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Abstract

Hierarchical reinforcement learning promises
to be the key to scaling reinforcement learn-
ing methods to large, complex, real-world
problems. Many theoretical models have
been proposed but so far there has been lit-
tle in the way of empirical work published to
demonstrate these claims.

In this paper we begin to fill this void
by demonstrating the application of the
RL-TOPs hierarchical reinforcement learning
system to the problem of learning to control
an aircraft in a flight simulator. We explain
the steps needed to encode the background
knowledge for this domain and present ex-
perimental data to show the success of this
technique.

1. Introduction

A significant amount of work has recently been pub-
lished on the topic of hierarchical reinforcement learn-
ing (eg. Dietterich, 1998, Hauskrecht et al., 1998, Parr
& Russell, 1998, Sutton et al., 1999). Hierarchy is seen
as a way to scale traditional reinforcement learning
algorithms up to handle complex, multi-dimensional
problems. By using appropriately formulated back-
ground knowledge a complex learning task can be bro-
ken down into several smaller subtasks. These, it is as-
serted, can be learnt more quickly and easily and can
be recombined in some fashion to solve the greater
problem. Various systems of decomposition and re-
combination have been proposed but this broad char-
acterisation holds.

Yet in spite of the proliferation of such methods and
the promise they show, there has so far been little em-
pirical work published demonstrating their application
to truly complex domains (with the notable exception
of Kalmar et al., 1998). In this paper we shall begin

Figure 1. A sample screen-shot from the flight simulator.

to fill that void by demonstrating the application of
one such system, the RL-TOPs architecture (Ryan &
Pendrith, 1998), to a realistic problem domain — that
of learning to fly.

This paper is arranged as follows: Section 2 contains
a description the flight simulator that is our problem
domain. Section 3 briefly outlines the motivation and
operation of the RL-TOPs architecture. Section 4 ex-
plains in detail the steps required engineering back-
ground knowledge of the flight domain into a form that
the RL-TOPs agent can use. Experimental results are
provided in Section 5 and final conclusions are drawn
in Section 6.

2. The Flight Simulator

Controlling an aircraft in a flight simulator was seen as
an ideal demonstration of hierarchical reinforcement
learning. It involves fine-grained control based on a
large number of input variables which have different
degrees of relevance at different stages of the flight.



Table 1. The symbolic description of the scene in Figure 1.

time (203.2).
visible(centre of buildl).
bearing(plane,centre of buildl,

1235.267212, -8.236785, -2.103162).
visible(centre of build2).
bearing(plane,centre of build2,

1109.746460, 5.127558, -3.112595).
visible(centre of build3).
bearing(plane,centre of build3,

991.044739, -17.268343, -4.294295).
visible(centre of build4).
bearing(plane,centre of build4,

829.350098, -1.246226, -6.422787).
visible(top of mountain4).
bearing(plane,top of mountain4,

9454 .479492, 18.013281, 7.788969).
position(plane, -1878.2, 219.8, 5718.7).
roll _pitch_yaw(plane, 0, 7, 337).
stick(-0.037500, 0.328125).
thrust(1.0).
airspeed(138.8).
climb(-15.8).
flaps(0).
gear (0) .
onGround (no) .
crashed(no) .
autopilot (off) .

Thus the state space of the problem is huge and the
goal can be thousands of actions away from the start-
ing state. This makes for a very difficult reinforce-
ment learning task. Years of training human pilots,
however, has left us with a large body of background
knowledge on the topic and a natural decomposition of
a flight into sequences of manoeuvres which are them-
selves composed of simpler behaviours.

The flight simulator used in these experiments, simply
called “Fsim”, simulates a PC-9 aircraft. It was writ-
ten as part of a joint research effort between the Uni-
versities of Melbourne and New South Wales, Curtin
University of Technology and the DSTO Aeronauti-
cal Research Laboratory. It’s design was particularly
chosen to include a “Symbolic Description Generator”
(Dillon et al., 1993) which outputs a description of the
pilot’s view and the instruments in a symbolic form
appropriate for manipulation by an AI system. Fig-
ure 1 and Table 1 show an example screen shot from
the simulator and the corresponding output from the
description generator as a set of Prolog facts.

The simulator has a socket interface allowing it to be
controlled by an arbitrary autopilot program. Our
learning agent runs as a separate process, controlling
the simulator by commands setting the stick position
and the thrust, flaps and gear settings and reading

back the symbolic output. Control is synchronised so
that each action takes 0.5s of simulated time.

