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Abstract

Mixability of a loss governs the best possible performance when aggregating expert
predictions with respect to that loss. The determination of the mixability constant for
binary losses is straightforward but opaque. In the binary case we make this transparent
and simpler by characterising mixability in terms of the second derivative of the Bayes
risk of proper losses. We then extend this result to multiclass proper losses where
there are few existing results. We show that mixability is governed by the Hessian of
the Bayes risk, relative to the Hessian of the Bayes risk for log loss. We conclude by
comparing our result to other work that bounds prediction performance in terms of the
geometry of the Bayes risk. Although all calculations are for proper losses, we also show
how to carry the results across to improper losses.

1 Introduction

Mixability is an important property of a loss function that governs the performance of an ag-
gregating forecaster in the prediction with experts setting. The notion is due to Vovk (1990,
1995). Extensions to mixability were presented by Kalnishkan and Vyugin (2002b). The moti-
vation for studying mixability is summarised below (this summary is based on the presentation
of Kalnishkan and Vyugin (2008)1).

Let n ∈ N and Y = {1, . . . , n} be the outcome space. We will consider a prediction game
where the loss of the learner making predictions v1, v2, . . . ∈ V is measured by a loss function

` : Y × V → R+ cumulatively: for T ∈ N, Loss(T ) :=
∑T
t=1 `(yt, vt), where y1, y2, . . . ∈ Y are

outcomes. The learner has access to predictions vit, t = 1, 2, . . ., i ∈ {1, . . . , N} generated by
N experts E1, . . . ,EN that attempt to predict the same sequence. The goal of the learner is to
predict nearly as well as the best expert. A merging strategy M :

⋃∞
t=1

(
Yt−1 × (VN )t

)
→ V takes

the outcomes y1, . . . , yt−1 and predictions vis, i = 1, . . . , N for times s = 1, . . . , t and outputs an
aggregated prediction vMt , incurring loss `(yt, v

M
t ) when yt is revealed. After T rounds, the loss

of M is LossM(T ) =
∑T
t=1 `(yt, v

M
t ). The loss of expert Ei is LossEi(T ) =

∑T
t=1 `(yt, v

i
t). When

M is the aggregating algorithm (which can be used for all losses considered in this paper) (Vovk,
1995), β-mixability (see Section 3 for the definition) implies for all t ∈ N, all i ∈ {1, . . . , N},

LossM(t) ≤ LossEi(t) +
lnN

β
. (1)

Conversely, if for every β ∈ R+ the loss function ` is not β-mixable, then it is not possible to
predict as well as the best expert up to an additive constant using any merging strategy.

1Kalnishkan and Vyugin (2008) denote mixability by β̄ ∈ (0, 1); we use β = − ln β̄ ∈ (0,∞).



Thus determining β` (the largest β such that ` is β-mixable) is equivalent to precisely bound-
ing the prediction error of the aggregating algorithm. The mixability of several binary losses and
the Brier score in the multiclass case (Vovk and Zhdanov, 2009) is known. However a general
characterisation of β` in terms of other key properties of the loss has been missing. The present
paper shows how β` depends upon the curvature of the conditional Bayes risk for ` when ` is a
strictly proper continuously differentiable multiclass loss (see Theorem 10).

We use the following notation throughout. Let [n] := {1, . . . , n} and denote by R+ the non-
negative reals. The transpose of a vector x is x′. If x is a n-vector, A = diag(x) is the n × n
matrix with entries Ai,i = xi , i ∈ [n] and Ai,j = 0 for i 6= j. We also write diag(xi)

n
i=1 :=

diag(x1, . . . , xn) := diag((x1, . . . , xn)′). The inner product of two n-vectors x and y is denoted
by matrix product x′y. We sometimes write A · B for the matrix product AB for clarity when
required. If A− B is positive definite (resp. semidefinite), then we write A � B (resp. A < B).
The n-simplex ∆n := {(x1, . . . , xn)′ ∈ Rn : xi ≥ 0, i ∈ [n],

∑n
i=1 xi = 1}. Other notation (the

Kronecker product ⊗, the derivative D, and the Hessian H) are defined in Appendix A which
also includes several matrix calculus results we use.

2 Proper Multiclass Losses

We consider multiclass losses for class probability estimation. A loss function ` : ∆n → Rn+
assigns a loss vector `(q) = (`1(q), . . . , `n(q)) to each distribution q ∈ ∆n where `i(q) (= `(i, q)
traditionally) is the penalty for predicting q when outcome i ∈ [n] occurs2. If the outcomes are
distributed with probability p ∈ ∆n then the risk for predicting q is just the expected loss

L(p, q) := p′`(q) =

n∑
i=1

pi`i(q).

The Bayes risk for p is the minimal achievable risk for that outcome distribution,

L(p) := inf
q∈∆n

L(p, q).

We say that a loss is proper whenever the minimal risk is always achieved by predicting the true
outcome distribution, that is, L(p) = L(p, p) for all p ∈ ∆n. We say a proper loss is strictly proper
if there exists no q 6= p such that L(p, q) = L(p). The log loss `log(p) := (− ln(p1), . . . ,− ln(pn))′

is strictly proper. Its corresponding Bayes risk is Llog(p) = −
∑n
i=1 pi ln(pi).

∆n Λ Φβ

∆̃n Λ̃ Φ̃β

`

Π∆

Eβ

Eβ˜̀

ΠΛ ΠΦ

τβ

Figure 1: Mappings and spaces.

Proper losses are defined only on ∆n which is a (n − 1)-
dimensional submanifold of Rn+. In order to define the deriva-
tives we will need, it is necessary to project down onto n− 1
dimensions. Let Π∆ : ∆n → ∆̃n denote the projection of the
n-simplex ∆n onto its “bottom”, denoted ∆̃n. That is,

Π∆(p) := (p1, . . . , pn−1) =: p̃ ∈ ∆̃n

is the projection of p onto its first n − 1 coordinates. Sim-
ilarly, we will project `’s image Λ := `(∆n) using ΠΛ(λ) :=

(λ1, . . . , λn−1) for λ ∈ Λ with range denoted Λ̃. Since pn =

pn(p̃) := 1 −
∑n−1
i=1 p̃i we see that Π∆ is invertible. Specifically, Π−1

∆ (p̃) = (p̃1, . . . , p̃n−1, pn(p̃)).
Thus, any function of p can be expressed as a function of p̃. In particular, given a loss ` : ∆n → Rn
we can write `(p̃) = `(Π−1

∆ (p̃)) for p̃ ∈ ∆̃n and use ˜̀(p̃) := ΠΛ(`(p̃)) to denote its projection onto
its first n− 1 coordinates (see Figure 1).

As it is central to our results, we assume all losses are proper and suitably continuously
differentiable for the remainder of the paper. We will additionally assume strict properness
whenever we require the Hessian of the Bayes risk to be invertible (see Lemma 5).

