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The Noisy-Channel Coding Theorem
Informal Statement

Noisy-Channel Coding Theorem (Informal)

If Q is a channel with capacity C then the rate R is achievable if and
only if R ≤ C , that is, the rate is no greater than the channel capacity.

The Noisy-Channel Coding Theorem (Formal)

1 Any rate R < C is achievable for Q (i.e., for any tolerance ε > 0, an
(N,K ) code with rate K/N ≥ R exists with max. block error
pBM < ε)

2 If probability of bit error pb := pB/K is acceptable, (N,K ) codes
exists with rates

K

N
≤ R(pb) =

C

1− H2(pb)

3 For any pb, rates greater than R(pb) are not achievable.
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The Noisy-Channel Coding Theorem
For the Noisy Typewriter

NCCT

Any rate R < C is achievable for Q (i.e., for any tolerance ε > 0, an
(N,K ) code with rate K/N ≥ R exists with max. block error pBM < ε)

For noisy typewriter Q:

The capacity is C = log2 9

For any ε > 0 and R < C
we can choose N = 1 . . .

. . . and code messages
using C = {B, E, . . . , Z}

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
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Figure 9.5. A non-confusable
subset of inputs for the noisy
typewriter.
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Figure 9.6. Extended channels
obtained from a binary symmetric
channel with transition
probability 0.15.

How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ε > 0 and R < C, for large
enough N ,

No matter what ε and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ε.

the maximal probability of block error is zero, which is less
than the given ε.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.

Since |C| = 9 we have K = log2 9 so K/N = log2 9 ≥ R for any R < C ,
and C has zero error so pBM = 0 < ε
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Joint Typicality

Recall that a random variable z from ZN is typical for an ensemble Z
whenever its average symbol information is within β of the entropy H(Z )

∣∣∣∣
1

N
log2

1

P(z)
− H(Z )

∣∣∣∣ < β

Joint Typicality

A pair of sequences x ∈ AN
X and y ∈ AN

Y , each of length N, are jointly
typical (to tolerance β) for distribution P(x , y) if

1 x is typical of P(x) [z = x above]

2 y is typical of P(y) [z = y above]

3 (x, y) is typical of P(x, y) [z = (x, y) above]

The jointly typical set of all such pairs is denoted JNβ.

Example (pX = (0.9, 0.1) and BSC with f = 0.2):
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10.2: Jointly-typical sequences 163

The jointly-typical set JNβ is the set of all jointly-typical sequence pairs
of length N .

Example. Here is a jointly-typical pair of length N = 100 for the ensemble
P (x, y) in which P (x) has (p0, p1) = (0.9, 0.1) and P (y |x) corresponds to a
binary symmetric channel with noise level 0.2.

x 1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

y 0011111111000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111

Notice that x has 10 1s, and so is typical of the probability P (x) (at any
tolerance β); and y has 26 1s, so it is typical of P (y) (because P (y =1) = 0.26);
and x and y differ in 20 bits, which is the typical number of flips for this
channel.

Joint typicality theorem. Let x,y be drawn from the ensemble (XY )N

defined by

P (x,y) =
N∏

n=1

P (xn, yn).

Then

1. the probability that x,y are jointly typical (to tolerance β) tends
to 1 as N → ∞;

2. the number of jointly-typical sequences |JNβ | is close to 2NH(X,Y ).
To be precise,

|JNβ | ≤ 2N(H(X,Y )+β); (10.3)

3. if x′ ∼ XN and y′ ∼ Y N , i.e., x′ and y′ are independent samples
with the same marginal distribution as P (x,y), then the probability
that (x′,y′) lands in the jointly-typical set is about 2−NI(X;Y ). To
be precise,

P ((x′,y′) ∈ JNβ) ≤ 2−N(I(X;Y )−3β). (10.4)

Proof. The proof of parts 1 and 2 by the law of large numbers follows that
of the source coding theorem in Chapter 4. For part 2, let the pair x, y
play the role of x in the source coding theorem, replacing P (x) there by
the probability distribution P (x, y).

