Information Theory Lecture 3: Applications to Machine Learning

Mark Reid

Research School of Computer Science The Australian National University

2nd December, 2014

1 Prediction Error & Fano's Inequality

2 Online Learning

Loss and Bayes Risk

Machine learning is often framed in terms of *losses*. Given observations from \mathcal{X} and predictors \mathcal{A} , a **loss function** $\ell : \mathcal{A} \to \mathbb{R}^{\mathcal{X}}$ assigns penalty $\ell_x(a)$ for predicting $a \in \mathcal{A}$ when $x \in \mathcal{X}$ is observed.

If observations come from fixed, unknown distribution p(x) over \mathcal{X} the **risk** of *a* is the expected loss

 $R(a; p) = \mathbb{E}_{x \sim p} \left[\ell_x(a) \right] = \langle p, \ell(a) \rangle$

The **Bayes risk** is the minimal risk for any distribution

 $H(p) = \inf_{a \in \mathcal{A}} R(a; p).$

H(p) is always concave.

Log Loss and Entropy

In the special case when predictions are distributions over \mathcal{X} (*i.e.*, $\mathcal{A} = \Delta_{\mathcal{X}}$) and the loss is **log loss**

$$\ell_x(q) = -\log q(x)$$

we get $R(q; p) = \mathbb{E}_{x \sim p} \left[-\log q(x)
ight]$ and

$$H(p) = \inf_{q \in \Delta_{\mathcal{X}}} \mathbb{E}_{x \sim p} \left[-\log q(x) \right] = -\mathbb{E}_{x \sim p} \left[\log p(x) \right].$$

Furthermore, the **Regret** (*i.e.*, how far prediction was from optimal) is

$$\overbrace{R(q;p) - \inf_{q' \in \Delta_{\mathcal{X}}} R(q';p)}^{\text{Regret}(q;p)} = \mathbb{E}_{x \sim p} \left[-\log q(x) + \log p(x) \right] = KL(p;q)$$

(Aside: In general, regret for a *proper* loss is always a *Bregman divergence* constructed from the negative Bayes risk of a loss)

Mark Reid (ANU)

Fano's Inequality

Fano's Inequality

Let p(X, Y) be a joint distribution over X and Y where $Y \in \{1, ..., K\}$. If $\hat{Y} = f(X)$ is an estimator for Y then

$$p(\hat{Y} \neq Y) \geq \frac{H(Y|X) - 1}{\log_2 K}$$

Proof: Define E = 1 if $\hat{Y} \neq Y$ and E = 0 if $\hat{Y} = Y$ and let p = p(E = 1). Ignore X for the moment. Apply chain rule for conditional entropy:

 $H(E, Y|\hat{Y}) = H(Y|\hat{Y}) + H(E|Y, \hat{Y}) = H(E|\hat{Y}) + H(Y|E, \hat{Y})$

• $H(E|Y, \hat{Y}) = 0$ since E is determined by Y and \hat{Y} .

• $H(E|\hat{Y}) \leq H(E) \leq 1$ (conditioning reduces entropy; *E* is binary)

• $H(Y|E, \hat{Y}) = (1-p) H(Y|\hat{Y}, E=0) + p H(Y|\hat{Y}, E=1) \le p \log_2 K$

since $E = 0 \implies Y = \hat{Y}$ and $H(Y|\hat{Y}) \le H(Y) \le \log_2 K$.

Fano's Inequality

Proof (cont.): So

$$H(Y|\hat{Y}) + 0 \leq 1 + p \log_2 K$$

But by the data processing inequality we know that $I(Y; \hat{Y}) \leq I(Y; X)$ since we assume $\hat{Y} = f(X)$ and so $Y \to X \to \hat{Y}$ forms a Markov chain. Thus,

$$I(Y; \hat{Y}) = H(Y) - H(Y|\hat{Y}) \le H(Y) - H(Y|X) = I(Y; X)$$

which gives $H(Y|\hat{Y}) \geq H(Y|X)$ and so

$$H(Y|X) \leq 1 + p \log_2 K.$$

Rearranging gives Fano's inequality:

$$P(Y \neq \hat{Y}) \geq \frac{H(Y|X) - 1}{\log_2 K}$$

Fano's Inequality

We can interpret this inequality in some extreme situations to see if it makes sense.

$$P(Y \neq \hat{Y}) \geq rac{H(Y|X) - 1}{\log_2 K}$$

Suppose we are trying to "learn noise". That is, that Y (the class label) is uniformly distributed and independ of X (the feature vector).