2Technically, we should allow `(p) = ∞ to allow for log loss. However, we are only concerned with
the behaviour of ` in the relative interior of ∆n and use ∆n in that sense.
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Lemma 1 A continuously differentiable (strictly) proper loss ` has (strictly) concave Bayes risk
L and a risk L that satisfies the stationarity condition: for each p in the relative interior of ∆n

we have
p′D`(p̃) = 0n−1. (2)

Furthermore, ` and ΠΛ are invertible and for all p ∈ ∆n, the vector p is normal to the surface
Λ = `(∆n) at `(p).

Proof: The Bayes risk L(p) is the infimum of a set of linear functions p 7→ p′`(q) and thus
concave. Each linear function is tangent to `(∆n) at a single point when ` is strictly proper and
so L is strictly concave. Properness guarantees that for all p, q ∈ ∆n we have p′`(p) ≤ p′`(q) so

the function Lp : q 7→ p′`(q) has a minima at p = q. Hence the function L̃p : q̃ 7→ p′`(q̃) has a

minima at q̃ = p̃. Thus DL̃p(q̃) = p′D`(q̃) = 0n−1 at q̃ = p̃ and so p′D`(p̃) = 0n−1. Since for
every p ∈ ∆n, p′D`(p̃) = 0 we see p is orthogonal to the tangent space of Λ at `(p̃) and thus
normal to Λ at `(p̃) = `(p). Now suppose there exist p, q ∈ ∆n such that `(p) = `(q). Since we
have just shown that p and q must both be normal to Λ at `(p) = `(q) and as ` is assumed to
be continuously differentiable, it must be the case the normals are co-linear, that is, p = αq for
some α ∈ R. However, since p ∈ ∆n, 1 =

∑
i pi = α

∑
i qi = α and thus p = q, showing ` is

invertible.
In order to establish that ΠΛ is invertible we proceed by contradiction and assume ` is proper

and there exist p, q ∈ ∆n s.t. `i(p) = `i(q) for i ∈ [n − 1] but `n(p) 6= `n(q). Without loss
of generality assume `n(p) < `n(q) (otherwise just swap p and q). This means that q′`(p) =∑n
i=1 qi`i(p) =

∑n−1
i=1 qi`i(p) + qn`n(p) < q′`(q). However, this contradicts properness of ` and

therefore the assumption that `n(p) 6= `n(q).

3 Mixability

We use the following characterisation of mixability (as discussed by Vovk and Zhdanov (2009))
and motivate our main result by looking at the binary case. To define mixability we need the
notions of a superprediction set and a parametrised exponential operator. The superprediction
set S` for a loss ` : ∆n → Rn is the set of points in Rn that point-wise dominate some point on
the loss surface. That is,

S` := {λ ∈ Rn : ∃q ∈ ∆n, ∀i ∈ [n], `i(q) ≤ λi}.
The β-exponential operator is defined for all λ ∈ Rn by

Eβ(λ) := (e−βλ1 , . . . , e−βλn).

It is clearly invertible, with inverse E−1
β (φ) = −β−1(lnφ1, . . . , lnφn). A loss ` is β-mixable when

the set Φβ := Eβ(S`) is convex. The mixability constant β` of a loss ` is the largest β such that
` is β-mixable:

β` := sup{β > 0: ` is β-mixable}.
Now

Eβ(S`) = {Eβ(λ) : λ ∈ Rn, ∃q ∈ ∆n, ∀i ∈ [n], `i(q) ≤ λi}
= {z ∈ Rn : ∃q ∈ ∆n, ∀i ∈ [n], e−β`i(q) ≥ zi},

since x 7→ e−βx is decreasing for β > 0. Hence in order for Φβ to be convex the function f such

that graph(f) = {(e−β`1(q), . . . , e−β`n(q)) : q ∈ ∆n} needs to be concave.

3.1 The Binary Case

For twice differentiable binary losses ` it is known (Haussler et al., 1998) that

β` = min
p̃∈[0,1]

˜̀′
1(p̃)˜̀′′

2(p̃)− ˜̀′′
1(p̃)˜̀′

2(p̃)
˜̀′
1(p̃)˜̀′

2(p̃)(˜̀′
2(p̃)− ˜̀′

1(p̃))
. (3)
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When a proper binary loss ` is differentiable, the stationarity condition (2) implies

p̃`′1(p̃) + (1− p̃)`′2(p̃) = 0

⇒ p̃`′1(p̃) = (p̃− 1)`′2(p̃) (4)

⇒ `′1(p̃)

p̃− 1
=
`′2(p̃)

p̃
=: w(p̃) =: w`(p̃) (5)

We have L(p̃) = p̃`1(p̃) + (1− p̃)`2(p̃). Thus by differentiating both sides of (4) and substituting

into L′′(p̃) one obtains L′′(p̃) =
`′1(p̃)
1−p̃ = −w(p̃). (See Reid and Williamson (2011)). Equation

5 implies ˜̀′
1(p̃) = (p̃ − 1)w(p̃), ˜̀′

2(p̃) = p̃w(p̃) and hence ˜̀′′
1(p̃) = w(p̃) + (p̃ − 1)w′(p̃) and

˜̀′′
2(p̃) = w(p̃) + p̃w′(p̃). Substituting these expressions into (3) gives

β` = min
p̃∈[0,1]

(p̃− 1)w(p̃)[w(p̃) + p̃w′(p̃)]− [w(p̃) + (p̃− 1)w′(p̃)]p̃w(p̃)

(p̃− 1)w(p̃)p̃w(p̃)[p̃w(p̃)− (p̃− 1)w(p̃)]
= min
p̃∈[0,1]

1

p̃(1− p̃)w(p̃)
.

Observing that Llog(p) = −p1 ln p1 − p2 ln p2 we have L̃log(p̃) = −p̃ ln p̃ − (1 − p̃) ln(1 − p̃) and

thus L̃
′′
log(p̃) = −1

p̃(1−p̃) and so wlog(p̃) = 1
p̃(1−p̃) . Thus

β` = min
p̃∈[0,1]

wlog(p̃)

w`(p̃)
= min
p̃∈[0,1]

L′′log(p̃)

L′′(p̃)
. (6)

That is, the mixability constant of binary proper losses is the minimal ratio of the weight functions
for log loss and the loss in question. The rest of this paper is devoted to the generalisation of (6)
to the multiclass case. That there is a relationship between Bayes risk and mixability was also
pointed out (in a less explicit form) by Kalnishkan et al. (2004).