For the third part,

P ((x′,y′) ∈ JNβ) =
∑

(x,y)∈JNβ

P (x)P (y) (10.5)

≤ |JNβ | 2−N(H(X)−β) 2−N(H(Y )−β) (10.6)

≤ 2N(H(X,Y )+β)−N(H(X)+H(Y )−2β) (10.7)

= 2−N(I(X;Y )−3β). ! (10.8)

A cartoon of the jointly-typical set is shown in figure 10.2. Two independent
typical vectors are jointly typical with probability

P ((x′,y′) ∈ JNβ) & 2−N(I(X;Y )) (10.9)

because the total number of independent typical pairs is the area of the dashed
rectangle, 2NH(X)2NH(Y ), and the number of jointly-typical pairs is roughly
2NH(X,Y ), so the probability of hitting a jointly-typical pair is roughly

2NH(X,Y )/2NH(X)+NH(Y ) = 2−NI(X;Y ). (10.10)
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Figure 10.2. The jointly-typical
set. The horizontal direction
represents AN

X , the set of all input
strings of length N . The vertical
direction represents AN

Y , the set of
all output strings of length N .
The outer box contains all
conceivable input–output pairs.
Each dot represents a
jointly-typical pair of sequences
(x,y). The total number of
jointly-typical sequences is about
2NH(X,Y ).

10.3 Proof of the noisy-channel coding theorem

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred
babies who weighs less than 10 kg. Individual babies are difficult to catch and
weigh. Shannon’s method of solving the task is to scoop up all the babies

Figure 10.3. Shannon’s method for
proving one baby weighs less than
10 kg.

and weigh them all at once on a big weighing machine. If we find that their
average weight is smaller than 10 kg, there must exist at least one baby who
weighs less than 10 kg – indeed there must be many! Shannon’s method isn’t
guaranteed to reveal the existence of an underweight child, since it relies on
there being a tiny number of elephants in the class. But if we use his method
and get a total weight smaller than 1000 kg then our task is solved.

From skinny children to fantastic codes

We wish to show that there exists a code and a decoder having small prob-
ability of error. Evaluating the probability of error of any particular coding
and decoding system is not easy. Shannon’s innovation was this: instead of
constructing a good coding and decoding system and evaluating its error prob-
ability, Shannon calculated the average probability of block error of all codes,
and proved that this average is small. There must then exist individual codes
that have small probability of block error.

Random coding and typical-set decoding

Consider the following encoding–decoding system, whose rate is R ′.

1. We fix P (x) and generate the S = 2NR′
codewords of a (N,NR′) =

There are approximately:

2NH(X ) typical x ∈ AN
X

2NH(Y ) typical y ∈ AN
Y

2NH(X ,Y ) typical (x, y) ∈ AN
X ×AN

Y

2NH(Y |X ) typical y given x
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Joint Typicality Theorem

Let x, y be drawn from (XY )N with distribution P(x, y) =
∏

n P(xn, yn).

Joint Typicality Theorem

For all tolerances β > 0

1 Almost every pair is eventually jointly typical
P((x, y) ∈ JNβ)→ 1 as N →∞

2 The number of jointly typical sequences is
roughly 2NH(X ,Y ):

|JNβ| ≤ 2N(H(X ,Y )+β)

3 For x′ and y′ drawn independently from the
marginals of P(x, y),

P((x′, y′) ∈ JNβ ≤ 2−N(I (X ;Y )−3β)
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10.3 Proof of the noisy-channel coding theorem

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred
babies who weighs less than 10 kg. Individual babies are difficult to catch and
weigh. Shannon’s method of solving the task is to scoop up all the babies

Figure 10.3. Shannon’s method for
proving one baby weighs less than
10 kg.

and weigh them all at once on a big weighing machine. If we find that their
average weight is smaller than 10 kg, there must exist at least one baby who
weighs less than 10 kg – indeed there must be many! Shannon’s method isn’t
guaranteed to reveal the existence of an underweight child, since it relies on
there being a tiny number of elephants in the class. But if we use his method
and get a total weight smaller than 1000 kg then our task is solved.

