
Noname manuscript No.
(will be inserted by the editor)

An Improved Multiclass LogitBoost Using
Adaptive-One-vs-One

Peng Sun · Mark D. Reid · Jie Zhou

Received: date / Accepted: date

Abstract LogitBoost is a popular Boosting variant that can be applied to
either binary or multi-class classification. From a statistical viewpoint Logit-
Boost can be seen as additive tree regression by minimizing the Logistic loss.
Following this setting, it is still non-trivial to devise a sound multi-class Log-
itBoost compared with to devise its binary counterpart. The di�culties are
due to two important factors arising in multiclass Logistic loss. The first is
the invariant property implied by the Logistic loss, causing the optimal clas-
sifier output being not unique, i.e., adding a constant to each component of
the output vector won’t change the loss value. The second is the density of
the Hessian matrices that arise when computing tree node split gain and node
value fittings. Oversimplification of this learning problem can lead to degraded
performance. For example, the original LogitBoost algorithm is outperformed
by ABC-LogitBoost thanks to the latter’s more careful treatment of the above
two factors.

In this paper we propose new techniques to address the two main di�cul-
ties in multiclass LogitBoost setting: 1) we adopt a vector tree model (i.e.,
each node value is vector) where the unique classifier output is guaranteed by

Peng Sun
Tsinghua National Laboratory for Information Science and Technology(TNList), Depart-
ment of Automation, Tsinghua University, Beijing 100084, China
E-mail: sunp08@mails.tsinghua.edu.cn

Mark D. Reid
Research School of Computer Science, The Australian National University and NICTA,
Canberra, Australia
E-mail: mark.reid@anu.edu.au

Jie Zhou
Tsinghua National Laboratory for Information Science and Technology(TNList), Depart-
ment of Automation, Tsinghua University, Beijing 100084, China
E-mail: jzhou@tsinghua.edu.cn

4 Peng Sun, Mark D. Reid, Jie Zhou

adding a sum-to-zero constraint, and 2) we use an adaptive block coordinate
descent that exploits the dense Hessian when computing tree split gain and
node values. Higher classification accuracy and faster convergence rates are
observed for a range of public data sets when compared to both the original
and the ABC-LogitBoost implementations.

We also discuss another possibility to cope with LogitBoost’s dense Hessian
matrix. We derive a loss similar to the multi-class Logistic loss but which
guarantees a diagonal Hessian matrix. While this makes the optimization (by
Newton descent) easier we unfortunately observe degraded performance for
this modification. We argue that working with the dense Hessian is likely
unavoidable, therefore making techniques like those proposed in this paper
necessary for e�cient implementations.

1 Introduction

Boosting is a successful technique for training classifier for both binary and
multi-class classification (Freund and Schapire, 1995; Schapire and Singer,
1999). In this paper, our focus is on multiclass LogitBoost (Friedman et al,
1998), one of the popular boosting variants. Originally, LogitBoost was mo-
tivated by a statistical perspective (Friedman et al, 1998), where boosting
algorithm consists of three key components: the loss, the function model, and
the optimization algorithm. In the case of LogitBoost, these are the multi-
class Logistic loss, the use of additive tree models, and a stage-wise optimiza-
tion, respectively. For K-nary classification, LogitBoost directly learns a K
dimensional vector as the classifier output, each component representing the
confidence of predicting the corresponding class.

There are two important factors in LogitBoost’s settings. Firstly, an “in-
variant property” is implied by the Logistic loss, i.e., adding a constant to
each component of the classifier output won’t change the loss value. There-
fore, the classifier output minimizing the total loss is not unique, making the
optimization procedure a bit di�cult. Secondly, the Logistic loss produces a
dense Hessian matrix, causing troubles when deriving the tree node split gain
and node value fitting. It is challenging to design a tractable optimization algo-
rithm that fully handles both these factors. Consequently, some simplification
and/or approximation is needed.

In Friedman et al (1998) the Hessian is diagonally approximated. In this
way, the minimizer becomes unique, while the optimization – essentially a
quadratic problem when using one step Newton – is substantially simplified.
Consequently, at each Boosting iteration the tree model updating collapses
to K independent Weighted Regression Tree fittings, each tree outputting a
scalar.

