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Overview

This short course is based on my COMP2610/COMP6261 course at ANU
— a 26 hour, 2nd year undergraduate/Masters level course co-developed
with Aditya Menon (NICTA) & Edwin Bonilla (NICTA).

The ANU version of the course studies the fundamental limits and
potential of the representation and transmission of information.

Mathematical Foundations

Coding and Compression

°

o Communication

@ Probabilistic Inference
°

Kolmogorov Complexity
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TextBook

David J.C. MacKay

Information Theory, Inference,
and Learning Algorithms
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Cambridge University Press, 2003

Mackay (ITILA, 2006) available online:
http://www.inference.phy.cam.ac.uk/mackay/itila

David MacKay's Lectures:
http://www.inference.phy.cam.ac.uk/itprnn_lectures/
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The History of Information Theory

James

Gleick

THE INFORMATION

A History, aTheory, a Flood J

&
Information Theory and the Digital Age
by Aftab, Cheung, Kim, Thakkar, and Yeddanapudi.
http://web.mit.edu/6.933/www/Fall2001/Shannon2. pdf
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Uses of Information Theory

e Statistical physics (thermodynamics, quantum information theory);

e Computer science (machine learning, algorithmic complexity,
resolvability);

Probability theory (large deviations, limit theorems);

Statistics (hypothesis testing, multi-user detection, Fisher
information, estimation);

Economics (gambling theory, investment theory);
Biology (biological information theory);
Cryptography (data security, watermarking);

Networks (self-similarity, traffic regulation theory).
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What Is Information? (1)

According to a dictionary definition, information can mean
@ Facts provided or learned about something or someone:
a vital piece of information.
@ What is conveyed or represented by a particular arrangement or

sequence of things:
genetically transmitted information.

In this course: information in the context of communication:
@ Explicitly include uncertainty, modelled probabilistically
@ Shannon (1948): “Amount of unexpected data a message contains”

» A theory of information transmission
» Source, destination, transmitter, receiver
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What is Information? (2)

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION
—— >
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

Fig. 1 — Schematic diagram of a general communication system.

From Shannon (1948)
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What Is Information? (3)

Information is a message that is uncertain to receivers:

o If we receive something that we already knew with absolute certainty
then it is non-informative.

@ Uncertainty is crucial in measuring information content

@ We will deal with uncertainty using probability theory

Information Theory

Information theory is the study of the fundamental /imits and potential of
the representation and transmission of information.
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Examples
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Example 1: What Number Am | Thinking of?

| have in mind a number that is between 1 and 20
You are allowed to ask me one question at a time
| can only answer yes/no

Your goal is to figure out the number as quickly as possible

What strategy would you follow?
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Example 1: What Number Am | Thinking of?

| have in mind a number that is between 1 and 20
You are allowed to ask me one question at a time
| can only answer yes/no

Your goal is to figure out the number as quickly as possible

What strategy would you follow?

Your strategy + my answers = a code for each number

Some variants:
o What if you knew | was twice as likely to pick numbers more than 107
@ What if you knew | never chose prime numbers?

@ What if you knew | only ever chose one of 7 or 137
What is the optimal strategy/coding?
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Example 2: Redundancy and Compression

Cn y rd ths sntnc wtht ny vwls?
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Example 2: Redundancy and Compression

Cn y rd ths sntnc wtht ny vwls?
Can you read this sentence without any vowels?

Written English (and other languages) has much redundancy:
@ Approximately 1 bit of information per letter
@ Naively there should be almost 5 bits per letter

(For the moment think of “bit" as “number of yes/no questions”)

How much redundancy can we safely remove?
(Note: “rd” could be “read”, “red”, “road”, etc.)
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Example 3: Error Correction

Hmauns hvae the aitliby to cerroct for eorrrs in txet and iegmas.