3.2 Mixability and the Concavity of the function fβ

Our aim is to understand mixability in terms of other intrinsic properties of the loss function. In
particular, we will relate mixability of a loss to the curvature of its Bayes risk surface. In order
to do so, we need to be able to compute the curvature of the β-exponentiated superprediction
set to determine when it is convex. This is done by first defining a function fβ : Rn−1 → R with
hypograph

hyp(fβ) := {(φ̃, y) ⊂ Rn : y ≤ fβ(φ̃)}
equal to Eβ(S`) and then computing the curvature of fβ . Before we can define fβ we require

certain properties of Eβ and a mapping τβ : ∆̃n → Rn−1 defined by

τβ(p̃) := Eβ(˜̀(p̃)) =
(
e−β

˜̀
1(p̃), . . . , e−β

˜̀
n−1(p̃)

)
.

This takes a point p̃ to a point φ̃ which is the projection of φ = Eβ(`(p)) onto its first n − 1

coordinates. The range of τβ is denoted Φ̃β (see Figure 1).3

Lemma 2 Let λ ∈ Λ and φ := Eβ(λ). Then E−1
β (φ) = −β−1(lnφ1, . . . , lnφn) and for all

α 6= 0, Eαβ

(
E−1
β (φ)

)
= (φα1 , . . . , φ

α
n). The derivatives of Eβ and its inverse satisfy DEβ(λ) =

−β diag (Eβ(λ)) and DE−1
β (φ) = −β−1 [diag(φ)]

−1
. The Hessian of E−1

β is

HE−1
β (φ) =

1

β

 diag(φ−2
1 , 0, . . . , 0)

...
diag(0, . . . , 0, φ−2

n )

 . (7)

When β = 1 and ` = `log = p 7→ −(ln p1, . . . , ln pn) the map τ1 is the identity map—that is,

φ̃ = τ1(p̃) = p̃—and E−1
1 (p̃) = ˜̀

log(p̃) is the (projected) log loss.

3We overload E−1
β using it as both a map Λ→ Φβ and from Λ̃→ Φ̃β . This should not cause confusion

because the latter is simply a codimension 1 restriction of the former. Lemma 2 holds for n and n− 1.
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Proof: The results concerning inverses and derivatives follow immediately from the definitions.

By (24) the Hessian HE−1
β (φ) = D

(
DE−1

β (φ)
)

and so

HE−1
β (φ) = D

((
− 1

β
[diag(φ)]

−1

)′)
= − 1

β
D diag(φ−1

i )ni=1.

Let h(φ) = diag(φ−1
i )ni=1. We have

Dh(φ) := D vech(vecφ) = D vech(φ) =

 diag(−φ−2
1 , 0, . . . , 0)

...
diag(0, . . . , 0,−φ−2

n )

 .
The result for β = 1 and `log follows from τ1(p̃) = E1(˜̀(p̃)) = (e−1.−ln p̃1 , . . . , e−1.−ln p̃n−1).

Lemma 3 The map ˜̀ : ∆̃n → Λ̃ is invertible. Also, for all β > 0, the mapping τβ : ∆̃n → Φ̃β is

invertible with inverse τ−1
β = ˜̀−1 ◦ E−1

β .

Proof: By “diagram chasing” in Figure 1 we see that ˜̀−1 = ΠΛ ◦ ` ◦Π−1
∆ and τ−1

β = Π∆ ◦ `−1 ◦
E−1
β ◦Π−1

Φ provided all the functions on the right hand sides exist. Π∆ and ` exist by definition,

Π−1
∆ exists since pi(p̃) = p̃i for i ∈ [n − 1] and pn(p̃) = 1 −

∑
i p̃i. The inverse `−1 exists by

Lemma 1 and E−1
β by Lemma 2. Lastly, ΠΦ is invertible since we see ΠΦ = Eβ ◦Π−1

Λ ◦ Ẽ
−1
β and

Ẽ−1
β clearly exists due to its form and Π−1

Λ because of Lemma 1.

We can now define
fβ : Φ̃β 3 φ̃ 7→ e−β

˜̀
n(τ−1

β (φ̃)) ∈ [0,∞). (8)

This can be thought of as the inverse of the projection of the β-exponentiated superpredic-
tion set Φβ onto its first n − 1 coordinates. That is, if φ ∈ Φβ and φ̃ = ΠΦβ (φ) then

φ = (φ̃1, . . . , φ̃n−1, fβ(φ̃)). This function plays a central role in the remainder of this paper
because it coincides with the boundary of the β-exponentiated superprediction set.

Lemma 4 Let β > 0 and fβ be defined as in (8). Then hyp fβ = Φβ.

Proof: We have φ = (φ1, . . . , φn)′ = (e−β`1(p̃), . . . , e−β`n(p̃))′. We express φn as a function

of φ̃ = (φ1, . . . , φn−1)′ = τβ(p̃) using φn = e−β`n(p̃) = e−β`n(τ−1
β (φ̃)). Hence graph(fβ) =

{(e−β`1(p), . . . , e−β`n(p))′ : p ∈ ∆n}. Since for β > 0, Eβ is monotone decreasing in each ar-
gument, λi ≥ `i(p) for all i ∈ [n] implies Eβ(λ) ≤ Eβ(`(p)) (coordinatewise).

3.3 Relating Concavity of fβ to the Hessian of L

The aim of this subsection is to express the Hessian of fβ in terms of the Bayes risk of the
loss function defining fβ . We first note that a twice differentiable function f : X → R defined
on X ⊆ Rn is concave if and only if its Hessian at x, Hf(x), is negative semi-definite for all
x ∈ X (Hiriart-Urruty and Lemaréchal, 1993). The argument that follows consists of repeated
applications of the chain and inverse rules for Hessians to compute Hfβ .

We rely on some consequences of the strict properness of ` that allow us to derive simple
expressions for the Jacobian and Hessian of the projected Bayes risk L̃ := L ◦Π−1

∆ : ∆̃n → R+.

Lemma 5 Let y(p̃) := − [pn(p̃)]
−1
p̃. Then Y (p̃) := −pn(p̃)Dy(p̃) =

(
In−1 + 1

pn
p̃1′n−1

)
is in-

vertible for all p̃, and
D˜̀

n(p̃) = y(p̃)′ · D˜̀(p̃). (9)
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The projected Bayes risk function defined by L̃(p̃) := L(Π−1
∆ (p̃)) satisfies

DL̃(p̃) = ˜̀(p̃)′ − ˜̀
n(p̃)1′n−1 (10)

HL̃(p̃) = Y (p̃)′ · D˜̀(p̃). (11)

Furthermore, for strictly proper ` the matrix HL̃(p̃) is negative definite and invertible for all p̃
and when β = 1 and ` = `log is the log loss,

HL̃log(p̃) = −Y (p̃)′ [diag(p̃)]
−1
. (12)

Proof: The stationarity condition (Lemma 1) guarantees that p′D`(p̃) = 0n−1 for all p ∈ ∆n.

