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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Informal)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Informal)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.

The Noisy-Channel Coding Theorem (Formal)

@ Any rate R < C is achievable for Q (i.e., for any tolerance ¢ > 0, an
(N, K) code with rate K/N > R exists with max. block error

pem < €)
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Informal)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.

The Noisy-Channel Coding Theorem (Formal)
@ Any rate R < C is achievable for Q (i.e., for any tolerance ¢ > 0, an
(N, K) code with rate K/N > R exists with max. block error
pam < €)

@ If probability of bit error pp := pg/K is acceptable, (N, K) codes
exists with rates
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The Noisy-Channel Coding Theorem

Informal Statement

Noisy-Channel Coding Theorem (Informal)

If Q is a channel with capacity C then the rate R is achievable if and
only if R < C, that is, the rate is no greater than the channel capacity.

The Noisy-Channel Coding Theorem (Formal)

@ Any rate R < C is achievable for Q (i.e., for any tolerance ¢ > 0, an
(N, K) code with rate K/N > R exists with max. block error
pem < €)

@ If probability of bit error pp := pg/K is acceptable, (N, K) codes

exists with rates c

N 1 — Ha(p»)

© For any py, rates greater than R(pp) are not achievable.

< R(p») =

v
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The Noisy-Channel Coding Theorem

For the Noisy Typewriter

Any rate R < C is achievable for Q (i.e., for any tolerance ¢ > 0, an
(N, K) code with rate K/N > R exists with max. block error pgy < ¢€)

For noisy typewriter Q:

@ The capacity is C = log, 9 33
@ Foranye>0and R< C E<§
we can choose N =1 ... H<§

@ ...and code messages oy el
using C = {B,E,...,Z} =z
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The Noisy-Channel Coding Theorem

For the Noisy Typewriter

Any rate R < C is achievable for Q (i.e., for any tolerance ¢ > 0, an
(N, K) code with rate K/N > R exists with max. block error pgy < €)

For noisy typewriter Q:

@ The capacity is C = log, 9 33
C

@ Foranye>0and R < C —
we can choose N =1 ... H<§

@ ...and code messages oy el
using C = {B,E,...,Z} =z

Since |C| =9 we have K = log,9 so K/N = log,9 > R for any R < C,
and C has zero error so pgy = 0 < €
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Joint Typicality

Recall that a random variable z from ZV is typical for an ensemble Z
whenever its average symbol information is within 3 of the entropy H(Z)
‘ 1

1
L log 7+ H(Z)] <8

P(2)
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Joint Typicality

Recall that a random variable z from ZV is typical for an ensemble Z
whenever its average symbol information is within 3 of the entropy H(Z)
1

‘N|og2p(lz) - H(Z)’ <8

Joint Typicality

A pair of sequences x € A% and y € A’\\f, each of length N, are jointly
typical (to tolerance ) for distribution P(x, y) if

Q x is typical of P(x) [z = x above]
@ y is typical of P(y) [z =y above]
@ (x,y) is typical of P(x,y) [z = (x,y) above]

The jointly typical set of all such pairs is denoted Jyg.
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Joint Typicality

Recall that a random variable z from ZV is typical for an ensemble Z
whenever its average symbol information is within 3 of the entropy H(Z)
1 1
—logy, —— — H(Z)| <
‘N 0g> P(Z) ( )’ /8

Joint Typicality

A pair of sequences x € A% and y € AY, each of length N, are jointly
typical (to tolerance ) for distribution P(x, y) if

Q x is typical of P(x) [z = x above]
@ y is typical of P(y) [z =y above]
@ (x,y) is typical of P(x,y) [z = (x,y) above]

The jointly typical set of all such pairs is denoted Jyg.

Example (px = (0.9,0.1) and BSC with f =0.2):

X 1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Yy 0011111111000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111
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There are approximately:
AX oNH(X)

typical x € AY
NH(Y : N
2NH(Y) typical y € Ay

2NH(X,Y) typ|ca| (X,y) S AS\(I X ‘A\I\l
oNH(Y|X)

il NHEOY) dots |

typical y given x

oNH(Y|X),

izNH(Y)

QNAXIV)*
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Joint Typicality Theorem

Let x,y be drawn from (XY)N with distribution P(x,y) =[], P(Xn, ¥n)-

Joint Typicality Theorem AY

For all tolerances 8 > 0

© Almost every pair is eventually jointly typical
P((x,y) € Jng) > 1as N = oo

il oNHIOY) dots |
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Joint Typicality Theorem