From skinny children to fantastic codes

We wish to show that there exists a code and a decoder having small prob-
ability of error. Evaluating the probability of error of any particular coding
and decoding system is not easy. Shannon’s innovation was this: instead of
constructing a good coding and decoding system and evaluating its error prob-
ability, Shannon calculated the average probability of block error of all codes,
and proved that this average is small. There must then exist individual codes
that have small probability of block error.

Random coding and typical-set decoding

Consider the following encoding–decoding system, whose rate is R ′.

1. We fix P (x) and generate the S = 2NR′
codewords of a (N,NR′) =
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Some Intuition for the NCCT

The proof of the NCCT is based on the following observations:

Each choice of input distribution pX induces an output distibution pY

There are 2NH(Y ) typical y (i.e., with prob. per symbol ≈ H(Y ))
For each x there are 2NH(Y |X ) typical y for x

At most there are 2NH(Y )

2NH(Y |X ) = 2N(H(Y )−H(Y |X )) = 2NI (X ;Y ) x with
disjoint typical y. Coding with these x minimises error
Best rate K/N achieved when number of such x (i.e., 2K ) is
maximised: 2K ≤ maxpX 2NI (X ;Y ) = 2N maxpX I (X ;Y ) = 2NC
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Figure 9.7. Extended channels
obtained from a Z channel with
transition probability 0.15. Each
column corresponds to an input,
and each row is a different output.

AN
Y !

"

#

$

Typical y

!"
#$

!"
#$!"

#$

!"
#$!"

#$!"
#$

!"
#$!"

#$

!"
#$

!"
#$

!"
#$!"

#$!"
#$!"

#$
!"
#$!"
#$

!"
#$ !"

#$!"
#$
!"
#$

!"
#$

!"
#$!"

#$
!"
#$!"
#$!"

#$
!"
#$!"

#$

!"
#$!"

#$
!"
#$

!"
#$

!"
#$!"

#$!"
#$

!"
#$

!"
#$

!"
#$

!"
#$

!"
#$!"

#$
!"
#$

!"
#$!"

#$
!"
#$

!"
#$!"

#$
!"
#$

!"
#$

%&
'(

!

Typical y for a given typical x

AN
Y !

"

#

$

Typical y

!"
#$

!"
#$

!"
#$!"

#$
!"
#$

!"
#$!"

#$
!"
#$

!"
#$!"

#$
!"
#$

!"
#$

(a) (b)

Figure 9.8. (a) Some typical
outputs in AN

Y corresponding to
typical inputs x. (b) A subset of
the typical sets shown in (a) that
do not overlap each other. This
picture can be compared with the
solution to the noisy typewriter in
figure 9.5.

Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-
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The Noisy-Channel Coding Theorem

Let Q be a channel with inputs AX and outputs AY .
Let C = maxpX I (X ;Y ) be the capacity of Q and
H2(p) = −p log2 p − (1− p) log2(1− p).
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The Noisy-Channel Coding Theorem

10.1 The theorem

The theorem has three parts, two positive and one negative. The main positive
result is the first.

!

"

#
#
#
#

C R

R(pb)

pb

1 2
3

Figure 10.1. Portion of the R, pb

plane to be proved achievable
(1, 2) and not achievable (3).

1. For every discrete memoryless channel, the channel capacity

C = max
PX

I(X;Y ) (10.1)

has the following property. For any ε > 0 and R < C, for large enough N ,
there exists a code of length N and rate ≥ R and a decoding algorithm,
such that the maximal probability of block error is < ε.