This is equivalent to p̃′D˜̀(p̃) + pn(p̃)D`n(p̃) = 0n−1, which can be rearranged to obtain (9).
By the product rule,

Dy(p̃) = −p̃D[pn(p̃)−1]− [pn(p̃)−1]Dp̃

= p̃[pn(p̃)−2]Dpn(p̃)− [pn(p̃)−1]In−1

= −p̃[pn(p̃)−2]1′n−1 − [pn(p̃)−1]In−1

= − 1

pn(p̃)

[
In−1 +

1

pn(p̃)
p̃1′n−1

]
since pn(p̃) = 1 −

∑
i∈[n−1] p̃i implies Dpn(p̃) = −1′n−1. This establishes that Y (p̃) = In−1 +

1
pn(p̃) p̃1

′
n−1. That this matrix is invertible can be easily checked since (In−1 − p̃1′n−1)(In−1 +

1
pn(p̃) p̃1

′
n−1) = In−1 by expanding and noting p̃1′n−1p̃1

′
n−1 = (1− pn)p̃1′n−1.

The Bayes risk L̃(p̃) = p̃′ ˜̀(p̃) + pn(p̃)˜̀
n(p̃). Taking the derivative and using the product rule

(Da′b = (Da′)b+ a′(Db)) gives

DL̃(p̃) = D
[
p̃′ ˜̀(p̃)

]
+ D

[
pn(p̃)˜̀

n(p̃)
]

= ˜̀(p̃) + p̃′D˜̀(p̃) + [Dpn(p̃)] ˜̀
n(p̃) + pn(p̃)D˜̀

n(p̃)

= ˜̀(p̃)− pn(p̃)D˜̀
n(p̃)− ˜̀

n(p̃)1′n−1 + pn(p̃)D˜̀
n(p̃)

by (9). Thus, DL̃(p̃) = ˜̀(p̃)′ − ˜̀
n(p̃)1′n−1, establishing (10).

Equation 11 is obtained by taking derivatives once more and using (9) again, yielding

HL̃(p̃) = D

((
DL̃(p̃)

)′)
= D˜̀(p̃)− 1n−1 · D˜̀

n(p̃) =

(
In−1 +

1

pn
1n−1p̃

′
)
D˜̀(p̃)

as required. Now L̃(p̃) = L(p1, . . . , pn−1, pn(p̃)) = L(p1, . . . , pn−1, 1 −
∑n−1
i=1 pi) = L(C(p̃))

where C is affine. Since p 7→ L(p) is strictly concave (Lemma 1) it follows (Hiriart-Urruty

and Lemaréchal, 1993) that L̃ is also strictly concave and thus HL̃(p̃) is negative definite. It

is invertible since we have shown Y (p̃) is invertible and D˜̀ is invertible by the inverse function

theorem and the invertibility of ˜̀ (Lemma 3).

Finally, equation 12 holds since Lemma 2 gives us E−1
1 = ˜̀

log so (11) specialises to HL̃log(p̃) =

Y (p̃)′ · D˜̀
log(p̃) = Y (p̃)′ · DE−1

1 (p̃) = −Y (p̃)′ · [diag(p̃)]
−1
, also by Lemma 2.

3.4 Completion of the Argument

Recall that our aim is to compute the Hessian of the boundary of the β-exponentiated super-
prediction set and determine when it is negative semidefinite. The boundary is described by
the function fβ which can be written as the composition hβ ◦ gβ where hβ : R → [0,∞) and

gβ : Φ̃β → R+ are defined by hβ(z) := e−βz and gβ(φ̃) := ˜̀
n

(
τ−1
β (φ̃)

)
. The Hessian of fβ can

be expanded in terms of gβ using the chain rule for the Hessian (Theorem 13) as follows.
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Lemma 6 For all φ̃ ∈ Φ̃, the Hessian of fβ at φ̃ is

Hfβ(φ̃) = βe−βgβ(φ̃)Γβ(φ̃), (13)

where Γβ(φ̃) := βDgβ(φ̃)′ ·Dgβ(φ̃)−Hgβ(φ̃). Furthermore, for β > 0 the negative semi-definiteness

of Hfβ(φ̃) (and thus the concavity of fβ) is equivalent to the negative semi-definiteness of Γβ(φ̃).

Proof: Using f := fβ and g := gβ temporarily and letting z = g(φ̃), the chain rule for H gives

Hf(φ̃) =
(
I1 ⊗ Dg(φ̃)′

)
· (Hhβ(z)) · Dg(φ̃) + (Dhβ(z)⊗ In−1) · Hg(φ̃)

= β2e−βzDg(φ̃)′ · Dg(φ̃)− βe−βzHg(φ̃)

= βe−βg(φ̃)
[
βDg(φ̃)′ · Dg(φ̃)− Hg(φ̃)

]
since α⊗ A = αA for scalar α and matrix A and Dhβ(z) = D[exp(−βz)] = −βe−βz so Hh(z) =

β2e−βz. Whether Hf 4 0 depends only on Γβ since βe−βg(φ̃) is positive for all β > 0 and φ̃.

Lemma 7 For strictly proper ` and λ := E−1
β (φ̃) and p̃ := ˜̀−1(λ),

Dgβ(φ̃) = y(p̃)′Aβ(φ̃) (14)

Hgβ(φ̃) = − 1

pn(p̃)
Aβ(φ̃)′ ·

[
β diag(p̃) + Y (p̃) ·

[
HL̃(p̃)

]−1

· Y (p̃)′
]
·Aβ(φ̃), (15)

where Aβ(φ̃) := DE−1
β (φ̃).

Proof: By definition, gβ(φ̃) := ˜̀
n(τ−1

β (φ̃)). Since τ−1
β = ˜̀−1 ◦E−1

β we have gβ = ˜̀
n ◦ ˜̀−1 ◦E−1

β .

Thus, by Lemma 5 equation (9), the inverse function theorem, and chain rule we have

Dgβ(φ̃) = D˜̀
n(p̃) · D˜̀−1(λ) · DE−1

β (φ̃) = y(p̃)′D˜̀(p̃) ·
[
D˜̀(p̃)

]−1

·
[
DE−1

β (φ̃)
]

= y(p̃)′Aβ(φ̃)

yielding (14). Since p̃ = τ−1
β (φ̃) and Hgβ = D((Dgβ)′) (see (24)), the chain and product rules

give

Hgβ(φ̃) = D

[(
DE−1

β (φ̃)
)′
· y
(
τ−1
β (φ̃)

)]
=
(
y(τ−1

β (φ̃))′ ⊗ In−1

)
· D
(
DE−1

β (φ̃)′
)

+
(
I1 ⊗ (DE−1

β (φ̃))′
)
· D
(
y
(
τ−1
β (φ̃)

))
= (y(p̃)′ ⊗ In−1) · HE−1

β (φ̃) +
(
DE−1

β (φ̃)
)′
· Dy(p̃) · Dτ−1

β (φ̃)