3. The RL-TOPs Architecture

The RL-TOPs system is a synthesis of symbolic and
statistical AT methods. Symbolic methods are ideal for
imparting background knowledge to the learning agent
and reasoning about it, whereas statistical methods
are more suited to the problem of fine grained control.
The challenge is combine these advantages into a single
system.

Central to this synthesis is the idea of a Reinforcement-
Learnt Teleo-operator (or RL-TOP) based on the
teleo-operators (TOPs) of Benson and Nilsson (1994).
These operators are high-level behaviours defined in
terms of their preconditions and effects, but unlike
standard TOPs their behaviour is not hard-coded
rather it is learnt by reinforcement learning.

For example, in the flight domain the Ascend(Target)
behaviour, which ascends to within 100ft of the given
target altitude, might be described as:

Ascend(Target)
Post:
within range(altitude, Target, 100).
Pre:
less_than(altitude, Target),
flaps(off),
gear (up) .

This description serves two purposes. Firstly it advises
the agent how to use this behaviour in the decomposi-
tion of a more complex task, and secondly it is used as
part of the learning process itself, as a description of
the reward function for this behaviour: +1 if the post-
condition is achieved, -1 if the precondition is violated
prematurely.

Given many behaviour descriptions like these the RL-
TOPs system uses a symbolic planner to combine them
into reactive plans to solve more complex goals. So,
for example, the task of flying over a given landmark
in the flight simulator can be decomposed into a plan
involving taking off, ascending to the right altitude,
turning towards the landmark, and so on. Each of
these sub-tasks is described by a separate RL-TOP
and learnt as a separate behaviour. Combined they
form a solution to the more complex problem.

3.1 Levels of Granularity

Task decomposition need not be a single-level affair.
The Teleo-Reactive formalism allows for hierarchial
program in which the behaviours are themselves de-



Level O granularity:
GoTo(Target, Alt)

Level 1 granularity:

Decomposed E ]
over (Target, Alt)
FlyOver(Target, Alt) ¢
delta(altitude, Alt) < 100
dist(Target) < 1000
StraightAndLevel(Target, Alt) ¢
DECOHWXX%ﬂ delta(altitude, Alt) < 100]
bearing(Target) e (-5, 5)
TurnLeft(Target, Alt) TurnRight(Target, Alt)
Level 2 granularity: delta(altitude, Alt) < 100 delta(altitude, Alt) < 100
bearing(Target) >= 5 bearing(Target) <= -5

delta(altitude, Alt) < 50
distance(Target) < 1000

delta(altitude, Alt) < 50
bearing(Target) e (-5, 5)

GentIeAscend(AIt)/

altitude < Alt

E altitude > Alt

bearing(Target) e (-5, 5) ] [:bearing(Target) e (-5, 5)

/P StraightAndLevel2(Target, Alt)

\GentIeDescend(AIt)

Figure 2. An example of behaviour decomposition in the RL-TOPs architecture. The top-level behaviour, GoTo(Target,
Alt), has been decomposed into a plan consisting of behaviours of granularity one. One of these behaviours, StraightAn-
dLevel(Target, Alt), has been further decomposed using behaviours of even finer granularity.

composed into plans (Nilsson, 1994). To achieve this
we define behaviours at different levels of granularity.

At the coarsest level (granularity zero) there are the
most general behaviours which cover the entire state-
space and require the most complex goals. At finer
levels ( granularity 1, 2, 3 etc.) there are progressively
simpler behaviours with more specialised goals and
more limited preconditions. Figure 2 demonstrates the
process of successive decomposition of behaviours of
one granularity into plans of the next finest level. Be-
haviours of granularity zero are decomposed into plans
of behaviours of granularity one which can in turn be
individually decomposed into plans of behaviours of
granularity two, and so on.

3.2 Execution

Given a behaviour to execute we now have two op-
tions: (1) we can follow the action dictated by its
own reinforcement-learnt policy, or (2) we can decom-
pose the behaviour into a plan of finer granularity be-
haviours and recursively execute the behaviour dic-
tated by the plan. We use a simple heuristic to choose
between these two options: if the Q-value for the be-
haviour’s current policy action is non-zero then the

behaviour is confident in this action and follows it; if
the Q-value is zero (the initial value) the it assumes
that this action hasn’t been well explored and it defers
to its decomposition. An exception to this rule is when
the behaviour cannot be decomposed or the decompo-
sition does not cover the current situation in which
case the policy action is executed regardless of its Q-
value. Pseudo-code for this operation is illustrated in
Table 2.

