathcal{P}_X = \{p_1, \dots, p_I\}$ define^a codelengths $\ell = \{\ell_1, \dots, \ell_I\}$ by

$$\mathcal{E}_i = \left|\log_2 \frac{1}{p_i}\right| \geq \log_2 \frac{1}{p_i}.$$

A code C is called a **Shannon code** if it has codelengths ℓ .

^aHere $\lceil x \rceil$ is "smallest integer not smaller than x". e.g., $\lceil 2.1 \rceil = 3$, $\lceil 5 \rceil = 5$.

This gives us code lengths that are "closest" to $\log_2 \frac{1}{p_i}$ Examples:

• If $\mathcal{P}_X = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$ then $\ell = \{1, 2, 2\}$ so $C = \{0, 10, 11\}$ is a Shannon code (in fact, this is an *optimal* code)

But $\log_2 \frac{1}{p_i}$ is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with $\mathcal{P}_X = \{p_1, \dots, p_I\}$ define^a codelengths $\ell = \{\ell_1, \dots, \ell_I\}$ by

$$\ell_i = \left|\log_2 \frac{1}{p_i}\right| \geq \log_2 \frac{1}{p_i}.$$

A code C is called a **Shannon code** if it has codelengths ℓ .

^aHere $\lceil x \rceil$ is "smallest integer not smaller than x". e.g., $\lceil 2.1 \rceil = 3$, $\lceil 5 \rceil = 5$.

This gives us code lengths that are "closest" to $\log_2 \frac{1}{p_i}$ Examples:

- If $\mathcal{P}_X = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$ then $\ell = \{1, 2, 2\}$ so $C = \{0, 10, 11\}$ is a Shannon code (in fact, this is an *optimal* code)
- ② If $\mathcal{P}_X = \{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\}$ then $\ell = \{2, 2, 2\}$ with Shannon code $C = \{00, 10, 11\}$ (or $C = \{01, 10, 11\}$...)

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil \leq x + 1$.

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil \leq x + 1$.

Therefore, if we create a Shannon code *C* for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil \le \log_2 \frac{1}{p_i} + 1$ it will satisfy

 $L(C,X) = \sum_{i} p_i \ell_i \leq \sum_{i} p_i \log_2 \frac{1}{p_i} + 1 = \sum_{i} p_i \log_2 \frac{1}{p_i} + \sum_{i} p_i$ = H(X) + 1

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil \leq x + 1$.

Therefore, if we create a Shannon code *C* for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil \le \log_2 \frac{1}{p_i} + 1$ it will satisfy $L(C, X) = \sum p_i \ell_i \le \sum p_i \log_2 \frac{1}{2} + 1 = \sum p_i \log_2 \frac{1}{2} + \sum p_i$

Furthermore, since $\ell_i \ge -\log_2 p_i$ we have $2^{-\ell_i} \le 2^{\log_2 p_i} = p_i$, so $\sum_i 2^{-\ell_i} \le \sum_i p_i = 1$. By Kraft there is a *prefix code* with lengths ℓ_i

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil \leq x + 1$.

Therefore, if we create a Shannon code *C* for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil \le \log_2 \frac{1}{p_i} + 1$ it will satisfy $L(C, X) = \sum p_i \ell_i \le \sum p_i \log_2 \frac{1}{2} + 1 = \sum p_i \log_2 \frac{1}{2} + \sum p_i$

Furthermore, since $\ell_i \ge -\log_2 p_i$ we have $2^{-\ell_i} \le 2^{\log_2 p_i} = p_i$, so $\sum_i 2^{-\ell_i} \le \sum_i p_i = 1$. By Kraft there is a *prefix code* with lengths ℓ_i

Examples:

• If
$$\mathcal{P}_X = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$$
 then $\ell = \{1, 2, 2\}$ and $H(X) = \frac{3}{2} = L(C, X)$

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil \leq x + 1$.