= − β

pn(p̃)
Aβ(φ̃) · diag(p̃) ·Aβ(φ̃) +Aβ(φ̃)′ · Dy(p̃) · Dτ−1

β (φ̃). (16)

The first summand above is due to (7) and the fact that

(y ⊗ In−1) · HE−1
β (φ̃) =

1

β
[y1In−1, . . . , yn−1In−1] ·

 diag(φ−2
1 , 0, . . . , 0)

...
diag(0, . . . , 0, φ−2

n−1)


=

1

β

n−1∑
i=1

yi · In−1 · diag(0, . . . , 0, φ−2
i , 0, . . . , 0)

=
1

β
diag(yiφ

−2
i )n−1

i=1

=
−β
pn(p̃)

Aβ(φ̃)′ · diag(p̃) ·Aβ(φ̃).
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The last equality holds because Aβ(φ̃)′ · Aβ(φ̃) = β−2 diag(φ̃−2
i )n−1

i=1 by Lemma 2, the definition
of y(p̃) = −[pn(p̃)]−1p̃, and because all the matrices are diagonal and thus commute.

The second summand in (16) reduces by Dy(p̃) = − 1
pn(p̃)Y (p̃) from Lemma 5 and τβ = Eβ ◦ ˜̀:

Dτ−1
β (φ̃) =

[
DEβ(λ) · D˜̀(p̃)

]−1

=
[
DEβ(λ) · (Y (p̃)′)−1 · HL̃(p̃)

]−1

=
[
HL̃(p̃)

]−1

· Y (p̃)′ · DE−1
β (λ).

Substituting these into (16) gives

Hgβ(φ̃) = − β

pn(p̃)
Aβ(φ̃) · diag(p̃) ·Aβ(φ̃)− 1

pn(p̃)
Aβ(φ̃)′ · Y (p̃) ·

[
HL̃(p̃)

]−1

· Y (p̃)′ ·Aβ(φ̃),

which can be factored into the required result.

We can now use the last two lemmata to express the function Γβ in terms of the Hessian of
the Bayes risk functions for the specified loss ` and the log loss.

Lemma 8 The matrix-valued function Γβ satisfies, for all φ̃ ∈ Φ̃ and p̃ = τ−1
β (φ̃),

Γβ(φ̃) =
1

pn
Aβ(φ̃)′ · Y (p̃)

[[
HL̃(p̃)

]−1

− β
[
HL̃log(p̃)

]−1
]
· Y (p̃)′ ·Aβ(φ̃), (17)

and, for each φ̃, is negative semi-definite if and only if R(β, `, p̃) :=
[
HL̃(p̃)

]−1

−β
[
HL̃log(p̃)

]−1

is negative semi-definite.

Proof: Substituting the values of Dgβ and Hgβ from Lemma 7 into the definition of Γβ from
Lemma 6 and then using Lemma 2 and the definition of y(p̃), we obtain

Γβ(φ̃) = βAβ(φ̃)′ ·y(p̃)·y(p̃)′ ·Aβ(φ̃) +
1

pn(p̃)
Aβ(φ̃)′ ·

[
β diag(p̃) + Y (p̃)·

[
HL̃(p̃)

]−1

·Y (p̃)′
]
·Aβ(φ̃)

=
1

pn
Aβ(φ̃)′ ·

[
β

1

pn
p̃ · p̃′ + β diag(p̃) + Y (p̃) ·

[
HL̃(p̃)

]−1

· Y (p̃)′
]
·Aβ(φ̃). (18)

Using Lemma 5 we then see that

−Y (p̃) ·
[
HL̃log(p̃)

]−1

· Y (p̃)′ = −Y (p̃) ·
[
−Y (p̃)′ diag(p̃)−1

]−1 · Y (p̃)′

= Y (p̃) · diag(p̃) · (Y (p̃)′)−1 · Y (p̃)′

= (In−1 +
1

pn
1n−1p̃

′) · diag(p̃)

= diag(p̃) +
1

pn
p̃ · p̃′.

Substituting this for the appropriate terms in (18) gives

Γβ(φ̃) =
1

pn
Aβ(φ̃)′ ·

[
Y (p̃) ·

[
HL̃(p̃)

]−1

· Y (p̃)′ − βY (p̃) ·
[
HL̃log(p̃)

]−1

· Y (p̃)′
]
·Aβ(φ̃)

which equals (17).

Since Γβ = [pn]−1BRB′ where B = Aβ(φ̃)′Y (p̃) and R = R(β, `, p̃) the definition of negative
semi-definiteness and the positivity of pn means we need to show that ∀x : x′Γβx ≤ 0 ⇐⇒
∀y : y′Ry ≤ 0. It suffices to show that B is invertible, since we can let y = Bx to establish
the equivalence. The matrix Aβ(φ̃) is invertible since, by definition, Aβ(φ̃) = DE−1

β (φ̃) =

−β−1[diag(φ̃)]−1 by Lemma 2 and so has matrix inverse−β diag(φ̃). The matrix Y (p̃) is invertible
by Lemma 7. Thus, B is invertible because it is the product of two invertible matrices.
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The above arguments result in a characterisation of the concavity of the function fβ (via its
Hessian)—and hence the convexity of the β-exponentiated superprediction set—in terms of the
Hessian of the Bayes risk function of the loss ` and the log loss `log. As in the binary case (cf. (6)),

this means we are now able to specify the mixability constant β` in terms of the curvature HL̃
of the Bayes risk for ` relative to the curvature HL̃log of the Bayes risk for log loss.

Lemma 9 The mixability constant β` of a twice differentiable strictly proper loss ` is

β` = sup
{
β > 0 : ∀p̃ ∈ ∆̃n , βHL̃(p̃) < HL̃log(p̃)

}
, (19)

where L̃(p̃) := L(p) is the Bayes risk of ` and L̃log is the Bayes risk for the log loss.

Proof: By Lemma 6 and Lemma 8 we know Hfβ(p̃) 4 0 ⇐⇒ R(β, `, p̃) 4 0. By Lemma 5,

HL̃(p̃) ≺ 0 and HL̃log(p̃) ≺ 0 for all p̃ and so we can use the fact that for positive definite

matrices A and B we have A < B ⇐⇒ B−1 < A−1 (Horn and Johnson, 1985, Corollary 7.7.4).

This means R(β, `, p̃) 4 0 ⇐⇒ HL̃(p̃)−1 4 βHL̃log(p̃)−1 ⇐⇒ β−1HL̃log(p̃) 4 HL̃(p̃) ⇐⇒
βHL̃(p̃) < HL̃log(p̃). Therefore fβ is concave at p̃ if and only if βHL̃(p̃) < HL̃log(p̃). The
mixability constant β` is defined in Section 3 to be the largest β > 0 such that the β-exponentiated
superprediction set Eβ(S`) is convex. This is equivalent to the function fβ being concave at all

p̃. Thus, we have shown β` = sup{β > 0: ∀p̃ ∈ ∆̃n , βL̃(p̃) < HL̃log(p̃)} as required.