Then $H(Y|X) = H(Y) = \log_2 K$ and so Fano's inequality becomes:

$$P(Y
eq \hat{Y}) \geq rac{\log_2 K - 1}{\log_2 K} = 1 - rac{1}{\log_2 K}$$

Correct but weak since $P(Y \neq \hat{Y}) = 1 - \frac{1}{K}$ in this case.

Amount X tells us about Y bounds how well we can predict Y based on X.

We can also use obtain a bound on "chance matching".

Lower bound on match by chance

Suppose that Y and Y' are i.i.d. with distribution p(Y). Then

$$p(Y=Y')\geq 2^{-H(Y)}.$$

This makes intuitive sense: the more "spread out" the distribution over Ys, the less chance we have of two randomly drawn samples matching. Conversely, if there is no randomness in Y then the probability of a match is 1.

Proof.

$$p(Y = \hat{Y}) = \sum_{y} p(y)^2 = \mathbb{E}_{y \sim p} \left[2^{\log_2 p(y)} \right] \ge 2^{\mathbb{E}_{y \sim p} [\log_2 p(y)]} = 2^{-H(Y)}.$$

Learning from Expert Advice: Motivation

Consider the following game where each $\theta \in \Theta$ denotes an "expert" and $\ell : \Delta_{\mathcal{X}} \to \mathbb{R}^{\mathcal{X}}$ is a loss.

Each round $t = 1, \ldots, T$:

- Experts make predictions $p_{\theta}^t \in \Delta_{\mathcal{X}}$
- 2 Player makes prediction $p^t \in \Delta_{\mathcal{X}}$ (can depend on p_{θ}^t)
- **③** Observe a new instance $x^t \in \mathcal{X}$

• Update losses: expert $L_{\theta}^{t} = L_{\theta}^{t-1} + \ell_{x^{t}}(p_{\theta}^{t})$; player $L^{t} = L^{t-1} + \ell_{x^{t}}(p^{t})$ Aim: choose p^{t} to minimise **regret** after T rounds $R(T) = L^{T} - \min_{\theta} L_{\theta}^{T}$

Ideally we want R(T) so that $\lim_{T\to\infty} \frac{1}{T}R(T) = 0$ ("no regret").

No regret if $R(T) \propto \sqrt{T}$ ("slow rate") or if R(T) is constant ("fast rate")

Mixable Losses and the Aggregating Algorithm

Vovk (1999) characterised when fast rates are possible in terms of a property of a loss he called mixability.

Mixable Loss

A loss $\ell : \Delta_{\mathcal{X}} \to \mathbb{R}^{\mathcal{X}}$ is η -mixable if for any $\{p_{\theta} \in \Delta_{\mathcal{X}}\}_{\theta \in \Theta}$ and any mixture $\mu \in \Delta_{\Theta}$ there exists $p \in \Delta_{\mathcal{X}}$ such that for all $x \in \mathcal{X}$

$$\ell_x(p) \leq \textit{Mix}_{\eta,\ell}(\mu,x) := -rac{1}{\eta} \log \mathbb{E}_{\theta \sim \mu} \left[\exp(-\eta \ell_x(p_\theta))
ight]$$

Examples:

- Log loss $\ell_x(p) = -\log p(x)$ is 1-mixable since $-\log \mathbb{E}_{\theta \sim \mu} \left[\exp(\log p_{\theta}(x)) \right] = -\log \mathbb{E}_{\theta \sim \mu} \left[p_{\theta}(x) \right] = -\log p(x).$
- Square loss $\ell_x(p) = \|p \delta_x\|_2^2$ is 2-mixable.
- Absolute loss $\ell_x(p) = \|p \delta_x\|_1$ is **not** mixable

Mixability guarantees fast rates (*i.e.*, constant R(T)).

Mixability implies fast rates

If ℓ is an $\eta\text{-mixable}$ loss then there exists an algorithm that acheive a regret

$$R(T) \leq rac{\log |\Theta|}{\eta}.$$

The witness to the above result is called the Aggregating Algorithm:

- Initialise $\mu^0 = \frac{1}{|\Theta|}$
- Each round t
 - Set $\mu^t(\theta) \propto \mu^{t-1}(\theta) \exp(-\eta \ell_x(p_\theta))$
 - ▶ Predict using p guaranteed to satisfy ℓ_x(p) ≤ Mix_{η,ℓ}(µ, x)