2. If a probability of bit error pb is acceptable, rates up to R(pb) are achiev-
able, where

R(pb) =
C

1 − H2(pb)
. (10.2)

3. For any pb, rates greater than R(pb) are not achievable.

10.2 Jointly-typical sequences

We formalize the intuitive preview of the last chapter.
We will define codewords x(s) as coming from an ensemble XN , and con-

sider the random selection of one codeword and a corresponding channel out-
put y, thus defining a joint ensemble (XY )N . We will use a typical-set decoder,
which decodes a received signal y as s if x(s) and y are jointly typical, a term
to be defined shortly.

The proof will then centre on determining the probabilities (a) that the
true input codeword is not jointly typical with the output sequence; and (b)
that a false input codeword is jointly typical with the output. We will show
that, for large N , both probabilities go to zero as long as there are fewer than
2NC codewords, and the ensemble X is the optimal input distribution.

Joint typicality. A pair of sequences x,y of length N are defined to be
jointly typical (to tolerance β) with respect to the distribution P (x, y)
if

x is typical of P (x), i.e.,

∣∣∣∣
1

N
log

1

P (x)
− H(X)

∣∣∣∣ < β,

y is typical of P (y), i.e.,

∣∣∣∣
1

N
log

1

P (y)
− H(Y )

∣∣∣∣ < β,

and x,y is typical of P (x,y), i.e.,

∣∣∣∣
1

N
log

1

P (x,y)
− H(X,Y )

∣∣∣∣ < β.

162

The Noisy-Channel Coding Theorem

1 Any rate R < C is achievable for Q (i.e., for any tolerance ε > 0, an
(N,K ) code with rate K/N ≥ R exists with max. block error
pBM < ε)

2 If probability of bit error pb := pB/K is acceptable, (N,K ) codes
exists with rates

K

N
≤ R(pb) =

C

1− H2(pb)

3 For any pb, rates greater than R(pb) are not achievable.
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1. For every discrete memoryless channel, the channel capacity

C = max
PX

I(X;Y ) (10.1)

has the following property. For any ε > 0 and R < C, for large enough N ,
there exists a code of length N and rate ≥ R and a decoding algorithm,
such that the maximal probability of block error is < ε.

2. If a probability of bit error pb is acceptable, rates up to R(pb) are achiev-
able, where

R(pb) =
C

1 − H2(pb)
. (10.2)

3. For any pb, rates greater than R(pb) are not achievable.

10.2 Jointly-typical sequences

We formalize the intuitive preview of the last chapter.
We will define codewords x(s) as coming from an ensemble XN , and con-

sider the random selection of one codeword and a corresponding channel out-
put y, thus defining a joint ensemble (XY )N . We will use a typical-set decoder,
which decodes a received signal y as s if x(s) and y are jointly typical, a term
to be defined shortly.

The proof will then centre on determining the probabilities (a) that the
true input codeword is not jointly typical with the output sequence; and (b)
that a false input codeword is jointly typical with the output. We will show
that, for large N , both probabilities go to zero as long as there are fewer than
2NC codewords, and the ensemble X is the optimal input distribution.

Joint typicality. A pair of sequences x,y of length N are defined to be
jointly typical (to tolerance β) with respect to the distribution P (x, y)
if

x is typical of P (x), i.e.,

∣∣∣∣
1

N
log

1

P (x)
− H(X)

∣∣∣∣ < β,

y is typical of P (y), i.e.,

∣∣∣∣
1

N
log

1

P (y)
− H(Y )

∣∣∣∣ < β,

and x,y is typical of P (x,y), i.e.,

∣∣∣∣
1

N
log

1

P (x,y)
− H(X,Y )

∣∣∣∣ < β.