The mixability constant can also be expressed in terms of the maximal eigenvalue of the
“ratio” of the Hessian matrices for the Bayes risk for log loss and the loss in question. In the
following, λi(A) will denote the ith largest (possibly repeated) eigenvalue of the n×n symmetric
matrix A. That is, λmin(A) := λ1(A) ≤ λ2(A) ≤ · · · ≤ λn =: λmax(A) where each λi(A) satisfies
|A− λi(A)I| = 0.

Theorem 10 For any twice differentiable strictly proper loss `, the mixability constant is

β` = min
p̃∈∆̃n

λmax

(
(HL̃(p̃))−1 · HL̃log(p̃)

)
. (20)

Equation 20 reduces to (6) when n = 2 since the maximum eigenvalue of a 1 × 1 matrix is
simply its single entry.

Proof: We define Cβ(p̃) := βHL̃(p̃)−HL̃log(p̃) and ρ(p̃) := HL̃(p̃)−1 ·HL̃log(p̃) and for any fixed
p̃, we first show that zero is an eigenvalue of Cβ(p̃) if and only if β is an eigenvalue of ρ(p̃). This

can be seen since HL̃(p̃) is invertible (Lemma 5) so

|Cβ(p̃)− 0I| = 0 ⇐⇒ |βHL̃(p̃)− HL̃log(p̃)| = 0 ⇐⇒ |HL̃(p̃)−1||βHL̃(p̃)− HL̃log(p̃)| = 0

⇐⇒
∣∣∣HL̃(p̃)−1 ·

[
βHL̃(p̃)− HL̃log(p̃)

]∣∣∣ = 0 ⇐⇒ |βI − HL̃(p̃)−1 · HL̃log(p̃)| = 0.

Since a symmetric matrix is p.s.d. if and only if all its eigenvalues are non-negative it must be
the case that if λmin(Cβ(p̃)) ≥ 0 then Cβ(p̃) < 0 since every other eigenvalue is bigger than the
minimum one. Conversely, if Cβ(p̃) 6< 0 then at least one eigenvalue must be negative, thus the
smallest eigenvalue must be negative. Thus, λmin(Cβ(p̃)) ≥ 0 ⇐⇒ Cβ(p̃) < 0. Now define
β(p̃) := sup{β > 0 : Cβ(p̃) < 0} = sup{β > 0 : λmin(Cβ(p̃)) ≥ 0}. We show that for each p̃ the
function β 7→ λmin(Cβ(p̃)) is continuous and only has a single root. First, continuity is because
the entries of Cβ(p̃) are continuous in β for each p̃ and eigenvalues are continuous functions of
their matrix’s entries (Horn and Johnson, 1985, Appendix D). Second, as a function of its matrix
arguments, the minimum eigenvalue λmin is known to be concave (Magnus and Neudecker, 1999,
§11.6). Thus, for any fixed p̃, its restriction to the convex set of matrices {Cβ(p̃) : β > 0} is
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also concave in its entries and so in β. Since C0(p̃) = −HL̃log(p̃) is positive definite for every
p̃ (Lemma 5) we have λmin(C0(p̃)) > 0 and so, by the concavity of the map β 7→ λmin(Cβ(p̃)),
there can be only one β > 0 for which λmin(Cβ(p̃)) = 0 and by continuity it must be largest
non-negative one, that is, β(p̃).

Thus β(p̃) = sup{β > 0 : λmin(Cβ(p̃)) = 0} = sup{β > 0 : β is an eigenvalue of ρ(p̃)} =
λmax(ρ(p̃)). Now let β∗ := minp̃ β(p̃) = minp̃ λmax(ρ(p̃)) and let p̃∗ be a minimiser so that

β∗ = β(p̃∗). We now claim that Cβ∗(p̃) < 0 for all p̃ since if there was some q̃ ∈ ∆̃n such
that Cβ∗(q̃) 6< 0 we would have β(q̃) < β∗ since β 7→ λmin(Cβ(q̃)) only has a single root—a
contradiction. Thus, since we have shown β∗ is the largest β such that Cβ∗(p̃) < 0 it must be
β`, by Lemma 9, as required.

4 Discussion

In combination with the existing results on mixability, our result bounds the performance of
certain predictors in terms of the Hessian of the Bayes risk HL which depends on the choice of
loss function. This implies a generalisation of the main result of Kalnishkan and Vyugin (2002a)
which shows there can be no “predictive complexity” when the curvature of fβ vanishes (in the
binary case). This means there can not exist a mixability constant β` of the form (1) in such

a situation. This is apparent from (20) since β` is not defined when HL̃(p̃) is singular (which
occurs when Hfβ vanishes).

One can use Lemma 9 to confirm that the mixability constant for the Brier score is one, in
accord with the calculation of Vovk and Zhdanov (2009). (See Appendix B for the proof.)

The main result is stated for proper losses. However it turns out that this is not really
a limitation4. Suppose `imp : [n] × V → [0,+∞] is an improper loss (i.e. not proper). Let
Limp : ∆n × V → [0,+∞] and Limp : ∆n → [0,+∞] denote the corresponding conditional risk
and conditional Bayes risk respectively. Let ψimp : ∆n → V be a reference link (cf. Reid and
Williamson (2010))—that is, a (possibly non-unique) function satisfying

Limp(p, ψimp(p)) = Limp(p).

This function can be seen as one which “calibrates” `imp by returning ψimp(p), the best possible
prediction under labels distributed by p. Let

`(y, q) := `imp(y, ψimp(q)), y ∈ [n], q ∈ ∆n (21)

and thus
L(p, q) = Limp(p, ψimp(q)), p, q ∈ ∆n.

We claim that ` is proper. It suffices to show that p ∈ arg minq∈∆n L(p, q) which we demonstrate
by contradiction. Thus suppose that for arbitrary p ∈ ∆n, there exists p∗ 6= p such that

L(p, p∗) < L(p, p)

⇔ Limp(p, ψimp(p∗)) < Limp(p, ψimp(p)) = Limp(p) = min
v∈V

Limp(p, v)

which is indeed a contradiction. Thus ` defined by (21) is proper. Observe too that Limp(p) =
Limp(p, ψimp(p)) = L(p, p) = L(p). Thus the method of identifying the conditional Bayes risk
of an improper loss with that of a proper loss (confer (Grünwald and Dawid, 2004, §3.4) and
Chernov et al. (2010)) is equivalent to the above use of the reference link.