Unfortunately, Friedman’s prescription turns out to have some drawbacks.
The over simplified quadratic loss even doesn’t satisfy the invariant prop-
erty, and is thus a very crude approximation. A later improvement, ABC-
LogitBoost, is shown to outperform LogitBoost in terms of both classifica-

AOSO-LogitBoost 5

(3,1)

(2,3) R1 (1,2)

(1,2) R2 (3,2)R3

(a)

t1 = (0, t1,�t1)T

R1

t2 = (t2,�t2, 0)T

R2

t3 = (0,�t3, t3)T

R3

(b)

Fig. 1 A newly added tree at some boosting iteration for a 3-class problem. (a) A class
pair (shown in brackets) is selected for each tree node. For each internal node (filled), the
pair is for computing split gain; For terminal nodes (unfilled), it is for node vector updating.
(b) The feature space (the outer black box) is partitioned by the tree in (a) into regions
{R

1

, R
2

, R
3

}. On each region only two coordinates are updated based on the corresponding
class pair shown in (a).

tion accuracy and convergence rate (Li, 2008, 2010b). This is due to ABC-
LogitBoost’s careful handling of the above key problems of the LogitBoost
setting. The invariant property is addressed by adding a sum-to-zero con-
straint to the output vector. To make the minimizer unique, at each iteration
one variable is eliminated while the other (K � 1) are free, so that the loss is
re-written with (K � 1) variables. At this point, the diagonal Hessian approx-
imation is, again, adopted to permit K � 1 scalar trees being independently
fitted for each of the K� 1 classes. The remaining class – called the base class
– is recovered by taking minus the sum of the other K � 1 classes. The base
class – i.e., , the variable to be eliminated – is selected adaptively per iteration
(or every several iterations), hence the acronym ABC (Adaptive Base Class).
Note the diagonal Hessian approximation in ABC-LogitBoost is taken for the
(K � 1) dimensional problem yielded by eliminating a redundant variable. Li
(2008, 2010b) considers it a more refined approximation than that of original
LogitBoost (Friedman et al, 1998).

In this paper, we propose two novel techniques to address the challenging
aspects of the LogitBoost setting. In our approach, one vector tree is added
per iteration. To make the minimizer unique, we allow a K dimensional sum-
to-zero vector to be fitted for each tree node. This permits us to explicitly
formulate the computation for both node split gain and node value fitting as a
K dimensional constrained quadratic optimization, which arises as a subprob-
lem in the inner loop for split seeking when fitting a new tree. To avoid the
di�culty of a dense Hessian, we propose that for each of these subproblems,
only two coordinates (i.e., two classes or a class pair) are adaptively selected
for updating, hence we call the modified algorithm AOSO-LogitBoost (Adap-
tive One vS One). Figure 1 gives an overview of our approach. In Section 4.4
we show that first order and second order approximation of loss reduction can
be a good measure for the quality of selected class pair.

Following the above formulation, ABC-LogitBoost (derived using a some-
what di↵erent framework than Li (2010b)) can thus be shown to be a special
case of AOSO-LogitBoost with a less flexible tree model. In Section 5 we com-

6 Peng Sun, Mark D. Reid, Jie Zhou

pare the di↵erences between the two approaches in detail and provide some
intuition for AOSO’s improvement over ABC.

Both ABC or AOSO are carefully devised to address the di�culties of dense
Hessian matrix arising in Logistic loss. In other words, the tree model learning
would be easy if we were encountering diagonal Hessian matrix. Based on loss
design in Primal/Dual view (Masnadi-Shirazi and Vasconcelos, 2010; Reid and
Williamson, 2010), we show that the dense Hessian matrix essentially results
from the sum-to-one constraint of class probability in Logistic loss. We thus
investigate the possibility of diagonal Hessian matrix by removing such a sum-
to-one constraint. The LogitBoost variant we produce does work. However, it
is still inferior to AOSO LogitBoost (see Section 6 for detailed discussion).
We therefore conclude that modifications of the original LogitBoost, such as
AOSO and ABC, are necessary for e�cient model learning since the dense
Hessian matrix seems unavoidable.

The rest of this paper is organised as follows: In Section 2 we first formulate
the problem setting for LogitBoost. In Section 3 we briefly review/discuss
original/ABC-/AOSO- LogitBoost in regards of the interplay between the tree
model and the optimisation procedure. In Section 4 we give the details of our
approach. In Section 5 we compare our approach to (ABC-)LogitBoost. In
Section 6 we show how to design a loss that produces diagonal Hessian matrices
and assess its implications for model accuracy. In Section 7, experimental
results in terms of classification errors and convergence rates are reported on
a range of public datasets.