Let x,y be drawn from (XY)N with distribution P(x,y) =[], P(Xn, ¥n)-

Joint Typicality Theorem

For all tolerances 8 > 0

© Almost every pair is eventually jointly typical
P((x,y) € Jng) > 1as N = oo

@ The number of jointly typical sequences is
roughly 2NH(X.Y).

| Ingl < oN(H(X,Y)+8)

Tiis oNHIOY) dots |

: ] . ]zNH(Y\X):
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Joint Typicality Theorem

Let x,y be drawn from (XY)N with distribution P(x,y) =[], P(Xn, ¥n)-

Joint Typicality Theorem AY

For all tolerances 8 > 0

© Almost every pair is eventually jointly typical

P((X, y) E JNﬂ) — 1 as N — OO 3 INH(XY) dots 3

@ The number of jointly typical sequences is 1

roughly 2NH(X,Y). Ay ig]g: ]‘ZNHW)%
[ng] < QMY e

© For x’ and y’ drawn independently from the NIy
marginals of P(x,y), o g

P((X,,y/) c JNB S 2—N(I(X;Y)—3B)
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Some Intuition for the NCCT

The proof of the NCCT is based on the following observations:
@ Each choice of input distribution px induces an output distibution py
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Some Intuition for the NCCT

The proof of the NCCT is based on the following observations:
@ Each choice of input distribution px induces an output distibution py
o There are 2VH(Y) typical y (i.e., with prob. per symbol ~ H(Y))
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Some Intuition for the NCCT

The proof of the NCCT is based on the following observations:
@ Each choice of input distribution px induces an output distibution py
o There are 2VH(Y) typical y (i.e., with prob. per symbol ~ H(Y))
o For each x there are 2VH(Y1X) typical y for x

0000
1000
0100
1100 | =
0010
1010 | -
0110 | -
1110
0001 LR
1001 | =

0101 | -

1101 - = =
0011 | =

1011
0111
1111
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Some Intuition for the NCCT

The proof of the NCCT is based on the following observations:
@ Each choice of input distribution px induces an output distibution py
o There are 2VH(Y) typical y (i.e., with prob. per symbol ~ H(Y))
o For each x there are 2VH(Y1X) typical y for x
o At most there are % = 2N(H(Y)=H(YIX)) = oNI(X}Y) x with
disjoint typical y. Coding with these x minimises error

Typical y Typical y

o
OO

Typical y for a given typical x

8/ 15
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Some Intuition for the NCCT

The proof of the NCCT is based on the following observations:
@ Each choice of input distribution px induces an output distibution py
o There are 2VH(Y) typical y (i.e., with prob. per symbol ~ H(Y))
o For each x there are 2VH(Y1X) typical y for x
o At most there are % = 2N(H(Y)=H(YIX)) = oNI(X}Y) x with
disjoint typical y. Coding with these x minimises error
Best rate K /N achieved when number of such x (i.e., 2K) is
maximised: 2K < MaXp, oNI(X;Y) — N maxp, [(X;Y) _ oNC

AY AY
Typical y Typical y

OO0
X0
Q0

Typical y for a given typical x
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9 The Noisy-Channel Coding Theorem
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The Noisy-Channel Coding Theorem

Let @ be a channel with inputs Ax and outputs Ay.
Let C = maxp, /(X;Y') be the capacity of Q and
Hz(p) = —plogy p — (1 — p) logy(1 — p).

The Noisy-Channel Coding Theorem

@ Any rate R < C is achievable for Q (i.e., for any tolerance ¢ > 0, an
(N, K) code with rate K/N > R exists with max. block error
pem < €)

@ If probability of bit error pp := pg/K is acceptable, (N, K) codes
exists with rates

C
< R(pp) = 1= Holps)

© For any py, rates greater than R(pp) are not achievable.

N

v
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The Noisy-Channel Coding Theorem

Let Q be a channel with inputs Ax and outputs Ay. »
Let C = maxp, /(X;Y') be the capacity of Q and ,
Ha(p) = —plogy p — (1 — p) logy(1 — p). 1

The Noisy-Channel Coding Theorem

@ Any rate R < C is achievable for Q (i.e., for any tolerance ¢ > 0, an
(N, K) code with rate K/N > R exists with max. block error
pem < €)

@ If probability of bit error pp := pg/K is acceptable, (N, K) codes
exists with rates

C
Rips) = 1= Ha(pb)

© For any py, rates greater than R(pp) are not achievable.