162

The Noisy-Channel Coding Theorem

1 Any rate R < C is achievable for Q (i.e., for any tolerance ε > 0, an
(N,K ) code with rate K/N ≥ R exists with max. block error
pBM < ε)

2 If probability of bit error pb := pB/K is acceptable, (N,K ) codes
exists with rates

K

N
≤ R(pb) =

C

1− H2(pb)

3 For any pb, rates greater than R(pb) are not achievable.
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Random Coding and Typical Set Decoding

Make random code C with rate R ′:

Fix pX and choose S = 2NR
′

codewords, x(1), . . . , x(S), each
with P(x) =

∏
n P(xn)

Decode y via typical sets:

If there is exactly one ŝ so that
(xŝ , y) are jointly typical then
decode y as ŝ

Otherwise, fail (ŝ = 0)

Errors:

pB(C) = P(ŝ 6= s|C)

pB =
∑
C P(ŝ 6= s|C)P(C)

pBM(C) = maxs P(ŝ 6= s|s, C)
(Aim: ∃C s.t. pBM(C) small)
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ŝ(ya)=0

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
(a) (b)

Figure 10.4. (a) A random code.
(b) Example decodings by the
typical set decoder. A sequence
that is not jointly typical with any
of the codewords, such as ya, is
decoded as ŝ = 0. A sequence that
is jointly typical with codeword
x(3) alone, yb, is decoded as ŝ = 3.
Similarly, yc is decoded as ŝ = 4.
A sequence that is jointly typical
with more than one codeword,
such as yd, is decoded as ŝ = 0.

(N,K) code C at random according to

P (x) =
N∏

n=1

P (xn). (10.11)

A random code is shown schematically in figure 10.4a.

2. The code is known to both sender and receiver.

3. A message s is chosen from {1, 2, . . . , 2NR′}, and x(s) is transmitted. The
received signal is y, with

P (y |x(s)) =

N∏

n=1

P (yn |x(s)
n ). (10.12)

4. The signal is decoded by typical-set decoding.

Typical-set decoding. Decode y as ŝ if (x(ŝ),y) are jointly typical and
there is no other s′ such that (x(s′),y) are jointly typical;
otherwise declare a failure (ŝ=0).

This is not the optimal decoding algorithm, but it will be good enough,
and easier to analyze. The typical-set decoder is illustrated in fig-
ure 10.4b.

5. A decoding error occurs if ŝ != s.

There are three probabilities of error that we can distinguish. First, there
is the probability of block error for a particular code C, that is,

pB(C) ≡ P (ŝ != s | C). (10.13)

This is a difficult quantity to evaluate for any given code.
Second, there is the average over all codes of this block error probability,

〈pB〉 ≡
∑

C
P (ŝ != s | C)P (C). (10.14)
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Errors:

pB(C) = P(ŝ 6= s|C)
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(N,K) code C at random according to

P (x) =
N∏

n=1

P (xn). (10.11)

A random code is shown schematically in figure 10.4a.

2. The code is known to both sender and receiver.

3. A message s is chosen from {1, 2, . . . , 2NR′}, and x(s) is transmitted. The
received signal is y, with

P (y |x(s)) =

N∏

n=1

P (yn |x(s)
n ). (10.12)

4. The signal is decoded by typical-set decoding.

Typical-set decoding. Decode y as ŝ if (x(ŝ),y) are jointly typical and
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Average Error Over All Codes

Let’s consider the average error over random codes:

pB =
∑

C
P(ŝ 6= s|C)P(C)

A bound on the average f of some function f of random variables z ∈ Z
with probabilities P(z) guarantees there is at least one z∗ ∈ Z such that
f (z∗) is smaller than the bound.1

So pB < δ =⇒ pB(C∗) < δ for some C∗.

Analogy: Suppose the average height of class is not more than 160 cm.
Then one of you must be shorter than 160 cm.

1If f < δ but f (z) ≥ δ for all z , f =
∑

z f (z)P(z) ≥
∑

z δP(z) = δ !!
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Code Expurgation

The last main “trick” is to show that if there is an (N,K ) code with rate
R and pB(C) < δ we can construct a new (N,K ′) code C′ with rate R − 1

N
and maximum probability of error pBM(C′) < 2δ.