Therefore, if we create a Shannon code *C* for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil \le \log_2 \frac{1}{p_i} + 1$ it will satisfy

$$L(C,X) = \sum_{i} p_i \ell_i \leq \sum_{i} p_i \log_2 \frac{1}{p_i} + 1 = \sum_{i} p_i \log_2 \frac{1}{p_i} + \sum_{i} p_i$$
$$= H(X) + 1$$

Furthermore, since $\ell_i \ge -\log_2 p_i$ we have $2^{-\ell_i} \le 2^{\log_2 p_i} = p_i$, so $\sum_i 2^{-\ell_i} \le \sum_i p_i = 1$. By Kraft there is a *prefix code* with lengths ℓ_i

Examples:

- Minimising Expected Code Length
- Shannon Coding

2 The Source Coding Theorem for Symbol Codes

3 Huffman Coding

- Algorithm and Examples
- Advantages and Disadvantages

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a *prefix code* C such that

 $H(X) \leq L(C, X) \leq H(X) + 1.$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$ — have expected code length within 1 bit of the entropy.

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a *prefix code* C such that

 $H(X) \leq L(C,X) \leq H(X) + 1.$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$ — have expected code length within 1 bit of the entropy.

This is good, but is it optimal?

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a *prefix code* C such that

 $H(X) \leq L(C, X) \leq H(X) + 1.$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left| \log_2 \frac{1}{p_i} \right|$ — have expected code length within 1 bit of the entropy.

This is good, but is it **optimal**?

Example: Consider $p_1 = 0.0001$ and $p_2 = 0.9999$. (Note $H(X) \approx 0.0013$)

- The Shannon code C has lengths $\ell_1 = \lceil \log_2 10000 \rceil = 14$ and $\ell_2 = \lceil \log_2 \frac{10000}{9999} \rceil = 1$
- The expected length is $L(C, X) = 14 \times 0.0001 + 1 \times 0.9999 = 1.0013$
- But clearly $C' = \{0,1\}$ is a prefix code and L(C',X) = 1

The previous arguments have established the:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a *prefix code* C such that

 $H(X) \leq L(C, X) \leq H(X) + 1.$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$ — have expected code length within 1 bit of the entropy.

This is good, but is it **optimal**?

Example: Consider $p_1 = 0.0001$ and $p_2 = 0.9999$. (Note $H(X) \approx 0.0013$)

- The Shannon code C has lengths $\ell_1 = \lceil \log_2 10000 \rceil = 14$ and $\ell_2 = \lceil \log_2 \frac{10000}{9999} \rceil = 1$
- The expected length is $L(C, X) = 14 \times 0.0001 + 1 \times 0.9999 = 1.0013$
- But clearly $C' = \{0,1\}$ is a prefix code and L(C',X) = 1

Shannon codes do not necessarily have smallest expected length

- Minimising Expected Code Length
- Shannon Coding

The Source Coding Theorem for Symbol Codes

3 Huffman Coding

- Algorithm and Examples
- Advantages and Disadvantages

Constructing a Huffman Code

Huffman Coding is a procedure for making provably optimal prefix codes. It assigns the longest codewords to least probable symbols by building up the code by repeatedly merging the least probable symbols.

$HUFFMAN(\mathcal{A}, \mathcal{P})$:

• If
$$|\mathcal{A}| = 2$$
 return $C = \{0, 1\}$; else

② Let
$$a, a' \in \mathcal{A}$$
 be *least probable* symbols.

$$\bullet \quad \mathsf{Let} \ \mathcal{A}' = \mathcal{A} - \{ \mathsf{a}, \mathsf{a}' \} \cup \{ \mathsf{aa'} \}$$

④ Let
$$\mathcal{P}' = \mathcal{P} - \{p_a, p_{a'}\} \cup \{p_{aa'}\}$$
 where $p_{aa'} = p_a + p_{a'}$

Sompute
$$C' = \text{HUFFMAN}(\mathcal{A}', \mathcal{P}')$$

O Define C by

•
$$c(a') = c'(aa')1$$

•
$$c(x) = c'(x)$$
 for $x \in \mathcal{A}'$

🗿 Return C

Huffman Coding in Python

```
See full example code with examples at:
https://gist.github.com/mreid/fdf6353ec39d050e972b
def huffman(p):
                  '''Return a Huffman code for an ensemble with distribution p.'''
                 assert(sum(p.values()) = 1.0) \# Ensure probabilities sum to 1
               # Base case of only two symbols, assign 0 or 1 arbitrarily
                 if(len(p) = 2):
                                 return dict(zip(p.keys(), ['0', '1']))
               # Create a new distribution by merging lowest prob. pair
                 p_prime = p.copy()
                 a1, a2 = lowest_prob_pair(p)
                 p1, p2 = p_prime.pop(a1), p_prime.pop(a2)
                 p_{p_{r_{1}}} p_{r_{1}} 
               # Recurse and construct code on new distribution
                 c = huffman(p_prime)
                 cala2 = c.pop(a1 + a2)
                 c[a1], c[a2] = ca1a2 + '0', ca1a2 + '1'
```

return c

Start with $\mathcal{A} = \{a, b, c\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