2 The Problem Setup

ForK-class classification (K � 2), consider anN example training set {xi, yi}Ni=1

where xi denotes a feature value and yi 2 {1, . . . ,K} denotes a class label.
From the training set a prediction function F (x) 2 RK is learned. When
clear from context, we omit the dependence on x and simply denote F (x)
by F (We will do the same to other related variables.). Given a test ex-
ample with known x and unknown y, we predict a class label by taking
ŷ = argmaxk Fk, k = 1, . . . ,K, where Fk is the k-th component of F .

The function F is obtained by minimizing a target function on training
data:

Loss =
NX

i=1

L(yi,F i). (1)

Each L(y,F) term is a loss for a single training example (x, y). We will make
the loss concrete shortly.

To make the optimization of (1) feasible, a function model is needed to
describe how F depends on x. For example, linear model F = W Tx + b is
used in traditional Logistic regression, while Generalized Additive Model is
adopted in LogitBoost where

F (x) =
PM

m=1 f
(m)(x), (2)

AOSO-LogitBoost 7

where f (m)(x) 2 RK is further expressed by tree(s), as will be seen shortly.

Each f (m)(x), or simply f , is learned by the so-called greedy stage-wise
optimization. That is, at each Boosting iteration f (m) is added only based on
F =

Pm�1
j=1 f (j).

In summary, the learning procedure, called training, consists of three ingre-
dients: the loss, the function model and the optimization algorithm. In what
follows we discuss them in greater details.

2.1 The Logistic Loss

LogitBoost adopts the Logistic loss (Friedman et al, 1998), which is an implicit
function of y and F :

L(y,F) = �
KX

k=1

rk log(pk), (3)

where rk = 1 if k = y and 0 otherwise, {pk}Kk=1 is connected to F via the
so-called Link function:

pk =
exp(Fk)PK
j=1 exp(Fj)

. (4)

Therefore, p = (p1, ..., pK)T can be seen as probability estimate since pk > 0

and
PK

k=1 pk = 1.

2.1.1 The Invariant Property

It is easy to verify that an “invariant property” holds for Logistic loss:

L(y,F) = L(y,F + c1), (5)

where c is an arbitrary constant, 1 is K-dimensional all 1 vector. That is to
say, the Logistic loss won’t change its value when moving F along a all-1
vector 1, which implies that F is “equivalent to” F + c1 because they both
lead to the same loss (see Figure 2 (b)). Such an invariant property is, in turn,
consistent with the multi-class prediction rule argmaxk Fk, k = 1, ...,K which
says adding a constant to each of Fk does not alter the prediction.

2.1.2 Derivative and Quadratic Approximation

It is di�cult to directly optimize the Logistic loss. To permit numeric method,
we need the first order and second order derivatives of example wise loss (3).
Simple matrix calculus shows that the gradient g 2 RK and Hessian H 2
RK⇥K w.r.t. F are:

g = �(r � p), (6)

8 Peng Sun, Mark D. Reid, Jie Zhou

−2

0

2

−2

0

2

0

2

4

6

F
1

F
2

(a) Logistic Loss

−2

0

2

−2

0

2

0

10

20

30

40

F
1

F
2

(b) Exponential Loss

Fig. 2 Multiclass loss L(y = 1,F) for K-nary problem. In this figure K = 2, thus F 2 R2.
The Logistic loss is defined in (3); The Exponential loss is defined in (10). Note the parallel
contour plots in the case of Logistic loss.

H = P̂ � ppT , (7)

where the response r = (r1, . . . , rK)T and probability estimate p = (p1, . . . , pK)T

are as defined before, the diagonal matrix P̂ = diag(p1, . . . , pK).
With g and H given above, we can write down the Taylor expansion of

(3) at F up to second order:

q(f |F) = L(y,F) + gTf +
1

2
fTHf , (8)

which locally approximates L(y,F +f) in quadratic sense. Note that in (8) f
is the variable, while the “constants” g and H depend on F . When clear from
context, we also omit the dependence on F and simply write q(f |F) as q(f).

It is easy to verify that the invariant property carries over to q(f):

q(f) = q(f + c1) (9)

by noting 1Tg = 0 and 1TH = H1 = 0.