How much noise is it possible to correct for and how?
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Overview of ANU Course

@ How can we quantify information?
» Probability, Basic Properties
» Entropy & Information, Results & Inequalities
@ How can we make good guesses?
» Probabilistic Inference
» Bayes Theorem and Applications
@ How much redundancy can we safely remove?
» Compression
» Source Coding Theorems, Kraft Inequality
» Block, Huffman, and Lempev-Ziv Coding
@ How much noise can we correct and how?
> Noisy-Channel Coding
> Repetition Codes, Hamming Codes
@ What is randomness?
» Kolmogorov Complexity & Algorithmic Information Theory
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Overview of ANU Course

@ How can we quantify information?
» Probability, Basic Properties
» Entropy & Information, Results & Inequalities
@ How can we make good guesses?
» Probabilistic Inference
» Bayes Theorem and Applications
@ How much redundancy can we safely remove?
» Compression
» Source Coding Theorems, Kraft Inequality
» Block, Huffman, and Lempev-Ziv Coding
@ How much noise can we correct and how?
» Noisy-Channel Coding
> Repetition Codes, Hamming Codes
@ What is randomness?
» Kolmogorov Complexity & Algorithmic Information Theory
Applications to Machine Learning
» Max. entropy, online learning, & more
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Overview of Short Course

e Day 1: Overview & Basic Concepts
» Definitions: Probability, Entropy, Information, Divergence
» Basic Properties & Relationships

e Day 2: Inequalities & Key Results

» Probabilistic Inequalities

» Information Theoretic Inequalities
» Source Coding Theorems

» Noisy-Channel Coding Theorem

o Day 3: Information Theory & Machine Learning

> Online Learning
» Exponential Families
» Clustering
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© Basic Concepts
@ Probability
@ Information and Entropy
@ Joint Entropy, Conditional Entropy and Chain Rule
@ Mutual Information, Divergence
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Probability

Let X, Y be random variables taking values in {x;}"; and {yJ}J’\i1 (resp.)
Sum Rule / Marginalization :

marginal joint
— -~ -
p(X =x)=> p(X=x;,Y =y))
J
Product Rule :
Joint conditional marginal

p(X =x,Y =y) =p(Y = yj|X = x:) p(X = x))

=p(X =x|Y = y)p(Y =y))
Bayes Rule :

likelihood prior
posterior

p(Y=;!X:x) _ pX = x|Y =y)p(Y =)
p(X = x)
N——

evidence
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An lllustration of a Distribution over Two Variables

X
joint marginal
p(Y) pXIY = 1)
H Hl_|
X
marginal conditional
28th Nov. 2014 18 / 39
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Statistical Independence: Definition

Definition: Independent Variables

Two variables X and Y are statistically independent, denoted X I Y, if
and only if their joint distribution factorizes into the product of their

marginals:
X LY < p(X,Y)=p(X)p(Y)

We may also consider random variables that are conditionally independent
given some other variable.

Definition: Conditionally Independent Variables

Two variables X and Y are conditionally independent given Z, denoted
X L Y|Z, if and only if

p(X,Y[Z) = p(X|Z)p(Y|2)

Intuitively, Z is a common cause for X and Y.
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Information

Say that a message comprises an answer to a single, yes/no question —
e.g., Will rain tomorrow or not?

Informally, the amount of information in such a message is how
unexpected or “surprising” it is.

@ If you are 90% sure it will not rain tomorrow, learning that it is
raining is more suprising than if you learnt it was not raining.

For X a random variable with outcomes in X and distribution p(X) the
information in learning X = x is h(x) = log, ﬁ = —log, p(x).

The information in observing x is large when p(x) is small and vice versa.
Rare events are more informative.
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Entropy

The entropy of a random variable X is the average information content of
its outcomes.

Entropy

Let X be a discrete r.v. with possible outcomes X" and distribution p(X).
The entropy of X — or, equivalently, p(X) — is

H(X) = Ex [(X)] = =) _ p(x) log, p(x)

X

where we define 0log0 = 0, as lim,_,o plog p = 0.

Example 1: X = {a,b,c,d}; p(a) = p(b) = % p(c) =1, p(d) =
Entropy H(X) = 2L log, 8 + Llog, 4+ Llog,2 =23 + 2+ 1 =1

\lmn—-

5

Example 2: X = {a,b, c,d}; p(a) = p(b) = p(c) = p(d) = 4
Entropy H(X) = 4% log, 4 = 2.
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Example 3 — Bernoulli Distribution

Let X € {0,1} with X ~ Bern(X|0): p(X =0) =1—60and p(X =1) = 0.
Entropy of X is H(X) = H2(0) :== —0log® — (1 — 0) log(1 — 6).