We create C′ by expurgating (throwing
out) half the codewords from C, specifically
the half with the largest conditional
probability of error.
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10.4: Communication (with errors) above capacity 167

⇒
(a) A random code . . . (b) expurgated

Figure 10.5. How expurgation
works. (a) In a typical random
code, a small fraction of the
codewords are involved in
collisions – pairs of codewords are
sufficiently close to each other
that the probability of error when
either codeword is transmitted is
not tiny. We obtain a new code
from a random code by deleting
all these confusable codewords.
(b) The resulting code has slightly
fewer codewords, so has a slightly
lower rate, and its maximal
probability of error is greatly
reduced.

2. Since the average probability of error over all codes is < 2δ, there must
exist a code with mean probability of block error pB(C) < 2δ.

3. To show that not only the average but also the maximal probability of
error, pBM, can be made small, we modify this code by throwing away
the worst half of the codewords – the ones most likely to produce errors.
Those that remain must all have conditional probability of error less
than 4δ. We use these remaining codewords to define a new code. This
new code has 2NR′−1 codewords, i.e., we have reduced the rate from R′

to R′−1/N (a negligible reduction, if N is large), and achieved pBM < 4δ.
This trick is called expurgation (figure 10.5). The resulting code may
not be the best code of its rate and length, but it is still good enough to
prove the noisy-channel coding theorem, which is what we are trying to
do here.

In conclusion, we can ‘construct’ a code of rate R′ − 1/N, where R′ < C − 3β,
with maximal probability of error < 4δ. We obtain the theorem as stated by
setting R′ = (R + C)/2, δ = ε/4, β < (C − R′)/3, and N sufficiently large for
the remaining conditions to hold. The theorem’s first part is thus proved. !

10.4 Communication (with errors) above capacity

!

"

C
R

pb

achievable

Figure 10.6. Portion of the R, pb

plane proved achievable in the
first part of the theorem. [We’ve
proved that the maximal
probability of block error pBM can
be made arbitrarily small, so the
same goes for the bit error
probability pb, which must be
smaller than pBM.]

We have proved, for any discrete memoryless channel, the achievability of a
portion of the R, pb plane shown in figure 10.6. We have shown that we can
turn any noisy channel into an essentially noiseless binary channel with rate
up to C bits per cycle. We now extend the right-hand boundary of the region
of achievability at non-zero error probabilities. [This is called rate-distortion
theory.]

We do this with a new trick. Since we know we can make the noisy channel
into a perfect channel with a smaller rate, it is sufficient to consider commu-
nication with errors over a noiseless channel. How fast can we communicate
over a noiseless channel, if we are allowed to make errors?

Consider a noiseless binary channel, and assume that we force communi-
cation at a rate greater than its capacity of 1 bit. For example, if we require
the sender to attempt to communicate at R=2 bits per cycle then he must
effectively throw away half of the information. What is the best way to do
this if the aim is to achieve the smallest possible probability of bit error? One
simple strategy is to communicate a fraction 1/R of the source bits, and ignore
the rest. The receiver guesses the missing fraction 1 − 1/R at random, and

Proof:

Code C′ has 2NR/2 = 2NR−1 messages, so rate of K ′/N = R − 1
N .

Suppose pBM(C′) = maxs P(ŝ 6= s|s, C′) ≥ 2δ, then every s ∈ C that
was thrown out must have conditional probability P(ŝ 6= s|s, C) ≥ 2δ

But then

pB(C) =
∑

s

P(ŝ 6= s|s, C)P(s) ≥ 1

2

∑

s /∈C′
2δ +

1

2

∑

s∈C′
P(ŝ 6= s|s, C) ≥ δ
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with maximal probability of error < 4δ. We obtain the theorem as stated by
setting R′ = (R + C)/2, δ = ε/4, β < (C − R′)/3, and N sufficiently large for
the remaining conditions to hold. The theorem’s first part is thus proved. !
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Figure 10.6. Portion of the R, pb

plane proved achievable in the
first part of the theorem. [We’ve
proved that the maximal
probability of block error pBM can
be made arbitrarily small, so the
same goes for the bit error
probability pb, which must be
smaller than pBM.]

