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Overview

This short course is based on my COMP2610/COMP6261 course at ANU
— a 26 hour, 2nd year undergraduate/Masters level course co-developed
with Aditya Menon (NICTA) & Edwin Bonilla (NICTA).

The ANU version of the course studies the fundamental limits and
potential of the representation and transmission of information.

Mathematical Foundations

Coding and Compression

Communication

Probabilistic Inference

Kolmogorov Complexity
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TextBook

Mackay (ITILA, 2006) available online:
http://www.inference.phy.cam.ac.uk/mackay/itila

David MacKay’s Lectures:
http://www.inference.phy.cam.ac.uk/itprnn_lectures/
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The History of Information Theory

&
Information Theory and the Digital Age

by Aftab, Cheung, Kim, Thakkar, and Yeddanapudi.
http://web.mit.edu/6.933/www/Fall2001/Shannon2.pdf
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Uses of Information Theory

Statistical physics (thermodynamics, quantum information theory);

Computer science (machine learning, algorithmic complexity,
resolvability);

Probability theory (large deviations, limit theorems);

Statistics (hypothesis testing, multi-user detection, Fisher
information, estimation);

Economics (gambling theory, investment theory);

Biology (biological information theory);

Cryptography (data security, watermarking);

Networks (self-similarity, traffic regulation theory).
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What Is Information? (1)

According to a dictionary definition, information can mean

1 Facts provided or learned about something or someone:
a vital piece of information.

2 What is conveyed or represented by a particular arrangement or
sequence of things:
genetically transmitted information.

In this course: information in the context of communication:

Explicitly include uncertainty, modelled probabilistically

Shannon (1948): “Amount of unexpected data a message contains”
I A theory of information transmission
I Source, destination, transmitter, receiver
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What is Information? (2)

INFORMATION
SOURCE

MESSAGE

TRANSMITTER

SIGNAL RECEIVED
SIGNAL

RECEIVER

MESSAGE

DESTINATION

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 3 13 bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the base e is sometimes useful. The resulting units of information will be called natural units.
Change from the base a to base b merely requires multiplication by logb a.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information sourcewhich produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f t as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f x y t of two space coordinates and time, the light intensity at point x y and time t on a
pickup tube plate; (d) Two or more functions of time, say f t , g t , h t — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables— in color television the message consists of three
functions f x y t , g x y t , h x y t defined in a three-dimensional continuum— we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitter which operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. The destination is the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their

2

From Shannon (1948)
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What Is Information? (3)

Information is a message that is uncertain to receivers:

If we receive something that we already knew with absolute certainty
then it is non-informative.

Uncertainty is crucial in measuring information content

We will deal with uncertainty using probability theory

Information Theory

Information theory is the study of the fundamental limits and potential of
the representation and transmission of information.

Mark Reid (ANU) Information Theory 28th Nov. 2014 9 / 39



Examples
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Example 1: What Number Am I Thinking of?

I have in mind a number that is between 1 and 20

You are allowed to ask me one question at a time

I can only answer yes/no

Your goal is to figure out the number as quickly as possible

What strategy would you follow?

Your strategy + my answers = a code for each number

Some variants:

What if you knew I was twice as likely to pick numbers more than 10?

What if you knew I never chose prime numbers?

What if you knew I only ever chose one of 7 or 13?

What is the optimal strategy/coding?
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Example 2: Redundancy and Compression

Cn y rd ths sntnc wtht ny vwls?

Can you read this sentence without any vowels?

Written English (and other languages) has much redundancy:

Approximately 1 bit of information per letter

Naively there should be almost 5 bits per letter

(For the moment think of “bit” as “number of yes/no questions”)

How much redundancy can we safely remove?
(Note: “rd” could be “read”, “red”, “road”, etc.)
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Example 3: Error Correction

Hmauns hvae the aitliby to cerroct for eorrrs in txet and iegmas.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

564 47 — Low-Density Parity-Check Codes

Figure 47.5. Iterative probabilistic decoding of a low-density parity-check code for a transmission
received over a channel with noise level f = 7.5%. The sequence of figures shows the best
guess, bit by bit, given by the iterative decoder, after 0, 1, 2, 3, 10, 11, 12, and 13 iterations.
The decoder halts after the 13th iteration when the best guess violates no parity checks.
This final decoding is error free.
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Figure 47.6. Error probability of
the low-density parity-check code
(with error bars) for binary
symmetric channel with f = 7.5%,
compared with algebraic codes.
Squares: repetition codes and
Hamming (7, 4) code; other
points: Reed–Muller and BCH
codes.

