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Loss and Bayes Risk

Machine learning is often framed in terms of Josses. Given observations
from X and predictors A, a loss function ¢ : A — R? assigns penalty
¢, (a) for predicting a € A when x € X is observed.

If observations come from fixed,
unknown distribution p(x) over X
the risk of a is the expected loss

R(a; p) = Exp [6x(a)] = (p, £(a))

The Bayes risk is the minimal
risk for any distribution

H(p) = inf R(a:p).

H(p) is always concave.
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Log Loss and Entropy

In the special case when predictions are distributions over X (i.e.,
A = Ay) and the loss is log loss

tx(q) = —log q(x)
we get R(q; p) = Ex~p [~ log q(x)] and
H(p) = Jnf B [ log q(x)] = —Ex~p [log p(x)] -

Furthermore, the Regret (i.e., how far prediction was from optimal) is

Regret(q;p)

R(a:p) = inf R(q': p) = Ex~p [~ log q(x) + log p(x)] = KL(p; q)

(Aside: In general, regret for a proper loss is always a Bregman divergence
constructed from the negative Bayes risk of a loss)
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Fano's Inequality

Fano's Inequality

LetAp(X, Y) be a joint distribution over X and Y where Y € {1,...,K}.
If Y = f(X) is an estimator for Y then

H(Y|X) -1

Y£Y)>
p(Y #Y) > og, K

Proof: Define E=1if ¥ #Y and E=0if ¥ = Y and let p = p(E = 1).
Ignore X for the moment. Apply chain rule for conditional entropy:

H(E,Y|Y)=H(Y|Y)+ H(E|Y,Y)=H(E|Y)+ H(Y|E,Y)
o H(E|Y,Y) =0 since E is determined by Y and Y.
e H(E|Y) < H(E) < 1 (conditioning reduces entropy; E is binary)
o HIY|E,Y)=(1—p)H(Y|Y,E=0)4+pH(Y|Y,E=1) < plog, K
since E=0 = Y =Y and H(Y|Y) < H(Y) < log, K.

Mark Reid (ANU) Information Theory 2nd Dec. 2014 5/18



Fano's Inequality

Proof (cont.): So A
HY|Y)+0<1+plog, K
But by the data processing inequality we know that /(Y; Y) < I(Y;X)

since we assume Y = f(X) and so Y — X — Y forms a Markov chain.
Thus,

I(Y;¥Y)=H(Y)=H(Y|Y) < H(Y) = H(Y|X) = I(Y; X)
which gives H(Y|Y) > H(Y|X) and so
H(Y|X) <1+ plog, K.
Rearranging gives Fano's inequality:

H(Y|X) -1

P(Y £ Y) >
(Y#Y)> log; K
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Fano's Inequality

We can interpret this inequality in some extreme situations to see if it
makes sense.

R H(Y|X) -1
P(Y#Y)> W

Suppose we are trying to “learn noise”. That is, that Y (the class label) is
uniformly distributed and independ of X (the feature vector).

Then H(Y|X) = H(Y) = log, K and so Fano's inequality becomes:

~ log, K — 1 1
P(Y £V)> 820~ %
log, K log, K

Correct but weak since P(Y # V) =1— % in this case.

Amount X tells us about Y bounds how well we can predict Y based on X.
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Another Bound

We can also use obtain a bound on “chance matching”.

Lower bound on match by chance

Suppose that Y and Y’ are i.i.d. with distribution p(Y). Then

p(Y = Y') > 27H),

This makes intuitive sense: the more “spread out” the distribution over
Y's, the less chance we have of two randomly drawn samples matching.

Conversely, if there is no randomness in Y then the probability of a match
is 1.

Proof-
p(Y =V)= >, p(y)? = Eynp [21082P0)] > 2Ermpllog: ply)] — 2= H(Y),
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Learning from Expert Advice: Motivation

£(p1) =10 f(p2) =2 £(p)=5
P —_— ——

Ep) =7 €(pz) =4 €p)=6
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Online Learning from Expert Advice

Consider the following game where each # € © denotes an “expert” and
0: Ay — RY is a loss.

Eachround t=1,..., T:

@ Experts make predictions pj € Ay

@ Player makes prediction p* € Ay (can depend on pj)

© Observe a new instance x! € X

© Update losses: expert L} = L;_l + Ly (ph) 5 player Lt = L1+ £,(p?)
Aim: choose pt to minimise regret after T rounds R(T) = LT — ming L]

Ideally we want R(T) so that lim7_,oc £R(T) =0 (“no regret”).

No regret if R(T) o< /T (“slow rate”) or if R(T) is constant (“fast rate”)
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Mixable Losses and the Aggregating Algorithm

Vovk (1999) characterised when fast rates are possible in terms of a
property of a loss he called mixability.

Mixable Loss

Aloss £ : Ay — RY is n-mixable if for any {ps € Ax}oco and any
mixture p € Ag there exists p € Ay such that for all x € X

0(P) < Miey (s x) = —% 108 gy [exp(~ 1t ()]

Examples:
@ Log loss ¢y(p) = — log p(x) is 1-mixable since
— log Eg~,, [exp(log pg(x))] = — log Eg~,. [pa(x)] = — log p(x).
o Square loss £,(p) = ||p — 0x||3 is 2-mixable.
@ Absolute loss ¢x(p) = ||p — dx||1 is not mixable
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Mixability Theorem

Mixability guarantees fast rates (i.e., constant R(T)).

