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Loss and Bayes Risk

Machine learning is often framed in terms of losses. Given observations
from X and predictors A, a loss function ` : A → RX assigns penalty
`x(a) for predicting a ∈ A when x ∈ X is observed.

If observations come from fixed,
unknown distribution p(x) over X
the risk of a is the expected loss

R(a; p) = Ex∼p [`x(a)] = 〈p, `(a)〉

The Bayes risk is the minimal
risk for any distribution

H(p) = inf
a∈A

R(a; p).

H(p) is always concave.
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Log Loss and Entropy

In the special case when predictions are distributions over X (i.e.,
A = ∆X ) and the loss is log loss

`x(q) = − log q(x)

we get R(q; p) = Ex∼p [− log q(x)] and

H(p) = inf
q∈∆X

Ex∼p [− log q(x)] = −Ex∼p [log p(x)] .

Furthermore, the Regret (i.e., how far prediction was from optimal) is

Regret(q;p)︷ ︸︸ ︷
R(q; p)− inf

q′∈∆X
R(q′; p) = Ex∼p [− log q(x) + log p(x)] = KL(p; q)

(Aside: In general, regret for a proper loss is always a Bregman divergence
constructed from the negative Bayes risk of a loss)
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Fano’s Inequality

Fano’s Inequality

Let p(X ,Y ) be a joint distribution over X and Y where Y ∈ {1, . . . ,K}.
If Ŷ = f (X ) is an estimator for Y then

p(Ŷ 6= Y ) ≥ H(Y |X )− 1

log2 K
.

Proof: Define E = 1 if Ŷ 6= Y and E = 0 if Ŷ = Y and let p = p(E = 1).
Ignore X for the moment. Apply chain rule for conditional entropy:

H(E ,Y |Ŷ ) = H(Y |Ŷ ) + H(E |Y , Ŷ ) = H(E |Ŷ ) + H(Y |E , Ŷ )

H(E |Y , Ŷ ) = 0 since E is determined by Y and Ŷ .

H(E |Ŷ ) ≤ H(E ) ≤ 1 (conditioning reduces entropy; E is binary)

H(Y |E , Ŷ ) = (1− p) H(Y |Ŷ ,E = 0) + p H(Y |Ŷ ,E = 1) ≤ p log2 K

since E = 0 =⇒ Y = Ŷ and H(Y |Ŷ ) ≤ H(Y ) ≤ log2 K .
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Fano’s Inequality

Proof (cont.): So
H(Y |Ŷ ) + 0 ≤ 1 + p log2 K

But by the data processing inequality we know that I (Y ; Ŷ ) ≤ I (Y ; X )
since we assume Ŷ = f (X ) and so Y → X → Ŷ forms a Markov chain.
Thus,

I (Y ; Ŷ ) = H(Y )− H(Y |Ŷ ) ≤ H(Y )− H(Y |X ) = I (Y ; X )

which gives H(Y |Ŷ ) ≥ H(Y |X ) and so

H(Y |X ) ≤ 1 + p log2 K .

Rearranging gives Fano’s inequality:

P(Y 6= Ŷ ) ≥ H(Y |X )− 1

log2 K
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Fano’s Inequality

We can interpret this inequality in some extreme situations to see if it
makes sense.

P(Y 6= Ŷ ) ≥ H(Y |X )− 1

log2 K

Suppose we are trying to “learn noise”. That is, that Y (the class label) is
uniformly distributed and independ of X (the feature vector).

Then H(Y |X ) = H(Y ) = log2 K and so Fano’s inequality becomes:

P(Y 6= Ŷ ) ≥ log2 K − 1

log2 K
= 1− 1

log2 K

Correct but weak since P(Y 6= Ŷ ) = 1− 1
K in this case.

Amount X tells us about Y bounds how well we can predict Y based on X .
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Another Bound

We can also use obtain a bound on “chance matching”.

Lower bound on match by chance

Suppose that Y and Y ′ are i.i.d. with distribution p(Y ). Then

p(Y = Y ′) ≥ 2−H(Y ).

This makes intuitive sense: the more “spread out” the distribution over
Y s, the less chance we have of two randomly drawn samples matching.
Conversely, if there is no randomness in Y then the probability of a match
is 1.

Proof:
p(Y = Ŷ ) =

∑
y p(y)2 = Ey∼p

[
2log2 p(y)

]
≥ 2Ey∼p [log2 p(y)] = 2−H(Y ).
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Learning from Expert Advice: Motivation
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Online Learning from Expert Advice

Consider the following game where each θ ∈ Θ denotes an “expert” and
` : ∆X → RX is a loss.

Each round t = 1, . . . ,T :

1 Experts make predictions pt
θ ∈ ∆X

2 Player makes prediction pt ∈ ∆X (can depend on pt
θ)

3 Observe a new instance x t ∈ X
4 Update losses: expert Lt

θ = Lt−1
θ + `x t (pt

θ) ; player Lt = Lt−1 + `x t (pt)

Aim: choose pt to minimise regret after T rounds R(T ) = LT −minθ LT
θ

Ideally we want R(T ) so that limT→∞
1
T R(T ) = 0 (“no regret”).

No regret if R(T ) ∝
√

T (“slow rate”) or if R(T ) is constant (“fast rate”)

Mark Reid (ANU) Information Theory 2nd Dec. 2014 10 / 18



Mixable Losses and the Aggregating Algorithm

Vovk (1999) characterised when fast rates are possible in terms of a
property of a loss he called mixability.