How much noise is it possible to correct for and how?
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Overview of ANU Course

How can we quantify information?
I Probability, Basic Properties
I Entropy & Information, Results & Inequalities

How can we make good guesses?
I Probabilistic Inference
I Bayes Theorem and Applications

How much redundancy can we safely remove?
I Compression
I Source Coding Theorems, Kraft Inequality
I Block, Huffman, and Lempev-Ziv Coding

How much noise can we correct and how?
I Noisy-Channel Coding
I Repetition Codes, Hamming Codes

What is randomness?
I Kolmogorov Complexity & Algorithmic Information Theory

Applications to Machine Learning
I Max. entropy, online learning, & more
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Overview of Short Course

Day 1: Overview & Basic Concepts
I Definitions: Probability, Entropy, Information, Divergence
I Basic Properties & Relationships

Day 2: Inequalities & Key Results
I Probabilistic Inequalities
I Information Theoretic Inequalities
I Source Coding Theorems
I Noisy-Channel Coding Theorem

Day 3: Information Theory & Machine Learning
I Online Learning
I Exponential Families
I Clustering
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Probability

Let X ,Y be random variables taking values in {xi}Ni=1 and {yj}Mj=1 (resp.)

Sum Rule / Marginalization :

marginal︷ ︸︸ ︷
p(X = xi ) =

∑
j

joint︷ ︸︸ ︷
p(X = xi ,Y = yj)

Product Rule :

joint︷ ︸︸ ︷
p(X = xi ,Y = yj) =

conditional︷ ︸︸ ︷
p(Y = yj |X = xi )

marginal︷ ︸︸ ︷
p(X = xi )

= p(X = xi |Y = yj)p(Y = yj)

Bayes Rule :

posterior︷ ︸︸ ︷
p(Y = y |X = x) =

likelihood︷ ︸︸ ︷
p(X = x |Y = y)

prior︷ ︸︸ ︷
p(Y = y)

p(X = x)︸ ︷︷ ︸
evidence
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An Illustration of a Distribution over Two Variables

joint marginal

marginal conditional
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Statistical Independence: Definition

Definition: Independent Variables

Two variables X and Y are statistically independent, denoted X ⊥⊥ Y , if
and only if their joint distribution factorizes into the product of their
marginals:

X ⊥⊥ Y ↔ p(X ,Y ) = p(X )p(Y )

We may also consider random variables that are conditionally independent
given some other variable.

Definition: Conditionally Independent Variables

Two variables X and Y are conditionally independent given Z , denoted
X ⊥⊥ Y |Z , if and only if

p(X ,Y |Z ) = p(X |Z )p(Y |Z )

Intuitively, Z is a common cause for X and Y .
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Information

Say that a message comprises an answer to a single, yes/no question —
e.g., Will rain tomorrow or not?

Informally, the amount of information in such a message is how
unexpected or “surprising” it is.

If you are 90% sure it will not rain tomorrow, learning that it is
raining is more suprising than if you learnt it was not raining.

Information

For X a random variable with outcomes in X and distribution p(X ) the
information in learning X = x is h(x) = log2

1
p(x) = − log2 p(x).

The information in observing x is large when p(x) is small and vice versa.
Rare events are more informative.
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Entropy

The entropy of a random variable X is the average information content of
its outcomes.

Entropy

Let X be a discrete r.v. with possible outcomes X and distribution p(X ).
The entropy of X — or, equivalently, p(X ) — is

H(X ) = EX [h(X )] = −
∑
x

p(x) log2 p(x)

where we define 0 log 0 ≡ 0, as limp→0 p log p = 0.

Example 1: X = {a, b, c, d}; p(a) = p(b) = 1
8 , p(c) = 1

4 , p(d) = 1
2 .

Entropy H(X ) = 21
8 log2 8 + 1

4 log2 4 + 1
2 log2 2 = 23

8 + 2
4 + 1

2 = 1.75.

Example 2: X = {a, b, c, d}; p(a) = p(b) = p(c) = p(d) = 1
4 .

Entropy H(X ) = 41
4 log2 4 = 2.
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Example 3 — Bernoulli Distribution

Let X ∈ {0, 1} with X ∼ Bern(X |θ): p(X = 0) = 1− θ and p(X = 1) = θ.
Entropy of X is H(X ) = H2(θ) := −θ log θ − (1− θ) log(1− θ).