3.3 Learning

The RL-TOPs system incorporates a limited version
all goals updating (Kaelbling, 1993). An experience
gained by executing a behvaiour is not only used to up-
date that behaviour but also any activated behaviours
above or below it in the hierarchy. Each behaviour
evaluates the experience based on the reward function
dictated by its own pre- and post-conditions and adds
the resulting (state, action, reward) triplet to a lesson.

When the behaviour terminates or the lesson grows
past its maximum length the lesson is replayed using
Lin’s TD(0) experience replay algorithm (Lin, 1993).
(It is important to note that this is an off-policy learn-
ing algorithm. This allows behaviours to learn from



Table 2. The RL-TOPs algorithm

function RL-TOPs(Goal goal)
let state := initial state after resetting the flight simulator
repeat
let activeTops := getActiveTops(state)
let action := selectAction(activeT ops, state)
let state’ := the result of executing action in the flight simulator
updateTops(activeT ops, state, action, state')
state := state’
until state € goal or state represent a critical failure
end RL-TOPs

function getActiveTops(Goal g, State s)
let k:=0
let Ty := a top of granularity zero that achieves g.
while Ty can be decomposed do
let Ty := the top dictated by the decomposition of Ty for state s
k:=k+1
end while
return Ty, ..., T
end getActiveTops

function selectAction(Tops To, ..., Ta, State s)
for each Ty € Ty,..., Tn do
let a = arg max,s Q(T\, state,a’)
if Q(Tk,s,a) #0 then
return a
end if
end for
return a
end selectAction

function updateTops(Tops To, ..., T, State s, Action a, State s')
for each T € Ty,..., Tn do
if s’ € T.post then

let r=1

else if s’ ¢ T.pre then
let r = —1

else
letr=0

end if

add (s,a,r) to T.lesson
if terminated(T) or length(T.lesson) = MaxLessonLength then
replay T.lesson
T.lesson := {}
end if
end for
end updateTops



experiences which do not come from executing their
own policies.) Table 2 shows pseudo-code for this op-
eration.

4. Adding Background Knowledge

The knowledge engineering for a task like flying the
simulator is not trivial. A human trainer possesses
both declarative and procedural knowledge he wishes
to impart to the computer. We make use of both types
of knowledge by a combination of direct encoding and
Behavioural Cloning methods (Sammut et al., 1992).

The RL-TOPs architecture requires the trainer to
supply four kinds of background knowledge: a sym-
bolic state description language, a set of high-level be-
haviour descriptions, a primitive state description and
a set, of primitive actions. In addition to these required
forms of knowledge the learning agent was also assisted
by replaying a flight recorded by a human pilot. For
the flight simulator experiments each of these parts
required careful design, as outlined below.

4.1 Symbolic State Descriptions

The symbolic description of the high-level state began
with the Prolog facts output by the Symbolic Descrip-
tion Generator. These described the objects in the
world and their location relative to the aeroplane, and
the settings of the controls and instruments. On every
iteration of the main control loop the learning agent
read this information from the flight simulator. This
was augmented by a set of Prolog predicates written
by the trainer which extract various parts of this infor-
mation such as rol1(R) or altitude(A), or compare
a given instrument value with a fixed threshold, as
less_than(Instrument, Value).

4.2 Symbolic Behaviour Descriptions

Given the symbolic state description language defined
above the trainer then provided a set of behaviour
descriptions. These were based on the standard ma-
noeuvres taught to pilots from a flight training manual
(Thom, 1992). Behaviours were defined at three lev-
els of granularity. At the coarsest level GoTo(Target,
Altitude) was a single monolithic behaviour the goal
of which was to fly the aeroplane over a given land-
mark at a certain altitude. At level one there was
a set of standard manoeuvres such as TakeOff, As-
cend(Altitude) and TurnLeft(Target, Altitude). At level
two — the finest level — the behaviours were more
specialised, with simpler goals and small application
spaces. These corresponded to the various sub-parts
of the standard manoeuvres, such as the MaintainLeft-

Turn(Target) behaviour which holds the aeroplane in a
turn until it is close to facing the Target.