2.1.3 (K � 1) Degrees of Freedom and the Sum-to-zero Constraint

Due to the invariant property, the minimizer f⇤ of (8) is not unique since any
f⇤ = c1 would be a minimizer. To pin-down the value, we can add a constraint
1Tf = 0, which in e↵ect restricts f to vary just in the linear subspace defined
by 1Tf = 0. Obviously, now we need only K � 1 coordinates to express the
vector living in the subspace, i.e., the degrees of freedom is K � 1.

In Section 4.2 we will discuss the rank of the Hessian matrix H, which
provides another perspective to why the minimizer of (8) is not unique.

Conceptually, the invariant property is primary, causing the minimizer be-
ing not unique; The sum-to-zero constraint is secondary, serving as a mathe-
matical tool to make the minimizer unique.

AOSO-LogitBoost 9

2.1.4 More on (K � 1) Degrees of Freedom

We don’t claim that the invariant property be a necessity. In the literature,
there exists other multiclass loss not satisfying this condition. In this case, it
doesn’t need a sum-to-zero constraint and f has K degrees of freedom. For
instance, consider the K-nary exponential loss for AdaBoost.MH:

L(y,F) =
KX

k=1

exp(�y⇤kF k), (10)

where y⇤k = +1 if yk = k and �1 otherwise. See Figure 2 (b) for its graph. In
general, L(y,F) 6= L(y,F + c1) for Exponential loss.

It is out of this paper’s scope to compare Exponential loss and Logistic
loss in multiclass case. Instead, we focus on the Logistic loss and show how it
is applied in LogitBoost. Also, in Section 6 we discuss a modified Logistic loss
not satisfying the invariant property (but simplifying the Hessian and easing
the quadratic solver) and show its degraded performance when comparing with
original Logistic loss.

2.2 The Tree Model

As mentioned previously, F (x) =
PM

m=1 f
(m)(x) is additive tree model. How-

ever, the way each f(x) (we have omitted the subscript m for simplicity and
without confusion) being expressed by tree model is not unique.

In this paper, we adopt a single vector-valued tree. Further, we let it be a
binary tree (i.e., only binary splits on internal node are allowed) with splits
that are vertical to coordinate axis, as in (Friedman et al, 1998; Li, 2010b).
Formally,

f(x) =
JX

j=1

tjI(x 2 Rj) (11)

where {Rj}Jj=1 are a rectangular partition of the feature space, I(P) is the
indicator function which is 1 when the predicate P is true and 0 otherwise,
and each tj 2 RK is the node value associated with Rj . See Figure 1 for an
illustration. The vector-valued tree model is also adopted in other Boosting
implementation, say, Real AdaBoost.MH described in Kégl and Busa-Fekete
(2009).

f(x) can be also represented by K scalar regression trees as in the original
LogitBoost of Friedman et al (1998) and the Real AdaBoost.MH implementa-
tion of Friedman et al (1998):

f(x) =
KX

k=1

JX

j=1

tk,jI(x 2 Rk,j), (12)

where tk,j is a scalar and each tree can have its own partition {Rk,j}Jj=1.

10 Peng Sun, Mark D. Reid, Jie Zhou

Finally, it is possible to express fv(x) with just K � 1 trees by adding
to f(x) a sum-to-zero constraint, as is adopted in Li’s series work (Li, 2008,
2009a, 2010b).

2.3 Stage Wise Optimization

Formally, using F i and f i as shorthand for F (xi) and f(xi) respectively, the
stage wise optimization is:

f (m)(x) = argmin
f(x)

NX

i=1

L(yi,F i + f i), (13)

where f(x) is expressed by tree model as explained in last subsection. This
procedure repeats M times with initial condition F = 0. Owing to its iterative
nature, we only need to know how to solve (13) in order to implement the
optimization.

In (13) it is di�cult to directly work on the Logistic loss; numeric method
must be relied on. (Friedman et al, 1998) suggests to use one step Newton, i.e.,
in (13) replace example wise Logistic loss L() with its corresponding second
order Taylor expansion:

f (m)(x) = argmin
f(x)

NX

i=1

q(f i|F i). (14)

3 Interplay between Tree Model and Optimization

In last section we have reviewed the problem setup. In particular, we made
concrete the three ingredients in LogitBoost: the loss, the function model and
the optimization algorithm are the Logistic loss, the additive tree model and
the stage wise optimization, respectively. To train a LogitBoost classifier, now
the only thing left unexplained is how to optimize the quadratic optimization
(14), which is still a bit complicated.