0 0.5 1
0

0.2

0.4

0.6

0.8

1

θ = p(X=1)

H
2
(θ

)

Minimum entropy → no uncertainty about X , i.e. θ = 1 or θ = 0

Maximum when → complete uncertainty about X , i.e. θ = 0.5

For θ = 0.5 (e.g. a fair coin) H2(X ) = 1 bit.
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Property: Concavity

Proposition

Let p = (p1, . . . , pN). The function H(p) := −∑N
i=1 pi ln pi is concave.

First derivative is ∇H(p) = − (ln p1 + 1, . . . , ln pN + 1)> and so second
derivative is ∇2H(p) = diag

(
−p−11 , . . . ,−p−1N

)
, which is negative

semi-definite so H(p) is concave.

We can switch between log2 and ln since for x > 0
log2 x = log2 e

ln x = ln x . log2 e.

When entropy is defined using log2 its base is 2 and units are bits. When
entropy is defined using ln it has base e and units of nats.
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Example 4 — Categorical Distribution

Categorical distributions with 30 different states:

(Figure from Bishop, PRML, 2006)

The more sharply peaked the lower the entropy

The more evenly spread the higher the entropy
Maximum for uniform distribution: H(X ) = − log 1

30 ≈ 3.40 nats
I When will the entropy be minimum?

Mark Reid (ANU) Information Theory 28th Nov. 2014 24 / 39



Property: Maximised by Uniform Distribution

Proposition

Let X take values from X = {1, . . . ,N} with distribution p = (p1, . . . , pN)
where pi = p(X = i). Then H(X ) ≤ log2N with equality iff pi = 1

N ∀i .

Sketch Proof:
Objective: maxpH(X ) = −∑N

i=1 pi log pi s.t.
∑N

i=1 pi = 1. Lagrangian:

L(p) = −
∑
i

pi log pi + λ

(∑
i

pi − 1

)
. (1)

∇L(p) = 0 gives ∂L
∂λ =

∑
i pi − 1 = 0 and ∂L

∂pi
= −(log pi + 1) + λ = 0 so

log pi = λ− 1 =⇒ pi = 2λ−1. Summing pi gives 1 =
∑

i 2λ−1 = N.2λ−1.
Taking logs: 0 = log2N + λ− 1 so pi = 2− log2 N = 1

N .

Note that log2N is number of bits needed to describe an outcome of X .
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Property: Decomposability

For a r.v. X on X = {x1, . . . , xN} with probability distribution
p = (p1, . . . , pN):

H(X ) = H(X (1)) + (1− p1)H
(
X (2:N)

)
X (1) ∈ {0, 1} indicates if X = x1 or not, so:
p(X (1) = 1) = p(X = x1) = p1 and p(X (1) = 0) = p(X 6= x1) = 1− p1

X (2:N) ∈ {x2, . . . , xN} is r.v. over outcomes except x1 and

p(X (2:N) = x) = p(X = x |X 6= x1) =
(

p2
1−p1 , . . . ,

p|X|
1−p1

)
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Joint Entropy

The joint entropy H(X ,Y ) of a pair of discrete random variables with
joint distribution p(X ,Y ) is given by:

H(X ,Y ) = EX ,Y

[
log

1

p(X ,Y )

]
=
∑
x∈X

∑
y∈Y

p(x , y) log
1

p(x , y)

Easy to remember: This is just the entropy H(Z ) for a random variable
Z = (X ,Y ) over Z = X × Y with distribution p(Z ) = p(X ,Y ).
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Joint Entropy:
Independent Random Variables

If X and Y are statistically independent we have that:

H(X ,Y ) =
∑
x∈X

∑
y∈Y

p(x , y) log
1

p(x , y)

= −
∑
x∈X

∑
y∈Y

p(x)p(y)
[

log p(x) + log p(y)
]

= −
∑
x∈X

p(x) log p(x)
∑
y∈Y

p(y)︸ ︷︷ ︸
1

−
∑
y∈Y

p(y) log p(y)
∑
x∈X

p(x)︸ ︷︷ ︸
1

=
∑
x∈X

p(x) log
1

p(x)
+
∑
y∈Y

p(y) log
1

p(y)

= H(X ) + H(Y )

Entropy is additive for independent random variables.
Also, H(X ,Y ) = H(X ) + H(Y ) implies p(X ,Y ) = p(X )p(Y ).
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An Axiomatic Characterisation

Why that definition of entropy? Why not another function?