Mixability implies fast rates

If £ is an n-mixable loss then there exists an algorithm that acheive a regret

R(T) < '°gn|e|.

The witness to the above result is called the Aggregating Algorithm:
o Initialise u0 = Ll
e Each round t

> Set pf(0) oc 1~ 1(0) exp(—ntx(po))
» Predict using p guaranteed to satisfy £,(p) < Mix, ¢(p, x)
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Proof of Mixability Theorem

When using AA to choose p?, first note that if W' =}", e then
Eew;ﬁ |:e—7]ext(Pg):| — 20 e—nfxt(pg)e—n/_f/Wt _ Wt+1/wt_

Now consider total loss at round T when using AA to choose pt:

.
p*) <D Mixyo(u',x")
t=1

-
= " —n " log Egnpur [exp(—1te (ph))]
t=1

-
_ wt _ wT
=-n 1'°€H71:—77 1|OgW

t=1
<n? (nLeT + |0g|9|>

for all 0 € ©, giving LT — L] < %, as required.
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What's this got to do with Information Theory?

The telescoping of W!/W?®~1 in the above argument can be obtained via
an additive telescoping in the dual space to Ag since the mixability
condition can be written as

Fit the loss Regularise

H ; -1 /
Mixiy (1, x) = inf Eonne [x(po)] +07" KL(1'|| 1)
JUASVANS)
and the minimising 1 is the distribution obtained from the AA.

Furthermore:
o The distributions uf(0) o< e~ are like an EF with statistic (L})gco
@ Regret bound is %KL(WH(S(;) for m = 4 and dy is point mass on 6.
o For log loss, n =1 and AA = Bayesian updating

(Similar results hold for general Bregman divergence regularisation too)
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Exponential Families: A Quick Review

Exponential Family

For statistic ¢ : X — R? an exponential family (w.r.t. some measure \) is
aset F ={py: 60 € O} of densities of the form

po(x) = exp ((¢(x), 0) — C(6))

with finite cumulant C(0) := log [y po(x) dA(x). The parameters § € ©
are natural parameters. The family F is regular if © is an open set
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po(x) = exp ((¢(x), 0) — C(6))

with finite cumulant C(0) := log [y po(x) dA(x). The parameters § € ©
are natural parameters. The family F is regular if © is an open set

Selected Properties:
o Convexity: © is a convex set. C : © — R is a convex function.
@ The gradient of the cumulant is the mean: VC(0) = Exp, [¢(x)]
e The KL divergence KL(py||pe') = Dc(6',0) the BD for C
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Exponential Families via Maximum Entropy

EF distributions are maximum entropy solutions with mean-constraints.

Maximum Entropy

Define the Shannon entropy H(p) = — [ p(x) log p(x) dA(x). For a given
mean value r € R? define the maximum entropy solution

pr = argsup{H(p) : p € Ax,Ep [¢] = r}

and the maximum entropy family F = {p, } ,co.
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Exponential Families via Maximum Entropy

EF distributions are maximum entropy solutions with mean-constraints.

Maximum Entropy

Define the Shannon entropy H(p) = — [ p(x) log p(x) dA(x). For a given
mean value r € R? define the maximum entropy solution

pr = argsup{H(p) : p € Ax,Ep [¢] = r}

and the maximum entropy family F = {p, } ,co.

Properties:

@ The exponential family {pp}pco and the MaxEnt family {p} co
contain the same distributions

@ A bijection between natural parameters § € © and mean parameters
re ®isgiven by r =VC(f) and § = (VC)~1(r) = VC*(r)
o The Lagrangian L(p,0) = H(p) + (0,E, [¢] — r) with dual vars 6.
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Exponential Families via Convex Duality

Some simple calculations show that —H is convex over Ax and

(—H)"(q) = log /X exp ((x)) dA(x) and

ey exp(g(x)
V(=H")(a@)x = Jx exp (a(€)) dA)
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Exponential Families via Convex Duality

Some simple calculations show that —H is convex over Ax and

(—H)"(q) = log /X exp (q(x)) dA(x) and

L B exp(q(x))
V(=H*)(q)x = Jx exp (a(€)) dA(€)

Exponential Families via Convexity

For statistic ¢ : X — R each py in the exp. family for ¢ can be written as
po = V(=H)"(¢'0)

and C(0) = (—H*)(¢"0) where ¢ 6 € W* denotes the RV x — (¢(x), 6).
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Sufficient Statistics

Suppose we have a parametric family of distributions over X,
Po = {ps € Ax : 0 € ©}. In statistics, a sufficient statistic for intuitively
captures all the information in observations from X’ for inference in Pg.

A function ¢ : X — RX for Pg is a sufficient statistic if § and X are
conditionally independent given ¢(X) —i.e., 8 — ¢(X) — X.

This intution can be formalised using mutual information via the data
processing inequality: since ¢(X) is a function of X we always have

0 — X — ¢(X) and so 1(0; X) > 1(0,#(X)). However, DPI also say
equality happens iff 6 — X — ¢(X) — that is, iff ¢ is sufficient for Pg.

Sufficient Statistic (Info. Theory)
A function ¢ : X — R¥ is a sufficient statistic when 1(0; ¢(X)) = 1(6; X).
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