1
0.8

0.6

H,(6)

0.4

0.2

%

0.5
0 = p(X=1)

@ Minimum entropy — no uncertainty about X, i.e. 6 =1o0or =0
@ Maximum when — complete uncertainty about X, i.e. # = 0.5
e For § = 0.5 (e.g. a fair coin) Ha(X) =1 bit.
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Property: Concavity

Proposition
Let p=(p1,...,pn). The function H(p) := — vazl pi In p; is concave.
First derivative is VH(p) = —(Inp1 + 1,...,Inpy + 1)T and so second

derivative is V2H(p) = diag (—pl_l, ce —pﬁl), which is negative
semi-definite so H(p) is concave.

We can switch between log, and In since for x > 0
log, x = log, e"* = Inx. log, e.

When entropy is defined using log, its base is 2 and units are bits. When
entropy is defined using In it has base e and units of nats.
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Example 4 — Categorical Distribution

Categorical distributions with 30 different states:

0.5 0.5

H=1.77 H = 3.09

0.25

probabilities
o
I3
[
probabilities

: —eeertt T

(Figure from Bishop, PRML, 2006)
@ The more sharply peaked the lower the entropy
@ The more evenly spread the higher the entropy
e Maximum for uniform distribution: H(X) = — log % ~ 3.40 nats
» When will the entropy be minimum?
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Property: Maximised by Uniform Distribution

Proposition

Let X take values from X = {1,..., N} with distribution p = (p1,..., pn)
where p; = p(X =i). Then H(X) < log, N with equality iff p; = ﬁ Vi

Sketch Proof.
Objective: maxp H(X) = — Z,N:l pi log p; s.t. vazl pi = 1. Lagrangian:

—prlogprrA(pr—l)- (1)

Vﬁ()—Oglves Zp,—l—Oand‘% —(log
logpi =X —1 = p; =21 Summing p; gives 1
Taking logs: 0 = logy N +\ — 1 so p; =2~ 'oe2N —

gpi+1)+A=0so
22/\1 2)\ 1.

2= |

Note that log, N is number of bits needed to describe an outcome of X.
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Property: Decomposability

Forarv. X on X = {x1,...,xy} with probability distribution
p= (P17~ -',PN)3

H(X) = HX®D) + (1 - p1)H (X(ZN))

X € {0,1} indicates if X = x; or not, so:
p(XM) =1) = p(X = x1) = p1 and p(X) = 0) = p(X # x1) =1 — px

X@N) ¢ {x2,...,xn} is r.v. over outcomes except x; and

p(X(2N) :X) — p(X = X|X #X]_) = <1iipl7-.-, ]_p‘_x;l)
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Joint Entropy

The joint entropy H(X, Y) of a pair of discrete random variables with
joint distribution p(X, Y) is given by:

1
0= B e )
1
= X;{yéy p(x, y)log m

Easy to remember: This is just the entropy H(Z) for a random variable
Z = (X,Y)over Z =X x ) with distribution p(Z) = p(X, Y).
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Joint Entropy:

Independent Random Variables

If X and Y are statistically independent we have that:

= 303 plx.y) log o

XEX yeY X y)
= — Z Z p(x)p(y) [ log p(x) + log P(Y)]
xeX yeY
== p(x)logp(x)> " ply)=>_ p(y)logp(y) > p(x)
xEX yey yey XEXI
= Z (x) Iog Z )Iog
xXeX
= H(X) + H(Y)

Entropy is additive for independent random variables.
Also, H(X,Y) = H(X) + H(Y) implies p(X, Y) = p(X)p(Y).
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An Axiomatic Characterisation

Why that definition of entropy? Why not another function?