• HUFFMAN $(\mathcal{A}, \mathcal{P})$:

b and **c** are least probable with $p_{\rm a} = p_{\rm b} = \frac{1}{4}$

Start with $\mathcal{A} = \{a, b, c\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - **b** and **c** are least probable with $p_{a} = p_{b} = \frac{1}{4}$

•
$$\mathcal{A}' = \{a, bc\} \text{ and } \mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$$

Start with $\mathcal{A} = \{a, b, c\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - **b** and **c** are least probable with $p_{\rm a} = p_{\rm b} = \frac{1}{4}$
 - $\mathcal{A}' = \{a, bc\}$ and $\mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$
 - Call HUFFMAN $(\mathcal{A}', \mathcal{P}')$:

•
$$|\mathcal{A}| = |\{a, bc\}| = 2$$

• Return code with c'(a) = 0, c'(bc) = 1

Start with $\mathcal{A} = \{a, b, c\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - **b** and **c** are least probable with $p_{\rm a} = p_{\rm b} = \frac{1}{4}$
 - $A' = \{a, bc\} \text{ and } P' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ► Call HUFFMAN(A', P'):
 - $\bullet \ |\mathcal{A}| = |\{\mathtt{a},\mathtt{bc}\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1

Define

•
$$c(b) = c'(bc)0 = \mathbf{1}0$$

•
$$c(c) = c'(bc)1 = 11$$

•
$$c(a) = c'(a) = 0$$

Start with $\mathcal{A} = \{a, b, c\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - **b** and **c** are least probable with $p_{\rm a} = p_{\rm b} = \frac{1}{4}$
 - $A' = \{a, bc\} \text{ and } P' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ► Call HUFFMAN(A', P'):
 - $|\mathcal{A}| = |\{a, bc\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1

Define

• c(b) = c'(bc)0 = 10

•
$$c(c) = c'(bc)1 = 11$$

•
$$c(a) = c'(a) = 0$$

• Return $C = \{0, 10, 11\}$

Start with $\mathcal{A} = \{a, b, c\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - **b** and **c** are least probable with $p_{\rm a} = p_{\rm b} = \frac{1}{4}$
 - $A' = \{a, bc\} \text{ and } P' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ► Call HUFFMAN(A', P'):
 - $|\mathcal{A}| = |\{a, bc\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1

Define

• c(b) = c'(bc)0 = 10

•
$$c(c) = c'(bc)1 = 11$$

•
$$c(a) = c'(a) = 0$$

• Return $C = \{0, 10, 11\}$

Start with $\mathcal{A} = \{a, b, c\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - **b** and **c** are least probable with $p_{\rm a} = p_{\rm b} = \frac{1}{4}$
 - $\mathcal{A}' = \{a, bc\} \text{ and } \mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ► Call HUFFMAN(A', P'):
 - $|\mathcal{A}| = |\{a, bc\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1

Define

• c(b) = c'(bc)0 = 10

•
$$c(c) = c'(bc)1 = 11$$

- c(a) = c'(a) = 0
- Return $C = \{0, 10, 11\}$

The constructed code has $L(C, X) = \frac{1}{2} \times 1 + \frac{1}{4} \times (2+2) = 1.5$. The entropy is H(X) = 1.5.

Start with $\mathcal{A} = \{a, b, c, d, e\}$ and $\mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}$ • HUFFMAN $(\mathcal{A}, \mathcal{P})$:

Start with $\mathcal{A} = \{a, b, c, d, e\}$ and $\mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}$ • HUFFMAN $(\mathcal{A}, \mathcal{P})$:

• $\mathcal{A}' = \{a, b, c, de\}$ and $\mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$

Start with $\mathcal{A}=\{a,b,c,d,e\}$ and $\mathcal{P}=\{0.25,0.25,0.2,0.15,0.15\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - $\mathcal{A}' = \{a, b, c, de\}$ and $\mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$
 - Call HUFFMAN $(\mathcal{A}', \mathcal{P}')$:

Start with $\mathcal{A}=\{\texttt{a},\texttt{b},\texttt{c},\texttt{d},\texttt{e}\}$ and $\mathcal{P}=\{0.25,0.25,0.2,0.15,0.15\}$