Proof of Mixability Theorem

When using AA to choose p^t , first note that if $W^t = \sum_{\theta} e^{-\eta L_{\theta}^t}$ then $\mathbb{E}_{\theta \sim \mu^t} \left[e^{-\eta \ell_{x^t}(p_{\theta}^t)} \right] = \sum_{\theta} e^{-\eta \ell_{x^t}(p_{\theta}^t)} e^{-\eta L^t} / W^t = W^{t+1} / W^t$. Now consider total loss at round T when using AA to choose p^t :

$$\begin{split} L^T &= \sum_{t=1}^T \ell_{x^t}(p^t) \leq \sum_{t=1}^T \operatorname{Mix}_{\eta,\ell}(\mu^t, x^t) \\ &= \sum_{t=1}^T -\eta^{-1} \log \mathbb{E}_{\theta \sim \mu^t} \left[\exp(-\eta \ell_{x^t}(p_\theta^t)) \right] \\ &= -\eta^{-1} \log \prod_{t=1}^T \frac{W^t}{W^{t-1}} = -\eta^{-1} \log \frac{W^T}{W^0} \\ &\leq \eta^{-1} \left(\eta L_\theta^T + \log |\Theta| \right) \end{split}$$

for all $\theta \in \Theta$, giving $L^T - L_{\theta}^T \leq \frac{\log |\Theta|}{\eta}$, as required.

What's this got to do with Information Theory?

The telescoping of W^t/W^{t-1} in the above argument can be obtained via an additive telescoping in the dual space to Δ_{Θ} since the mixability condition can be written as

$$\mathsf{Mix}_{\eta,\ell}(\mu, x) = \inf_{\mu' \in \Delta_{\Theta}} \underbrace{\mathbb{E}_{\theta \sim \Delta_{\Theta}} \left[\ell_{x}(p_{\theta})\right]}_{\mathcal{H} \leftarrow \Delta_{\Theta}} + \eta^{-1} \underbrace{\mathsf{KL}(\mu' \| \mu)}_{\mathcal{H} \leftarrow \Delta_{\Theta}}$$

and the minimising μ^\prime is the distribution obtained from the AA.

Furthermore:

- The distributions $\mu^t(heta) \propto e^{-\eta L_{ heta}^t}$ are like an EF with statistic $(L_{ heta}^t)_{ heta \in \Theta}$
- Regret bound is $\frac{1}{n}KL(\pi \| \delta_{\theta})$ for $\pi = \frac{1}{N}$ and δ_{θ} is point mass on θ .
- For log loss, $\eta = 1$ and AA = Bayesian updating

(Similar results hold for general Bregman divergence regularisation too)

Exponential Family

For statistic $\phi : X \to \mathbb{R}^d$ an exponential family (w.r.t. some measure λ) is a set $\mathcal{F} = \{p_\theta : \theta \in \Theta\}$ of densities of the form

$$p_{ heta}(x) := \exp\left(\langle \phi(x), heta
angle - \mathcal{C}(heta)
ight)$$

with finite cumulant $C(\theta) := \log \int_X p_{\theta}(x) d\lambda(x)$. The parameters $\theta \in \Theta$ are natural parameters. The family \mathcal{F} is regular if Θ is an open set

Exponential Family

For statistic $\phi : X \to \mathbb{R}^d$ an exponential family (w.r.t. some measure λ) is a set $\mathcal{F} = \{p_\theta : \theta \in \Theta\}$ of densities of the form

$$p_{ heta}(x) := \exp\left(\langle \phi(x), heta
angle - \mathcal{C}(heta)
ight)$$

with finite cumulant $C(\theta) := \log \int_X p_{\theta}(x) d\lambda(x)$. The parameters $\theta \in \Theta$ are natural parameters. The family \mathcal{F} is regular if Θ is an open set

Selected Properties:

- Convexity: Θ is a convex set. $C : \Theta \to \mathbb{R}$ is a convex function.
- The gradient of the cumulant is the mean: $\nabla C(\theta) = \mathbb{E}_{x \sim p_{\theta}} [\phi(x)]$
- The KL divergence $KL(p_{\theta} \| p_{\theta'}) = D_C(\theta', \theta)$ the BD for C

Exponential Family

For statistic $\phi : X \to \mathbb{R}^d$ an exponential family (w.r.t. some measure λ) is a set $\mathcal{F} = \{p_\theta : \theta \in \Theta\}$ of densities of the form

$$p_{ heta}(x) := \exp\left(\langle \phi(x), heta
angle - \mathcal{C}(heta)
ight)$$

with finite cumulant $C(\theta) := \log \int_X p_{\theta}(x) d\lambda(x)$. The parameters $\theta \in \Theta$ are natural parameters. The family \mathcal{F} is regular if Θ is an open set

Selected Properties:

- Convexity: Θ is a convex set. $C : \Theta \to \mathbb{R}$ is a convex function.
- The gradient of the cumulant is the mean: $\nabla C(\theta) = \mathbb{E}_{x \sim p_{\theta}} [\phi(x)]$
- The KL divergence $KL(p_{\theta}||p_{\theta'}) = D_C(\theta', \theta)$ the BD for C

Exponential Families via Maximum Entropy

EF distributions are maximum entropy solutions with mean-constraints.