4.3 Primitive State Representation

An important advantage offered by hierarchical rein-
forcement learning is the ability to provide different
state abstractions for different behaviours (Dietterich,
in press). This allows each behaviour to view only
those parts of the state space that are important to
it and to represent them in a way that is relevant
to that behaviour. The RL-TOPs architecture al-
lows the trainer to specify for each behaviour a set
of “functions” that form its state-space. So for exam-
ple the Ascend(Altitude) behaviour had the following
state variables: roll, pitch, airspeed, climb, and
delta(altitude, Altitude). Each of these referred
to one of the instruments read from the flight simula-
tor, except for the last which was a call to a Prolog
predicate which calculates the difference between the
altitude instrument, and the Altitude argument to
the behaviour.

Most of the state variables for the behaviours were con-
tinuously valued and so were discretised for the pur-
pose of representing the Q-function. The appropriate
discretisation varied from one behaviour to another
and was not obvious to the trainer, so they were in-
stead computed from actual flight data in the following
manner.

A human pilot flew five training flights each about 800
actions (6-7 minutes) long, which involved flying over
three different landmarks and included examples of
all the described behaviours. The state information
was recorded and replayed through the learning agent
which computed which of its behaviours it deemed ap-
propriate at each point, according to its plan. Each
state was recorded as a set of typical state values for
the corresponding behaviour.

Then, treating each state variable for each behaviour
individually, the values were sorted and partitioned
into five sets by equal frequency binning (Dougherty
et al., 1995). The boundaries between these parti-
tions formed the discretisation of that variable. Thus
portions of the state space that were visited more
frequently by the human pilot were discretised more
finely.

4.4 Primitive Action Selection

As well as having a multidimensional continuous state
space the flight simulator control problem has five di-
mensions in its action space: the z and y positions of
the stick, the thrust, the flaps and the gear settings.



The first three of these can take on a large number of
values. As with the primitive state representation, an
abstraction was needed to bring this space to a man-
ageable size. Again this abstraction varied between
behaviours, as different behaviours required the use
of different controls. So, as with the primitive state,
the RL-TOPs system allows the trainer to specify a
separate set of actions for each behaviour.

For these experiments the appropriate action values
were computed in much the same way as the state rep-
resentations. Each behaviour was given a set of rele-
vant action variables, examples of which were recorded
from the human flight data. These data were sorted
and divided into four bins by equal-frequency binning
and the five partition boundaries (including the two
extremes) were taken as the five possible values of
that action variable. The primitive actions for each
behaviour were all the combinations of possible values
for all the action-variables assigned to that behaviour.
Thus, for example, the Ascend behaviour had 125 ac-
tions assigned to it corresponding to all combinations
of five z-positions for the stick, five y-positions, and
five different thrust settings.

4.5 Learning by Observation

Even with the provision of this background knowl-
edge learning even the simplest of the defined be-
haviours by random exploration alone was extremely
time-consuming. In order to overcome this one fur-
ther kind of background knowledge was used — the
observation of a more experienced pilot.

A single flight flown by the human trainer was replayed
through the learning system and the pilot’s actions
and experiences were used to update the agent’s be-
haviours. In order to maximise the use of this informa-
tion any behaviour which had its precondition satisfied
by a certain experience was updated using that expe-
rience.

For example, the state described in Table 1 satisfies
the precondition of the Ascend(1000) behaviour as the
altitude is less than 1000ft. For the same reason it
also satisfies the precondition of the Ascend(1200) be-
haviour, and since the altitude is greater than 500ft,
it also satisfies the preconditions of Descend(500). All
of these behaviours are therefore able to evaluate the
pilot’s action in this state and use this experience to
update their own policies regardless of what manoeu-
vre the pilot is actually performing.

5. Experimental Results

5.1 Experiment 1: Hierarchical vs.
Non-Hierarchical RL

Our first experiment compared the performance of the
following three approaches: (1) non-hierarchical learn-
ing, (2) learning with one level of decomposition, and
(3) learning with two levels of decomposition. Each ap-
proach was run ten times ' with all thirty runs seeded
with the Q-functions learnt from replaying the training
flight, as explained above.