We have proved, for any discrete memoryless channel, the achievability of a
portion of the R, pb plane shown in figure 10.6. We have shown that we can
turn any noisy channel into an essentially noiseless binary channel with rate
up to C bits per cycle. We now extend the right-hand boundary of the region
of achievability at non-zero error probabilities. [This is called rate-distortion
theory.]

We do this with a new trick. Since we know we can make the noisy channel
into a perfect channel with a smaller rate, it is sufficient to consider commu-
nication with errors over a noiseless channel. How fast can we communicate
over a noiseless channel, if we are allowed to make errors?

Consider a noiseless binary channel, and assume that we force communi-
cation at a rate greater than its capacity of 1 bit. For example, if we require
the sender to attempt to communicate at R=2 bits per cycle then he must
effectively throw away half of the information. What is the best way to do
this if the aim is to achieve the smallest possible probability of bit error? One
simple strategy is to communicate a fraction 1/R of the source bits, and ignore
the rest. The receiver guesses the missing fraction 1 − 1/R at random, and

Proof:

Code C′ has 2NR/2 = 2NR−1 messages, so rate of K ′/N = R − 1
N .

Suppose pBM(C′) = maxs P(ŝ 6= s|s, C′) ≥ 2δ, then every s ∈ C that
was thrown out must have conditional probability P(ŝ 6= s|s, C) ≥ 2δ

But then

pB(C) =
∑

s

P(ŝ 6= s|s, C)P(s) ≥ 1

2

∑

s /∈C′
2δ +

1

2

∑

s∈C′
P(ŝ 6= s|s, C) ≥ δ
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Code Expurgation

The last main “trick” is to show that if there is an (N,K ) code with rate
R and pB(C) < δ we can construct a new (N,K ′) code C′ with rate R − 1

N
and maximum probability of error pBM(C′) < 2δ.

We create C′ by expurgating (throwing
out) half the codewords from C, specifically
the half with the largest conditional
probability of error.
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⇒
(a) A random code . . . (b) expurgated

Figure 10.5. How expurgation
works. (a) In a typical random
code, a small fraction of the
codewords are involved in
collisions – pairs of codewords are
sufficiently close to each other
that the probability of error when
either codeword is transmitted is
not tiny. We obtain a new code
from a random code by deleting
all these confusable codewords.
(b) The resulting code has slightly
fewer codewords, so has a slightly
lower rate, and its maximal
probability of error is greatly
reduced.
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Proof Sketch of NCCT Part 1

Want to prove

Any rate R < C is achievable for Q (i.e., an (N,K ) code with rate
N/K ≥ R exists with max. block error pBM < ε for any tolerance ε)

Choose some δ > 0

1 Part one of the Joint Typicality Theorem says we can find an N(δ)
such that the probability (x, y) are not jointly typical is less than δ.

2 Thus, the average probability of error satisfies (by Part 3 of JCT)

3 Increasing N will make pB < 2δ if R ′ < I (X ;Y )− 3β

4 Choosing maximal P(x) makes required condition R ′ < C − 3β

5 pB < 2δ =⇒ a C′ such that pBM(C′) < 4δ with rate R ′ − 1
N

6 Setting R ′ = (R + C )/2, δ = ε/4, β < (C − R ′)/3 gives the result.
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Summary and Reading

Main Points:

Joint Typicality and the Joint Typicality Theorem

The (Longer) Noisy Channel Coding Theorem

Proof Ideas
I Random Coding & Typical Set Decoding
I Average Error Over Random Codes
I Code Expurgation

Reading:

MacKay §9.7, §10.1-§10.5
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