- HUFFMAN $(\mathcal{A}, \mathcal{P})$:
 - $\mathcal{A}' = \{a, b, c, de\}$ and $\mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$
 - Call HUFFMAN $(\mathcal{A}', \mathcal{P}')$:

• $\mathcal{A}^{\prime\prime}=\{\mathtt{a}, \mathtt{bc}, \mathtt{de}\}$ and $\mathcal{P}^{\prime\prime}=\{0.25, 0.45, 0.3\}$

• HUFFMAN $(\mathcal{A}, \mathcal{P})$:

•
$$\mathcal{A}' = \{a, b, c, de\}$$
 and $\mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$

• Call HUFFMAN $(\mathcal{A}', \mathcal{P}')$:

•
$$\mathcal{A}'' = \{a, bc, de\}$$
 and $\mathcal{P}'' = \{0.25, 0.45, 0.3\}$

-
$$\mathcal{A}^{\prime\prime\prime} = \{ \mathbf{ade}, \mathtt{bc} \}$$
 and $\mathcal{P}^{\prime\prime\prime} = \{ \mathbf{0.55}, 0.45 \}$

- Return c'''(ade) = 0, c'''(bc) = 1

• HUFFMAN $(\mathcal{A}, \mathcal{P})$:

•
$$\mathcal{A}' = \{a, b, c, de\}$$
 and $\mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$

► Call HUFFMAN(A', P'):

•
$$\mathcal{A}'' = \{ a, bc, de \}$$
 and $\mathcal{P}'' = \{ 0.25, 0.45, 0.3 \}$

• Call HUFFMAN
$$(\mathcal{A}'', \mathcal{P}'')$$
:

-
$$\mathcal{A}^{\prime\prime\prime} = \{ \mathbf{ade}, \mathtt{bc} \}$$
 and $\mathcal{P}^{\prime\prime\prime} = \{ \mathbf{0.55}, 0.45 \}$

- Return
$$m{c^{\prime\prime\prime\prime}(ade)}=0,m{c^{\prime\prime\prime\prime}(bc)}=1$$

• Return
$$c''(a) = 00$$
, $c''(bc) = 1$, $c''(de) = 01$

• HUFFMAN $(\mathcal{A}, \mathcal{P})$:

•
$$\mathcal{A}' = \{a, b, c, de\}$$
 and $\mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$

► Call HUFFMAN(A', P'):

•
$$\mathcal{A}'' = \{a, bc, de\}$$
 and $\mathcal{P}'' = \{0.25, 0.45, 0.3\}$

• Call HUFFMAN
$$(\mathcal{A}'', \mathcal{P}'')$$
:

-
$$\mathcal{A}^{\prime\prime\prime\prime}=\{ extbf{ade}, extbf{bc}\}$$
 and $\mathcal{P}^{\prime\prime\prime\prime}=\{ extbf{0.55}, extbf{0.45}\}$

- Return
$$m{c}^{\prime\prime\prime}(ext{ade})=m{0},m{c}^{\prime\prime\prime}(ext{bc})=1$$

• Return
$$c''(a) = 00$$
, $c''(bc) = 1$, $c''(de) = 01$

• Return
$$c'(a) = 00$$
, $c'(b) = 10$, $c'(c) = 11$, $c'(de) = 01$

• HUFFMAN $(\mathcal{A}, \mathcal{P})$:

•
$$\mathcal{A}' = \{a, b, c, de\} \text{ and } \mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$$

► Call HUFFMAN(A', P'):

•
$$\mathcal{A}'' = \{a, bc, de\}$$
 and $\mathcal{P}'' = \{0.25, 0.45, 0.3\}$

• Call HUFFMAN
$$(\mathcal{A}'', \mathcal{P}'')$$
:

$$\mathcal{A}''' = \{ ade, bc \} and \mathcal{P}''' = \{ 0.55, 0.45 \}$$

- Return
$$m{c^{\prime\prime\prime\prime}(ade)}=0,m{c^{\prime\prime\prime\prime}(bc)}=1$$

• Return
$$c''(a) = 00$$
, $c''(bc) = 1$, $c''(de) = 01$

▶ Return
$$c'(a) = 00$$
, $c'(b) = 10$, $c'(c) = 11$, $c'(de) = 01$

• Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

• HUFFMAN $(\mathcal{A}, \mathcal{P})$:

•
$$\mathcal{A}' = \{a, b, c, de\} \text{ and } \mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$$

► Call HUFFMAN(A', P'):

•
$$\mathcal{A}'' = \{a, bc, de\}$$
 and $\mathcal{P}'' = \{0.25, 0.45, 0.3\}$

• Call HUFFMAN
$$(\mathcal{A}'', \mathcal{P}'')$$
:

$$\mathcal{A}''' = \{ ade, bc \} and \mathcal{P}''' = \{ 0.55, 0.45 \}$$

- Return
$$m{c^{\prime\prime\prime\prime}(ade)}=0,m{c^{\prime\prime\prime\prime}(bc)}=1$$

• Return
$$c''(a) = 00$$
, $c''(bc) = 1$, $c''(de) = 01$

▶ Return
$$c'(a) = 00$$
, $c'(b) = 10$, $c'(c) = 11$, $c'(de) = 01$

• Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

• HUFFMAN $(\mathcal{A}, \mathcal{P})$:

•
$$\mathcal{A}' = \{a, b, c, de\}$$
 and $\mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$

► Call HUFFMAN(A', P'):

•
$$\mathcal{A}'' = \{a, bc, de\}$$
 and $\mathcal{P}'' = \{0.25, 0.45, 0.3\}$

• Call HUFFMAN
$$(\mathcal{A}'', \mathcal{P}'')$$
:

$$\mathcal{A}^{\prime\prime\prime}=\{ extbf{ade,bc}\} extbf{ and }\mathcal{P}^{\prime\prime\prime}=\{ extbf{0.55}, extbf{0.45}\}$$

- Return
$$m{c}^{\prime\prime\prime}(ext{ade})=0,m{c}^{\prime\prime\prime}(ext{bc})=1$$

• Return
$$c''(a) = 00$$
, $c''(bc) = 1$, $c''(de) = 01$

• Return c'(a) = 00, c'(b) = 10, c'(c) = 11, c'(de) = 01

• Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is $C = \{00, 10, 11, 010, 011\}$. It has $L(C, X) = 2 \times (0.25 + 0.25 + 0.2) + 3 \times (0.15 + 0.15) = 2.3$. Note that $H(X) \approx 2.29$.

Huffman Coding: Example 2 As a diagram

$$\mathcal{A}_X = \{ \texttt{a},\texttt{b},\texttt{c},\texttt{d},\texttt{e} \} \text{ and } \mathcal{P}_X = \{ 0.25, 0.25, 0.2, 0.15, 0.15 \}$$

From Example 5.15 of MacKay

Huffman Coding: Example 3 English letters – Monogram statistics

a_i	p_i	$\log_2 \frac{1}{p_i}$	l_i	$c(a_i)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
с	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
е	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
1	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
o	0.0689	3.9	4	1011
р	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
W	0.0119	6.4	7	1101001
х	0.0073	7.1	7	1010001
у	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
_	0.1928	2.4	2	01

Advantages:

- Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]
- Algorithm is simple and efficient

Advantages:

- Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]
- Algorithm is simple and efficient

Disadvantages:

- Assumes a fixed distribution of symbols
- The extra bit in the SCT
 - If H(X) is large not a problem
 - If H(X) is small (e.g., ~ 1 bit for English) codes are $2 \times$ optimal

Advantages:

- Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]
- Algorithm is simple and efficient

Disadvantages:

- Assumes a fixed distribution of symbols
- The extra bit in the SCT
 - If H(X) is large not a problem
 - If H(X) is small (e.g., ~ 1 bit for English) codes are $2 \times$ optimal

Huffman codes are the best possible symbol code but symbol coding is not always the best type of code

Next Time: Stream Codes!

Summary

Key Concepts:

- The expected code length $L(C, X) = \sum_i p_i \ell_i$
- Probabilities and codelengths are interchangeable $q_i = 2^{-\ell_i} \iff \ell_i = \log_2 \frac{1}{q_i}$
- Relative entropy D(p||q) measures excess bits over the entropy H(X) for using the wrong code q for probabilities p
- The Source Coding Theorem for symbol codes: There exists prefix (Shannon) code *C* for ensemble *X* with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$ so that

$$H(X) \leq L(C,X) \leq H(X) + 1$$

Huffman codes are optimal symbol codes

Reading:

- §5.3-5.7 of MacKay
- §5.3-5.4, §5.6 & §5.8 of Cover & Thomas