We now briefly relate our result to recent work by Abernethy et al. (2009). They formulate
the problem slightly differently. They do not restrict themselves to proper losses and so the
predictions are not restricted to the simplex. This means it is not necessary to go to a submanifold
in order for derivatives to be well defined. (It may well be that one can avoid the explicit

projection down to ∆̃n using the intrinsic methods of differential geometry (Thorpe, 1979); we
have been unable as yet to prove our result using that machinery.)

4We thank a referee for pointing this out by referring us to Chernov et al. (2010).
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Abernethy et al. (2009) have developed their own bounds on cumulative loss in terms of the
α-flatness (defined below) of L. They show that α-flatness is implied by strong convexity of the
loss `. The duality between the loss surface and Bayes risk that they established through the
use of support functions can also be seen in Lemma 5 in the relationship between the Hessian
of L̃ and the derivative of ˜̀. Although it is obscured somewhat due to our use of functions of
p̃, this relationship is due to the properness of ` guaranteeing that `−1 is the (homogeneously

extended) Gauss map for the surface L̃. Below we point out the relationship between α-flatness

and the positive definiteness of HL (we stress that in our work we used HL̃). The connection
below suggests that the α-flatness condition is stronger than necessary.

A convex function f : X→ R is said to be α-flat if for all x, x0 ∈ X,

f(x)− f(x0) ≤ Df(x0) · (x− x0) + α‖x− x0‖2. (22)

A concave function g is α-flat if the convex function −g is α-flat.

Theorem 11 For α > 0, f is α-flat if and only if f − α‖ · ‖2 is concave.

Proof: Hiriart-Urruty and Lemaréchal (1993, page 183) show a function h is convex if and only
if

h(x) ≥ h(x0) + Dh(x0) · (x− x0), ∀x, x0.

A function h is concave if and only if −h is convex. Thus h is concave if and only

h(x) ≤ h(x0) + Dh(x0) · (x− x0), ∀x, x0.

Let h(x) = f(x)− α‖x‖2. The concavity of h is equivalent to the following holding for all x, x0:

f(x)− α‖x‖2 ≤ f(x0)− α‖x0‖2 + (Df(x0)− 2αx0) · (x− x0)

⇔ f(x)− α‖x‖2 ≤ f(x0)− α‖x0‖2 + Df(x0) · (x− x0)− 2αx0 · (x− x0)

⇔ f(x) ≤ f(x0)− α‖x0‖2 + Df(x0) · (x− x0) + α‖x‖2 − 2αx0 · x+ 2α‖x0‖2

⇔ f(x) ≤ f(x0) + Df(x0) · (x− x0) + α‖x− x0‖2

⇔ (22).

Thus f is α-flat if and only if H(f − α‖ · ‖2) is negative semidefinite, which is equivalent to
Hf − 2αI 4 0 ⇐⇒ Hf 4 2αI. Hence requiring −L is α-flat is a constraint on the curvature of
L relative to a flat surface: L is α-flat iff HL < −2αI. However our main result shows that the
mixability constant (which is the best possible constant one can have in a bound such as (1)) is

governed by the curvature of L̃ normalised by the curvature of L̃log. The necessity of comparison
with log loss is not that surprising in light of the observations regarding mixability by Grünwald
(2007, §17.9).

5 Conclusion

We have characterised the mixability constant for strictly proper multiclass losses (and shown
how the result also applies to improper losses). The result shows in a precise and intuitive way
the effect of the choice of loss function on the performance of an aggregating forecaster and the
special role played by Log-loss in such settings.
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A Matrix Calculus

We adopt notation from Magnus and Neudecker (1999): In is the n×n identity matrix, A′ is the
transpose of A, the n-vector 1n := (1, . . . , 1)′, and 0n×m denotes the zero matrix with n rows
and m columns. The unit n-vector eni := (0, . . . , 0, 1, 0, . . . , 0)′ has a 1 in the ith coordinate and
zeroes elsewhere. If A = [aij ] is an n×m matrix, vecA is the vector of columns of A stacked on
top of each other. The Kronecker product of an m × n matrix A with a p × q matrix B is the
mp× nq matrix

A⊗B :=

A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

 .

We use the following properties of Kronecker products (see Chapter 2 of Magnus and Neudecker
(1999)): (A⊗B)(C ⊗D) = (AC ⊗BD) for all appropriately sized A,B,C,D and (A⊗B)−1 =
(A−1 ⊗B−1) for invertible A and B.

If f : Rn → Rm is differentiable at c then the partial derivative of fi w.r.t. the jth coordinate
at c is denoted Djfi(c) and is often5 also written as [∂fi/∂xj ]x=c. The m× n matrix of partial
derivatives of f is the Jacobian of f and denoted

(Df(c))i,j := Djfi(c) for i ∈ [m], j ∈ [n].

The inverse function theorem relates the Jacobians of a function and its inverse (cf. Fleming
(1977, §4.5)):

Theorem 12 Let S ⊂ Rn be an open set and g : S → Rn be a Cq function with q ≥ 1 (i.e.,
continuous with at least one continuous derivative). If Dg(s) 6= 0 then: there exists an open set
S0 such that s ∈ S0 and the restriction of g to S0 is invertible; g(S0) is open; f , the inverse of

the restriction of g to S0, is Cq; and Df(t) = [Dg(s)]
−1

for t = g(s) and s ∈ S0.

If F is a matrix valued function DF (X) := Df(vecX) where f(X) = vecF (X).
We will require the product rule for matrix valued functions (Fackler, 2005): Suppose f : Rn →

Rm×p, g : Rn → Rp×q so that (f × g) : Rn → Rm×q. Then

D(f × g)(x) = (g(x)′ ⊗ Im) · Df(x) + (Iq ⊗ f(x)) · Dg(x). (23)

The Hessian at x ∈ X ⊆ Rn of a real-valued function f : Rn → R is the n×n real, symmetric
matrix of second derivatives at x

(Hf(x))j,k := Dk,jf(x) =
∂2f

∂xk∂xj
.

Note that the derivative Dk,j is in row j, column k. It is easy to establish that the Jacobian of
the transpose of the Jacobian of f is the Hessian of f . That is,

Hf(x) = D ((Df(x))′) (24)

5See Chapter 9 of Magnus and Neudecker (1999) for why the ∂/∂x notation is a poor one for multi-
variate differential calculus despite its popularity.
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(cf. Chapter 10 of (Magnus and Neudecker, 1999)). If f : X → Rm for X ⊆ Rn is a vector valued
function then the Hessian of f at x ∈ X is the mn × n matrix that consists of the Hessians of
the functions fi stacked vertically:

Hf(x) :=

Hf1(x)
...

Hfm(x)

 .

The following theorem regarding the chain rule for Hessian matrices can be found in (Magnus
and Neudecker, 1999, pg. 110).