— <
N =
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The Noisy-Channel Coding Theorem

Let Q be a channel with inputs Ax and outputs Ay. »
Let C = maxp, /(X;Y') be the capacity of Q and ,
Ha(p) = —plogy p — (1 — p) logy(1 — p). 1

The Noisy-Channel Coding Theorem

© Any rate R < C is achievable for Q (i.e., for any tolerance € > 0, an
(N, K) code with rate K/N > R exists with max. block error
pem < €)

@ If probability of bit error pp := pg/K is acceptable, (N, K) codes
exists with rates

C
Rips) = 1= Ha(pb)

© For any py, rates greater than R(pp) are not achievable.

— <
N =
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Random Coding and Typical Set Decoding

Make random code C with rate R’:

i / @) %@ @) %@
@ Fix px and choose S = 2NR XX xex

codewords, x(l), . ,x(s), each
with P(x) =[], P(xn)
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Random Coding and Typical Set Decoding

Make random code C with rate R’:

. / 3 1 2 4
@ Fix px and choose S = 2NR @ @

codewords, x(1). . .. ,x(s), each i o
with P(x) =T, P(xn) Ya ) 3(ya)=0
Y 3(ys)=3

Decode y via typical sets:

o If there is exactly one 5 so that
(x°,y) are jointly typical then
decode y as §

e Otherwise, fail (5 =0)

Yd N 5(ya)=0

Ye S(yc)=4
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Random Coding and Typical Set Decoding

Make random code C with rate R’:

. / 3 1 2 4
@ Fix px and choose S = 2NR @ @

codewords, x(l), ... ,x(s), each . .
with P(x) = [T, P(xn) ) o
Yo 3(ys) =3

I
o

Decode y via typical sets:

o If ’Ehere is exactly one 5 so that
(x°,y) are jointly typical then
decode y as §

e Otherwise, fail (5 =0)

Errors: Y 5(ya)=0

e ps(C) = P(5 #sC) ve [ sy =1

o ps = Yo P(3 # sIC)P(C) b
e ppm(C) = maxs P(5 # s|s,C)
Aim: 3C s.t. pgp(C) small

Mark Reid and Aditya Menon (ANU) COMP2610/6261 - Information Theory October 8th, 2014 11 /15




Average Error Over All Codes

Let's consider the average error over random codes:
pe =Y P(5#sIC)P(C)
C

A bound on the average f of some function f of random variables z € Z
with probabilities P(z) guarantees there is at least one z* € Z such that
f(z*) is smaller than the bound.!

Uf f < 6 but f(z) > 6 forall z, f = 3, F(z)P(z) > 3, 6P(z) = 6 I
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Average Error Over All Codes

Let's consider the average error over random codes:
pe =Y P(5#sIC)P(C)
C

A bound on the average f of some function f of random variables z € Z
with probabilities P(z) guarantees there is at least one z* € Z such that
f(z*) is smaller than the bound.!

So pg <6 = pp(C*) < 0 for some C*.

Analogy: Suppose the average height of class is not more than 160 cm.
Then one of you must be shorter than 160 cm.

Uf f < 6 but f(z) > 6 forall z, f =3, F(z)P(z) > 3, 6P(z) = 6 !
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Code Expurgation

The last main “trick” is to show that if there is an (N, K) code with rate
R and pg(C) < & we can construct a new (N, K') code C’ with rate R — %,
and maximum probability of error pgu(C’) < 24.
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Code Expurgation

The last main “trick” is to show that if there is an (N, K) code with rate
R and pg(C) < & we can construct a new (N, K') code C’ with rate R — %,
and maximum probability of error pgu(C’) < 24.

We create C’ by expurgating (throwing
out) half the codewords from C, specifically
the half with the largest conditional
probability of error.
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Code Expurgation

The last main “trick” is to show that if there is an (N, K) code with rate
R and pg(C) < & we can construct a new (N, K') code C’ with rate R — %,
and maximum probability of error pgu(C’) < 24.

We create C’ by expurgating (throwing
out) half the codewords from C, specifically
the half with the largest conditional
probability of error.

Proof: )

o Code C’ has 2R /2 = 2NR=1 messages, so rate of K'/N = R — 4.
@ Suppose ppn(C') = maxs P(§ # s|s,C") > 20, then every s € C that

was thrown out must have conditional probability P(5 # s|s,C) > 20
o But then

pe(C) = ZP5¢S|SC Z26+ ZP5#5|5C
ngC’ seC’
Mark Reid and Aditya Menon (ANU)
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Code Expurgation

The last main “trick” is to show that if there is an (N, K) code with rate
R and pg(C) < 0 we can construct a new (N, K’) code C’ with rate R —
and maximum probability of error pgu(C’) < 24.