Each run consisted of 6 hours of simulated flying time
(equal to 43200 action steps). Figures 3(a) and (b)
show the results of these runs, averaged over each
batch of ten. The first of these graphs shows the num-
ber of successful flights flown over the duration of the
trial. There is a clear sequence of improvement from
the non-hierarchical learner (which did not complete a
single flight in any of the trials) through the single-level
hierarchy to the two-level hierarchy. A t-test assum-
ing unequal variances verifies this improvement with
82.5% confidence. This is arguably quite low but not
unreasonable considering the small number of runs.

A more striking difference is found by comparing the
percentage of flights that ended in the learner crashing
the aeroplane. The non-hierarchical learner crashed
100% of the time, an average of 393 times per run.
The single-level learner crashed 95% of the time (255
times per run) whereas the two-level learner crashed
on only 46% of the flights (26 times per run). Again a
t-test assuming unequal variance shows this difference
is significant with 98% confidence.

Figure 3(b) shows a closer comparison of the learning
performance of the two hierarchical agents. As the
agents improve, the average length of the flight should
become shorter. As the graph shows both agents were
unable to fly reliably when they began their online
learning, in spite of the training they had already re-
ceived. The two-level learner began to succeed more
consistently after 1.5 hours and continued to improve
its performance as time went on. The single-level
learner began succeeding later, at around 2 hours of
learning time, and while it improved quickly at first,
its performance appears to have degraded slowly as
time progressed. The reason for this is not apparent.
Longer experiments are required to test whether this
trend continues.

!The extremely small number of runs is due to the fact
that each run took upwards of 9 hours to complete. Work
is underway to port the flight simulator to Linux, allowing
us to run the learning algorithm on a much larger number
of faster machines.



30 T

T T
Granularity 0 ——

Granularity 1 Ky
Granularity 2

25 I

0l |

15 | e B

10

Av no. successful flights

. . . . . . .
0 0.5 1 15 2 25 3 35 4 4.5 5 55 6
Elapsed Learning Time (hours)

4000

T T
Granularity 1 ———
Granularity 2 -------

3500 | 1
3000 | B

2500 | R R

Av. length of flight (time steps)

2000 |- ’“nv,1P>j d

1500 L L L L L L L L L
1 15 2 25 3 35 4 45 5 55

Elapsed learning time (hours)

Figure 3. Performance on the learning to fly task using behaviours of different granularities, in terms of (a) the number

of successful flights, and (b) the length of the flights.

5.2 Experiment 2: Learning at Multiple Levels

The second experiment was designed to test the con-
current learning of behaviours at different levels of
granularity. We compare the mid-level (granularity
one) behaviours learnt by the two hierarchical learn-
ers in the first experiment. It would be expected that
the behaviours learnt by the second learner, which in-
cluded behaviours of granularity one and two should
perform as well as or better than those learnt by the
first. This turned out to not be the case.

The behaviours of granularity one were taken from
each of the learners in batches 2 and 3 in experiment
one. These behaviours were used to control the plane
for a further half an hour of flying. In that time,
the behaviours from batch two (the single-level learn-
ers) flew an average of 4.2 successful flights, whereas
the the behaviours learn in batch three (the two-level
learner) averaged only 1.5. On the other hand, the
number of crashes is better for the behaviours from
batch three, which crashed the plane an average of 6.4
times per half hour, compared to 8.0 times for the be-
haviours from batch two. Time constraints have pre-
vented us from analysing in depth why the expected
improvement did not occur, but preliminary investi-
gation suggests that it is due to the differences in the
state and action abstractions at different levels of the
hierarchy. Further investigation is necessary.

6. Conclusions and Future Work

This work serves to demonstrate empirically the via-
bility of the RL-TOPs system and of hierarchical rein-
forcement learning in general. It highlights the various
kinds of background knowledge, both declarative and

procedural, that need to be exploited for a task of
this complexity and provides impetus for the design of
learning systems of greater flexibility, so that we can
indeed make use of this knowledge.

The experimental results, while affirming the useful-
ness of the technique, leave many questions to be
asked. Further experiments shall be conducted to ex-
amine the longer term learning effects, and the effects
of simultaneously learning behaviours at multiple lev-
els of granularity.

Development is underway on “closing the loop” be-
tween background knowledge and learnt behaviours in
the system. The symbolic description provided by the
trainer is to be augmented based on the agent’s own
experience, using Inductive Logic Programming. This
should further enable the automatic invention of new
behaviours, the Holy Grail of hierarchical reinforce-
ment learning.
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