Mixable Loss

A loss ` : ∆X → RX is η-mixable if for any {pθ ∈ ∆X }θ∈Θ and any
mixture µ ∈ ∆Θ there exists p ∈ ∆X such that for all x ∈ X

`x(p) ≤ Mixη,`(µ, x) := −1

η
logEθ∼µ [exp(−η`x(pθ))]

Examples:

Log loss `x(p) = − log p(x) is 1-mixable since
− logEθ∼µ [exp(log pθ(x))] = − logEθ∼µ [pθ(x)] = − log p(x).

Square loss `x(p) = ‖p − δx‖2
2 is 2-mixable.

Absolute loss `x(p) = ‖p − δx‖1 is not mixable
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Mixability Theorem

Mixability guarantees fast rates (i.e., constant R(T )).

Mixability implies fast rates

If ` is an η-mixable loss then there exists an algorithm that acheive a regret

R(T ) ≤ log |Θ|
η

.

The witness to the above result is called the Aggregating Algorithm:

Initialise µ0 = 1
|Θ|

Each round t
I Set µt(θ) ∝ µt−1(θ) exp(−η`x(pθ))
I Predict using p guaranteed to satisfy `x(p) ≤ Mixη,`(µ, x)
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Proof of Mixability Theorem

When using AA to choose pt , first note that if W t =
∑

θ e−ηL
t
θ then

Eθ∼µt
[
e−η`xt (ptθ)

]
=
∑

θ e−η`xt (ptθ)e−ηL
t
/W t = W t+1/W t .

Now consider total loss at round T when using AA to choose pt :

LT =
T∑
t=1

`x t (pt) ≤
T∑
t=1

Mixη,`(µ
t , x t)

=
T∑
t=1

−η−1 logEθ∼µt
[
exp(−η`x t (pt

θ))
]

= −η−1 log
T∏
t=1

W t

W t−1
= −η−1 log

W T

W 0

≤ η−1
(
ηLT

θ + log |Θ|
)

for all θ ∈ Θ, giving LT − LT
θ ≤

log |Θ|
η , as required.
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What’s this got to do with Information Theory?

The telescoping of W t/W t−1 in the above argument can be obtained via
an additive telescoping in the dual space to ∆Θ since the mixability
condition can be written as

Mixη,`(µ, x) = inf
µ′∈∆Θ

Fit the loss︷ ︸︸ ︷
Eθ∼∆Θ

[`x(pθ)] +η−1

Regularise︷ ︸︸ ︷
KL(µ′‖µ)

and the minimising µ′ is the distribution obtained from the AA.

Furthermore:

The distributions µt(θ) ∝ e−ηL
t
θ are like an EF with statistic (Lt

θ)θ∈Θ

Regret bound is 1
ηKL(π‖δθ) for π = 1

N and δθ is point mass on θ.

For log loss, η = 1 and AA = Bayesian updating

(Similar results hold for general Bregman divergence regularisation too)
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Exponential Families: A Quick Review

Exponential Family

For statistic φ : X → Rd an exponential family (w.r.t. some measure λ) is
a set F = {pθ : θ ∈ Θ} of densities of the form

pθ(x) := exp (〈φ(x), θ〉 − C (θ))

with finite cumulant C (θ) := log
∫
X pθ(x) dλ(x). The parameters θ ∈ Θ

are natural parameters. The family F is regular if Θ is an open set

Selected Properties:

Convexity: Θ is a convex set. C : Θ→ R is a convex function.

The gradient of the cumulant is the mean: ∇C (θ) = Ex∼pθ [φ(x)]

The KL divergence KL(pθ‖pθ′) = DC (θ′, θ) the BD for C
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Exponential Families via Maximum Entropy

EF distributions are maximum entropy solutions with mean-constraints.

Maximum Entropy

Define the Shannon entropy H(p) = −
∫
X p(x) log p(x) dλ(x). For a given

mean value r ∈ Rd define the maximum entropy solution

pr = arg sup{H(p) : p ∈ ∆X ,Ep [φ] = r}

and the maximum entropy family F = {pr}r∈Φ.

Properties:

The exponential family {pθ}θ∈Θ and the MaxEnt family {pr}r∈Φ

contain the same distributions

A bijection between natural parameters θ ∈ Θ and mean parameters
r ∈ Φ is given by r = ∇C (θ) and θ = (∇C )−1(r) = ∇C ∗(r)

The Lagrangian L(p, θ) = H(p) + 〈θ,Ep [φ]− r〉 with dual vars θ.
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Exponential Families via Convex Duality

Some simple calculations show that −H is convex over ∆X and

(−H)∗(q) = log

∫
X

exp (q(x)) dλ(x) and

∇(−H∗)(q)x =
exp(q(x))∫

X exp (q(ξ)) dλ(ξ)

Exponential Families via Convexity

For statistic φ : X → Rd each pθ in the exp. family for φ can be written as

pθ = ∇(−H)∗(φ>θ)

and C (θ) = (−H∗)(φ>θ) where φ>θ ∈ W∗ denotes the RV x 7→ 〈φ(x), θ〉.
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Sufficient Statistics

Suppose we have a parametric family of distributions over X ,
PΘ = {pθ ∈ ∆X : θ ∈ Θ}. In statistics, a sufficient statistic for intuitively
captures all the information in observations from X for inference in PΘ.

Sufficient Statistic

A function φ : X → RK for PΘ is a sufficient statistic if θ and X are
conditionally independent given φ(X ) — i.e., θ → φ(X )→ X .

This intution can be formalised using mutual information via the data
processing inequality: since φ(X ) is a function of X we always have
θ → X → φ(X ) and so I (θ; X ) ≥ I (θ, φ(X )). However, DPI also say
equality happens iff θ → X → φ(X ) — that is, iff φ is sufficient for PΘ.

Sufficient Statistic (Info. Theory)

A function φ : X → RK is a sufficient statistic when I (θ;φ(X )) = I (θ; X ).
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