Maximum Entropy

Define the Shannon entropy $H(p) = -\int_X p(x) \log p(x) d\lambda(x)$. For a given mean value $r \in \mathbb{R}^d$ define the maximum entropy solution

$$p_r = \arg \sup\{H(p) : p \in \Delta_X, \mathbb{E}_p[\phi] = r\}$$

and the maximum entropy family $\mathcal{F} = \{p_r\}_{r \in \Phi}$.

Exponential Families via Maximum Entropy

EF distributions are maximum entropy solutions with mean-constraints.

Maximum Entropy

Define the Shannon entropy $H(p) = -\int_X p(x) \log p(x) d\lambda(x)$. For a given mean value $r \in \mathbb{R}^d$ define the maximum entropy solution

$$p_r = rg \sup\{H(p): p \in \Delta_X, \mathbb{E}_p \left[\phi
ight] = r\}$$

and the maximum entropy family $\mathcal{F} = \{p_r\}_{r \in \Phi}$.

Properties:

- The exponential family {p_θ}_{θ∈Θ} and the MaxEnt family {p_r}_{r∈Φ} contain the same distributions
- A bijection between natural parameters $\theta \in \Theta$ and mean parameters $r \in \Phi$ is given by $r = \nabla C(\theta)$ and $\theta = (\nabla C)^{-1}(r) = \nabla C^*(r)$
- The Lagrangian $L(p, \theta) = H(p) + \langle \theta, \mathbb{E}_p[\phi] r \rangle$ with dual vars θ .

Some simple calculations show that -H is convex over Δ_X and

$$(-H)^*(q) = \log \int_X \exp(q(x)) \ d\lambda(x)$$
 and
 $\nabla(-H^*)(q)_x = \frac{\exp(q(x))}{\int_X \exp(q(\xi)) \ d\lambda(\xi)}$

Some simple calculations show that -H is convex over Δ_X and

$$(-H)^*(q) = \log \int_X \exp(q(x)) \ d\lambda(x)$$
 and
 $\nabla (-H^*)(q)_x = \frac{\exp(q(x))}{\int_X \exp(q(\xi)) \ d\lambda(\xi)}$

Exponential Families via Convexity

For statistic $\phi: X \to \mathbb{R}^d$ each p_{θ} in the exp. family for ϕ can be written as

$$p_{ heta} =
abla (-H)^* (\phi^{ op} heta)$$

and $C(\theta) = (-H^*)(\phi^{\top}\theta)$ where $\phi^{\top}\theta \in \mathcal{W}^*$ denotes the RV $x \mapsto \langle \phi(x), \theta \rangle$.

Suppose we have a parametric family of distributions over \mathcal{X} , $\mathcal{P}_{\Theta} = \{p_{\theta} \in \Delta_{\mathcal{X}} : \theta \in \Theta\}$. In statistics, a sufficient statistic for intuitively captures all the information in observations from \mathcal{X} for inference in \mathcal{P}_{Θ} .

Sufficient Statistic

A function $\phi : \mathcal{X} \to \mathbb{R}^K$ for \mathcal{P}_{Θ} is a *sufficient statistic* if θ and X are conditionally independent given $\phi(X) \longrightarrow i.e., \ \theta \to \phi(X) \to X$.

This intution can be formalised using mutual information via the data processing inequality: since $\phi(X)$ is a function of X we always have $\theta \to X \to \phi(X)$ and so $I(\theta; X) \ge I(\theta, \phi(X))$. However, DPI also say equality happens **iff** $\theta \to X \to \phi(X)$ — that is, iff ϕ is sufficient for \mathcal{P}_{Θ} .

Sufficient Statistic (Info. Theory)

A function $\phi : \mathcal{X} \to \mathbb{R}^{K}$ is a *sufficient statistic* when $I(\theta; \phi(X)) = I(\theta; X)$.