Theorem 13 Let S be a subset of Rn, and f : S → Rm be twice differentiable at a point c in the
interior of S. Let T be a subset of Rm containing f(S), and g : T → Rp be twice differentiable
at the interior point b = f(c). Then the function h(x) := g(f(x)) is twice differentiable at c and

Hh(c) = (Ip ⊗ Df(c))′ · (Hg(b)) · Df(c) + (Dg(b)⊗ In) · Hf(c).

Applying the chain rule to functions that are inverses of each other gives the following corollary.

Corollary 14 Suppose f : Rn → Rn is invertible with inverse g := f−1. If b = f(c) then

Hf−1(b) = − (G⊗G′)Hf(c)G

where G := [Df(c)]
−1

= Dg(b).

Proof: Since f ◦ g = id and H[id] = 0n2×n Theorem 13 implies that for c in the interior of the
domain of f and b = f(c)

H(g ◦ f)(c) = (In ⊗ Df(c))′ · Hg(b) · Df(c) + (Dg(b)⊗ In) · Hf(c) = 0n2×n.

Solving this for Hg(b) gives

Hg(b) = − [(In ⊗ Df(c))′]
−1

(Dg(b))⊗ In) · Hf(c) · [Df(c)]−1.

Since (A ⊗ B)−1 = (A−1 ⊗ B−1) and (A′)−1 = (A−1)′ we have [(I ⊗ B)′]−1 = [(I ⊗ B)−1]′ =

(I−1⊗B−1)′ = (I⊗B−1)′ so the first term in the above product simplifies to −
[
(In ⊗ Df(c)−1)

]′
.

The inverse function theorem implies Dg(b) = [Df(c)]−1 =: G and so

Hg(b) = −(In ⊗G)′ · (G⊗ In) · Hf(c) ·G
= −(G⊗G′) · Hf(c) ·G

as required, since (A⊗B)(C ⊗D) = (AC ⊗BD).

B Mixability of the Brier Score

The n-class Brier score is6

`Brier(y, p̂) =

n∑
i=1

(Jyi = 1K− p̂i)2,

where y ∈ {0, 1}n and p̂ ∈ ∆n. Thus

LBrier(p, p̂) =

n∑
i=1

EY∼p(JYi = 1K− p̂i)2 =

n∑
i=1

(pi − 2pip̂i + p̂2
i ).

6This is the definition used by Vovk and Zhdanov (2009). Cesa-Bianchi and Lugosi (2006) use a

different definition (for the binary case) which differs by a constant. Their definition results in L̃(p̃) =

p̃(1− p̃) and thus L̃
′′
(p̃) = −2. If n = 2, then L̃Brier as defined above leads to L̃

′′
Brier(p̃) = HL̃Brier(p̃) =

−2(1 + 1) = −4.
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Hence LBrier(p) = LBrier(p, p) =
∑n
i=1(pi − 2pipi + p2

i ) = 1 −
∑n
i=1 p

2
i since

∑n
i=1 pi = 1, and

L̃Brier(p̃) = 1−
∑n−1
i=1 p

2
i −

(
1−

∑n−1
i=1 pi

)2

.

As first proved by Vovk and Zhdanov (2009), the Brier score is mixable with mixability
constant 1. We will reprove this result using the following restatement of Lemma 9:

Lemma 15 Let ` be a twice differentiable, strictly proper loss, with Bayes risk L̃(p̃) := L(p). Let

L̃log(p̃) := Llog(p) be the Bayes risk for the log loss. Then the following statements are equivalent:

(i.) ` is β-mixable;

(ii.) βL(p)− Llog(p) is convex;

(iii.) βL̃(p̃)− L̃log(p̃) is convex.

Proof: Equivalence of (i) and (iii) follows from Lemma 9 upon observing that βL̃(p̃)− L̃log(p̃)

is convex if and only if βHL̃(p̃) < HL̃log(p̃) (Hiriart-Urruty and Lemaréchal, 1993). Equivalence

of (ii) and (iii) follows by linearity of the map pn(p̃) = 1−
∑n−1
i=1 p̃i.

Theorem 16 The Brier score is mixable, with mixability constant βBrier = 1.

Proof: It can be verified by basic calculus that `Brier is twice differentiable. To see that it is
strictly proper, note that for p̂ 6= p the inequality LBrier(p, p̂) > LBrier(p) is equivalent to

n∑
i=1

(p2
i − 2pip̂i + p̂2

i ) > 0 or

n∑
i=1

(pi − p̂i)2 > 0,

and the latter inequality is true because pi 6= p̂i for at least one i by assumption. Hence the
conditions of Lemma 15 are satisfied.

We will first prove that βBrier ≤ 1 by showing that convexity of βL̃Brier(p̃)− L̃log(p̃) implies

β ≤ 1. If βL̃Brier(p̃) − L̃log(p̃) is convex, then it is convex as a function of p1 when all other
elements of p̃ are kept fixed. Consequently, the second derivative with respect to p1 must be
nonnegative:

0 ≤ ∂2

∂p2
1

(
βL̃Brier(p̃)− L̃log(p̃)

)
=

1

p1
+

1

pn
− 4β.

By evaluating at p1 = pn = 1/2, it follows that β ≤ 1.
It remains to show that βBrier ≥ 1. By Lemma 15 it is sufficient to show that, for β ≤ 1,

βLBrier(p)−Llog(p) is convex. We proceed by induction. For n = 1, the required convexity holds
trivially. Suppose the lemma holds for n− 1, and let fn(p1, . . . , pn) = βLBrier(p)−Llog(p) for all
n. Then for n ≥ 2

fn(p1, . . . , pn) = fn−1(p1 + p2, p3, . . . , pn) + g(p1, p2),

where g(p1, p2) = −βp2
1 − βp2

2 + β(p1 + p2)2 + p1 ln p1 + p2 ln p2 − (p1 + p2) ln(p1 + p2). As
fn−1 is convex by inductive assumption and the sum of two convex functions is convex, it is
therefore sufficient to show that g(p1, p2) is convex or, equivalently, that its Hessian is positive
semi-definite. Abbreviating q = p1 + p2, we have that

Hg(p1, p2) =

(
1/p1 − 1/q 2β − 1/q
2β − 1/q 1/p2 − 1/q

)
.

A 2×2 matrix is positive semi-definite if its trace and determinant are both non-negative, which
is easily verified in the present case: Tr(Hg(p1, p2)) = 1/p1 + 1/p2 − 2/q ≥ 0 and |Hg(p1, p2)| =
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(1/p1 − 1/q)(1/p2 − 1/q)− (2β − 1/q)2, which is non-negative if

1

p1p2
− 1

p1q
− 1

p2q
≥ 4β2 − 4β

q

0 ≥ 4β2q − 4β

βq ≤ 1.

As q = p1 + p2 ≤ 1, this inequality holds for β ≤ 1, which shows that g(p1, p2) is convex and
thereby completes the proof.
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