We create C’ by expurgating (throwing
out) half the codewords from C, specifically
the half with the largest conditional
probability of error.

Proof: )

o Code C’ has 2R /2 = 2NR=1 messages, so rate of K'/N = R — %,

N
@ Suppose ppn(C') = maxs P(§ # s|s,C") > 20, then every s € C that

was thrown out must have conditional probability P(5 # s|s,C) > 20
o But then

ZP5¢S|SC 226-1— ZP5#5|5C
sgé(?’ seC’
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgps < € for any tolerance €)

Choose some § > 0

© Part one of the Joint Typicality Theorem says we can find an N(J)
such that the probability (x,y) are not jointly typical is less than 4.
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgy < € for any tolerance )

Choose some § > 0

@ Part one of the Joint Typicality Theorem says we can find an N(J)
such that the probability (x,y) are not jointly typical is less than 4.

@ Thus, the average probability of error satisfies (by Part 3 of JCT)

pe= > PGE#s)+ Y PG #s])

atypical (x,y) typical (x,y)
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgps < € for any tolerance €)

Choose some § > 0
@ Part one of the Joint Typicality Theorem says we can find an N(J)
such that the probability (x,y) are not jointly typical is less than 4.
@ Thus, the average probability of error satisfies (by Part 3 of JCT)

oNR'

pg < 5+ szN(I(X;Y)f3B)

s'=2
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgy < € for any tolerance )

Choose some § > 0

© Part one of the Joint Typicality Theorem says we can find an N(0)
such that the probability (x,y) are not jointly typical is less than 4.

@ Thus, the average probability of error satisfies (by Part 3 of JCT)

pg < 5+2—N(I(X;Y)—R’—3ﬁ)
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgy < € for any tolerance )

Choose some § > 0

© Part one of the Joint Typicality Theorem says we can find an N(0)
such that the probability (x,y) are not jointly typical is less than 4.

@ Thus, the average probability of error satisfies (by Part 3 of JCT)

pg < 5+2—N(I(X;Y)—R’—3ﬁ)

© Increasing N will make pg <26 if R < I(X;Y)—38
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgy < € for any tolerance )
Choose some § > 0

© Part one of the Joint Typicality Theorem says we can find an N(0)
such that the probability (x,y) are not jointly typical is less than 4.

@ Thus, the average probability of error satisfies (by Part 3 of JCT)

pg < 5+2—N(I(X;Y)—R’—3ﬁ)

© Increasing N will make pg <26 if R < I(X;Y)—38
© Choosing maximal P(x) makes required condition R’ < C — 3/3
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgy < € for any tolerance )

Choose some § > 0

© Part one of the Joint Typicality Theorem says we can find an N(0)
such that the probability (x,y) are not jointly typical is less than 4.

@ Thus, the average probability of error satisfies (by Part 3 of JCT)
pp < & 4+ 2~ NUX:Y)=R'~3p)
© Increasing N will make pg < 26 if R < I(X;Y)—38

© Choosing maximal P(x) makes required condition R’ < C — 3/3
© ps <25 = a (' such that pgy(C’) < 46 with rate R’ — %
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N, K) code with rate
N/K > R exists with max. block error pgy < € for any tolerance )

Choose some § > 0

© Part one of the Joint Typicality Theorem says we can find an N(0)
such that the probability (x,y) are not jointly typical is less than 4.

@ Thus, the average probability of error satisfies (by Part 3 of JCT)

pg < 5+2—N(I(X;Y)—R’—3ﬁ)

© Increasing N will make pg < 26 if R < I(X;Y)—38

© Choosing maximal P(x) makes required condition R’ < C — 3/3
© ps <25 = a (' such that pgy(C’) < 46 with rate R’ — %

@ Setting R" =(R+ C)/2,0 =¢/4,3 < (C — R")/3 gives the result.
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Summary and Reading

Main Points:
o Joint Typicality and the Joint Typicality Theorem
@ The (Longer) Noisy Channel Coding Theorem

@ Proof Ideas

» Random Coding & Typical Set Decoding
» Average Error Over Random Codes
» Code Expurgation

Reading;:
o MacKay §9.7, §10.1-§10.5
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