Basically, f(x) on a training set {xi, yi}Ni=1 can be seen as an K ⇥N ma-
trix, as in Figure 3, where the i-th column represents the K values of f(xi).
However, the values in the matrix can not vary independently. Instead, the
values must be subject to a tree model, which determines a type of partition
on the matrix such that the elements falling into the same cell take a com-
mon, unique value. Thus the tree model has an impact on the optimization
procedure. Things become even subtle when considering the invariant prop-
erty of the Logistic loss. The original/ABC-/AOSO-LogitBoost makes di↵er-
ent choices to address this tree model-optimization interplay, as will be briefly
discussed in the rest of this section. The details are deferred to next section.

AOSO-LogitBoost 11

(a) original LogitBoost (b) ABC-LogitBoost (c) AOSO-LogitBoost

Fig. 3 Viewing f(x) a K ⇥ N matrix on a training dataset. A J-leaf tree corresponds a
J-cell partition on the matrix such that the values falling into the same cell must have a
common value. In this figure, K = 3, N = 7 and J = 3. The squares in dashed lines denote
the matrix elements, while the solid lines denote the partitions. Note that each cell needs not
be continuous, although we intentionally plot it a continuous one for illustrative purpose.
(a) K scalar trees. Each tree fits a class (a row) and has its own partition. (b) (K�1) scalar
trees. Each tree fits a class (a row) and has its own partition. The values on the remaining
class (i.e., the base class) is recovered by the other classes. (c) only one vector-valued tree.
Any column belongs to only one cell. At each cell, only two classes (two rows) can vary
(shaded squares) and the others keep zero values (blank squares).

3.1 Original LogitBoost

To solve problem (14), LogitBoost (Friedman et al, 1998) takes further simplifi-
cation. In the example wise quadratic loss (8), the Hessian matrix is diagonally
approximated. Thus (8) collapses into K independent 1-dimensional loss, i.e.,
(8) is written as the sum of K terms each involving just one component of f :

q(f |F) =
KX

k=1

qk(fk|F),

qk(fk|F) = gkfk +
1

2
hkkf

2
k ,

(15)

where hkk is the k-th diagonal elements in H and we have without confusion
omitted the constants that are irrelevant to f . Noting the N -additive form
and substituting back (15), we can also collapse (14) into K 1-dimensional,
independent minimization problems:

f (m)
k (x) = argmin

fk(x)

NX

i=1

qk(f i,k|F i), k = 1, ...,K, (16)

where f i,k = fk(xi) means the fk value corresponding to the i-th training
examples.

Then K scalar trees are grown, the k-th tree approximately minimizing the
k-th problem. Note that each tree can have its own partition, as in Figure 3
(a).

To grow the scalar tree, (Friedman et al, 1998) borrowed a traditional
regression model in statistics, namely the Weighted Regression Tree. The for-
mulation becomes: for the k-th problem, fit a Weighted Regression Tree on
the training examples {xi, yi}Ni=1 with targets {�gi,k/hi,kk}Ni=1 and weights
{hi,kk}Ni=1, where (in a slightly abuse of notation) we use an additional sub-
script i for gk and hkk to denote they correspond to the i-th training example.

12 Peng Sun, Mark D. Reid, Jie Zhou

3.2 ABC-LogitBoost

LogitBoost adopts a rather crude approximation to (8), where the Hessian
matrix H 2 RK⇥K is diagonally approximated. ABC-LogitBoost (Li, 2010b)
considers an intuitively more refined way. Recall that (K � 1) degrees of free-
dom su�ces to express (8), i.e., (8) can be re-written with just (K�1) variables
by eliminating one redundant variable. Then the new (K�1)⇥(K�1) Hessian
matrix is, again, diagonally approximated. Li (Li, 2010b) shows that this does
make a di↵erence, as what follows.