Suppose we want a measure H(X ) of “information” in r.v. X so that

1 H depends on the distribution of X , and not the outcomes themselves

2 The H for the combination of two variables X ,Y is at most the sum
of the corresponding H values

3 The H for the combination of two independent variables X ,Y is the
sum of the corresponding H values

4 Adding outcomes with probability zero does not affect H

5 The H for an unbiased Bernoulli is 1

6 The H for a Bernoulli with parameter p tends to 0 as p → 0

Then, the only possible choice for H is

H(X ) = −
∑
x

p(x) log2 p(x)
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Conditional Entropy

The conditional entropy of Y given X = x is the entropy of the probability
distribution p(Y |X = x):

H(Y |X = x) =
∑
y∈Y

p(y |X = x) log
1

p(y |X = x)

The conditional entropy of Y given X , is the average over X of the
conditional entropy of Y given X = x :

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

=
∑
x∈X

p(x)
∑
y∈Y

p(y |x) log
1

p(y |x)

= EX ,Y

[
1

p(Y |X )

]
Average uncertainty that remains about Y when X is known.
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Chain Rule

The joint entropy can be written as:

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x , y)

= −
∑
x∈X

∑
y∈Y

p(x , y)
[

log p(x) + log p(y |x)
]

= −
∑
x∈X

log p(x)
∑
y∈Y

p(x , y)︸ ︷︷ ︸
p(x)

−
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x)

= H(X ) + H(Y |X ) = H(Y ) + H(X |Y )

The joint uncertainty of X and Y is the uncertainty of X plus the
uncertainty of Y given X
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Relative Entropy

Definition

The relative entropy or Kullback-Leibler (KL) divergence between two
probability distributions p(X ) and q(X ) is defined as:

DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep(X )

[
log

p(X )

q(X )

]
.

Note:
I Both p(X ) and q(X ) are defined over the same alphabet X

Conventions:

0 log
0

0
def
= 0 0 log

0

q
def
= 0 p log

p

0
def
=∞
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Relative Entropy

Properties:

DKL(p‖q) ≥ 0

DKL(p‖q) = 0⇔ p = q

DKL(p‖q) 6= DKL(q‖p)

Observations:

Not a true distance since is not symmetric and does not satisfy the
triangle inequality

Hence, “KL divergence” rather than “KL distance”

Very important in machine learning and information theory. The
“right” distance for distributions.
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Mutual Information

Let X ,Y be two r.v. with joint p(X ,Y ) and marginals p(X ) and p(Y ):

Definition

The mutual information I (X ;Y ) is the relative entropy between the joint
distribution p(X ,Y ) and the product distribution p(X )p(Y ):

I (X ;Y ) = DKL (p(X ,Y )‖p(X )p(Y ))

=
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)

Measures “how far away” the joint distribution is from independent.

Intuitively, how much information, on average, does X convey about Y .

Mark Reid (ANU) Information Theory 28th Nov. 2014 34 / 39



Relationship between Entropy and Mutual Information

We can re-write the definition of mutual information as:

I (X ;Y ) =
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)

=
∑
x∈X

∑
y∈Y

p(x , y) log
p(x |y)

p(x)

= −
∑
x∈X

log p(x)
∑
y∈Y

p(x , y)−

−∑
x∈X

∑
y∈Y

p(x , y) log p(x |y)


= H(X )− H(X |Y )

The average reduction in uncertainty of X due to the knowledge of Y .
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Mutual Information:
Properties

Mutual Information is non-negative:

I (X ;Y ) ≥ 0

Since H(X ,Y ) = H(X ) + H(Y |X ) we have that:

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

Above is symmetric in X and Y so

I (X ;Y ) = I (Y ;X )

Finally:

I (X ;X ) = H(X )− H(X |X ) = H(X )

Sometimes the entropy is referred to as self-information
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Breakdown of Joint Entropy

H(X|Y ) H(Y |X)I(X; Y )

H(X) H(Y )

H(X, Y )
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Conditional Mutual Information

The conditional mutual information between X and Y given Z = zk :

I (X ;Y |Z = zk) = H(X |Z = zk)− H(X |Y ,Z = zk).

Averaging over Z we obtain:

The conditional mutual information between X and Y given Z :

I (X ;Y |Z ) = H(X |Z )− H(X |Y ,Z )

= Ep(X ,Y ,Z) log
p(X ,Y |Z )

p(X |Z )p(Y |Z )
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Summary & Next Time

Summary:

Probability (Joint, Marginal, Conditional, Dependence)

Information, Entropy (Joint, Conditional) & Properties

Relative Entropy & (Conditional) Mutual Information

Next Time:

Probabilistic Inequalities (Markov, Chebyshev)

Information Theoretic Inequalities (Gibbs, Kraft, Data Processing)

Source Coding Theorems

Noisy-Channel Coding Theorem

Questions?
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