Suppose we want a measure H(X) of “information” in r.v. X so that
@ H depends on the distribution of X, and not the outcomes themselves

@ The H for the combination of two variables X, Y is at most the sum
of the corresponding H values

© The H for the combination of two independent variables X, Y is the
sum of the corresponding H values

@ Adding outcomes with probability zero does not affect H

© The H for an unbiased Bernoulli is 1

@ The H for a Bernoulli with parameter p tendsto 0 as p — 0
Then, the only possible choice for H is

H(X) = Zp x) logs p(x)
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Conditional Entropy

The conditional entropy of Y given X = x is the entropy of the probability
distribution p(Y|X = x):

1
H(Y|X = x) = yzé;}p(ylx =x)log o=

The conditional entropy of Y given X, is the average over X of the
conditional entropy of Y given X = x:

H(YIX) = 37 p(x)H(YIX = x)

xXEX
= Xze;( p(x) y}e; p(y|x)log o)

1
=Ex,y [ ]
©Lp(Y[X)
Average uncertainty that remains about Y when X is known.
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Chain Rule

The joint entropy can be written as:

HX,Y) ==Y p(x,y)logp(x, y)

XEX ycY
== > plx.y)[logp(x) +log pl(yx)]
xeX yey
==Y logp(x) D> plx,y) = > > p(x,y)log p(ylx)
XEX yey xEX yeY
p(x)

= H(X) + H(Y|X) = H(Y) + H(X]Y)

The joint uncertainty of X and Y is the uncertainty of X plus the
uncertainty of Y given X
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Relative Entropy

The relative entropy or Kullback-Leibler (KL) divergence between two
probability distributions p(X) and q(X) is defined as:

« X
Dxc(pllq) = XGX;( el % = Eox) [Iog %] '

o Note:
» Both p(X) and g(X) are defined over the same alphabet X’

@ Conventions:

0|og9d:ef0 Ologgd:efo pIogBd:éoo
0 q 0
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Relative Entropy

Properties:
° Dxi(pllg) =0
° Dki(pllg) =0=p=gq

e Dki(pllq) # DkL(qllp)
Observations:

@ Not a true distance since is not symmetric and does not satisfy the
triangle inequality
@ Hence, “KL divergence” rather than “KL distance”

@ Very important in machine learning and information theory. The
“right” distance for distributions.
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Mutual Information

Let X, Y be two r.v. with joint p(X, Y) and marginals p(X) and p(Y):

Definition
The mutual information I(X;Y') is the relative entropy between the joint
distribution p(X, Y) and the product distribution p(X)p(Y):

I(X: ¥) = Do (p(X, Y)p(X)p(Y))
_ ) log PEY)
=22 Ane e

xeX ye)

Measures “how far away” the joint distribution is from independent.

Intuitively, how much information, on average, does X convey about Y.
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Relationship between Entropy and Mutual Information

We can re-write the definition of mutual information as:

(x,y)lo X.Y)
=2 2 M y)'gu()

XEX ycY
. Z Z X, y) |Og (xly)
xeX yey ( )
==Y logp(x) D plx,y) = [ = D p(x,v)log p(x]y)
xXEX yey xeX ye)
= H(X) — H(X|Y)

The average reduction in uncertainty of X due to the knowledge of Y.
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Mutual Information:

Properties

@ Mutual Information is non-negative:
I(X;Y)>0
e Since H(X,Y) = H(X) + H(Y|X) we have that:
I(X;Y)=H(X)+ H(Y)— H(X,Y)
@ Above is symmetric in X and Y so
I(X;Y)=1(Y;X)
o Finally:
1(X; X) = H(X) — H(X|X) = H(X)

Sometimes the entropy is referred to as self-information
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Breakdown of Joint Entropy
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Conditional Mutual Information

The conditional mutual information between X and Y given Z = z:

I(X;Y|Z =2z)=H(X|Z=2z)— HX|Y,Z = z).
Averaging over Z we obtain:
The conditional mutual information between X and Y given Z:
I(X;Y|Z)=H(X|Z)— H(X|Y, Z)
p(X,Y|Z)

= Eexv2) o8 700y 2)
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Summary & Next Time

Summary:
e Probability (Joint, Marginal, Conditional, Dependence)
e Information, Entropy (Joint, Conditional) & Properties
o Relative Entropy & (Conditional) Mutual Information

Next Time:
@ Probabilistic Inequalities (Markov, Chebyshev)
o Information Theoretic Inequalities (Gibbs, Kraft, Data Processing)
@ Source Coding Theorems

@ Noisy-Channel Coding Theorem
Questions?
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