In Section 2.1.3 we have explained that adding a sum to zero constraint to
(8) doesn’t change the problem and actually makes the minimizer unique. We
can thus restrict f to vary in the subspace defined by 1Tf = 0. Consequently,
it is convenient to use a new coordinate system ef 2 RK�1. In order to do
this, Li (Li, 2010b) introduces a concept “base class”. Suppose the base class

b = K, then the new coordinates are that f1 = ef1,...,fK�1 = efK�1, fK =
�(ef1 + ...+ efK�1). Writing them in compact matrix notation, we have:

f = Aef

A =


I
�1

�
,

(17)

where A 2 RK⇥(K�1), I 2 R(K�1)⇥(K�1) and 1 is (K � 1)-dim all one vector.
Substituting it back to (8) we have:

q̃(ef) , q(Aef)

= (ATg)T ef +
1

2
ef
T
ATHAef + C

= egT ef +
1

2
ef
TfHef + C

(18)

where C is a irrelevant constant and we have let

eg = ATg

fH = ATHA.
(19)

(Li, 2010b) then diagonally approximates the (K�1)⇥(K�1) matrix fH =
ATHA. After doing this, the rest optimization procedure is essentially the
same with original LogitBoost: the loss (14) collapses to (K�1) 1-dimensional,
independent minimization problems; the k-th tree is fitted by a Weighted
Regression Tree using the new targets and weights derived from eg and fH as
are defined in (19).

(Li, 2010b) shows that the choice of b impacts on how well the diagonal
approximation is. Two intuitive methods are proposed to select b: 1) The
“worst class”, i.e., the b having the biggest loss (before minimizing (14)) on
that class is selected. 2) The “best class”, i.e., all possible b, up to K choices,
are tried and the one leading to lowest loss (after minimizing (14)) is selected.

AOSO-LogitBoost 13

3.3 AOSO-LogitBoost

In AOSO-LogitBoost, we also adopts the loss (18) with K�1 free coordinates.
However, we update only one coordinate a time. An equivalent formulation
goes in the following. We add a sum-to-zero constraint 1Tf = 0 to the K-dim
loss (8) and let only two coordinates of f , say, fr and fs, vary and the other
K � 2 keep zero. Due to the sum-to-zero constraint, we further let fr = +t
and fs = �t where t is a real number.

Obviously, the choice of (r, s) impacts on the goodness of approximation.
However, it is unlikely to select the best class pair (r, s) for each training
example. To permit the class pair selection as adaptive as possible, we adopt
vector-valued tree model in AOSO-LogitBoost, i.e., any column in Figure 3
(c) can not be assigned to two cells. Then, for each node (i.e., each cell in the
matrix as in Figure 3 (c)) we adaptively select the class pair (r, s).

Superficially, AOSO is inferior to original/ABC- LogitBoost, because many
of the f values in the matrix are untouched (zeros), as shown in Figure 3
(c). However, we should recall the “big picture”: the untouched values might
hopefully receive better updating in later Boosting iterations. Consequently,
AOSO is still “on average” more e�cient than original/ABC- LogitBoost. We
will further discuss this issue in Section 5.

4 The AOSO-LogitBoost Algorithm

In this section we describe the details of AOSO-LogitBoost. Specifically, we
will focus on how to build a tree in Boosting iteration. Some key ingredients
of tree building improving previous techniques were firstly introduced by Li.
However, we will re-derive them in our own language. The credits will be made
clear when they are explained in the following.

4.1 Details of Tree Building

Solving (14) with the tree model (11) is equivalent to determining the parame-
ters {tj , Rj}Jj=1 at the m-th iteration. In this subsection we will show how this
problem reduces to solving a collection of quadratic subproblems for which we
can use standard numerical methods-Block Coordinate Descent. 1. Also, we
will show how the gradient and Hessian can be computed incrementally.

We begin by defining some notation for the node loss:

NodeLoss(t; I) =
X

i2I
q(t|F i) (20)

1 We use Newton descent as there is evidence in (Li, 2010b) that gradient descent, i.e.,
in Friedmans’s MART (Friedman, 2001), leads to decreased classification accuracy.

14 Peng Sun, Mark D. Reid, Jie Zhou

where I denotes the index set of the training examples on some either internal
or terminal node (i.e., those falling into the corresponding region). Minimiz-
ing (20) allows us to obtain a set of nodes {tj , Rj}Jj=1 using the following
procedures:

1. To obtain the values tj for a given Rj , we simply take the minimizer of
(20):

tj = argmin
t

NodeLoss(t; Ij), (21)

where Ij denotes the index set for Rj .
2. To obtain the partition {Rj}Jj=1, we recursively perform binary splitting

until there are J-terminal nodes.

The key to the second procedure is the computation of the node split gain.
Suppose an internal node with n training examples (n = N for the root node),
we fix on some feature and re-index all the n examples according to their
sorted feature values. Now we need to find the index n0 with 1 < n0 < n that
maximizes the node gain defined as loss reduction after a division between the
n0-th and (n0 + 1)-th examples:

NodeGain(n0) =NodeLoss(t⇤; I) (22)

� (NodeLoss(t⇤L; IL) +NodeLoss(t⇤R; IR))

where I = {1, . . . , n}, IL = {1, . . . , n0} and IR = {n0 + 1, . . . , n}; t⇤, t⇤L
and t⇤R are the minimizers of (20) with index sets I, IL and IR, respectively.
Generally, this search applies to all features. The division yielding the largest
value of (22) is then recorded to perform the actual node split.

Note that (22) arises in the context of an O(N ⇥D) outer loop, where D is
number of features. However, a näıve summing of the losses for (20) incurs an
additional O(N) factor in complexity, which finally results in an unacceptable
O(N2D) complexity for a single boosting iteration.

Fortunately, the gradient and Hessian can be incrementally computed. To
see why, simply rewrite the (20) in standard quadratic form:

loss(t; I) = gT t+
1

2
tTHt, (23)

where g = �
P

i2I gi, H =
P

i2I Hi. Thanks to the additive form, both g

and H can be incrementally/decrementally computed in constant time when
the split searching proceeds from one training example to the next. Therefore,
the computation of (23) eliminates the O(N) complexity in the näıve summing
of losses. 2

2 In Real AdaBoost.MH, such a second order approximation is not necessary (although
possible, cf. (Zou et al, 2008)). Due to the special form of the exponential loss and the absence
of a sum-to-zero constraint, there exists analytical solution for the node loss (20) by simply
setting the derivative to 0. Here also, the computation can be incremental/decremental.
Since the loss design and AdaBoost.MH are not our main interests, we do not discuss this
further.

AOSO-LogitBoost 15

4.2 Properties of Approximated Node Loss

To minimise (23), we make use of some properties for (23) that can be exploited
when finding a solution. First, the invariant property carries over to the node
loss (23):

Property 1 loss(t; I) = loss(t+ c1; I).

Proof This is obvious by noting the additive form.

For the Hessian H, we have rank(H)  rank(Hi) by noting the addi-
tive form in (??). In (Li, 2010b) it is shown that detHi = 0 by brute-force
determinant expansion. Here we give a stronger property:

Property 2 EachHi is a positive semi-definite matrix such that 1) rank(Hi) =
�1, where  is the number of non-zero elements in pi; 2) 1 is the eigenvector
for eigenvalue 0.

The proof can be found in Appendix A.
The properties shown above indicate that 1) H is singular so that uncon-

strained Newton descent is not applicable here and 2) rank(H) could be as high
as K�1, which prohibits the application of the standard fast quadratic solver
designed for low rank Hessian. In the following we propose to address this
problem via block coordinate descent, a technique that has been successfully
used in training SVMs (Bottou and Lin, 2007).

4.3 Block Coordinate Descent

For the variable t in (23), we only choose two coordinates, i.e., a class pair, to
update while keeping the others fixed. We note that single coordinates cannot
be updated independently due to the sum-to-zero constraint. Suppose we have
chosen the r-th and the s-th coordinate (we explain precisely how to do so in
the next section). Let tr = t and ts = �t be the free variables (such that
tr + ts = 0) and tk = 0 for k 6= r, k 6= s. Plugging these into (23) yields an
unconstrained one dimensional quadratic problem with regards to the scalar
variable t:

loss(t) = ḡT t+
1

2
h̄t2 (24)

where the gradient and Hessian collapse to scalars:

ḡ = �
X

i2I

((ri,r � pi,r)� (ri,s � pi,s)) (25)

h̄ =
X

i2I

(pi,r(1� pi,r) + pi,s(1� pi,s) + 2pi,rpi,s) , (26)

The derivatives (25) and (26) involving two classes were firstly given in (Li,
2008), where the class subscript r, s are fixed for the nodes in a tree. In this
work, we allow r, s vary from node to node.

16 Peng Sun, Mark D. Reid, Jie Zhou

To this extent, we are able to obtain the analytical expression for the
minimizer and minimum of (24):

t⇤ = argmin
t

loss(t) = � ḡ

h̄
(27)

loss(t⇤) = � ḡ2

2h̄
(28)

by noting the non-negativity of (26).
Based on (27), node vector (21) can be approximated by tj with compo-

nents

tj,k =

8
><

>:

+(�ḡ/h̄) k = r

�(�ḡ/h̄) k = s

0 otherwise

(29)

where g and h are computed using (25) and (26), respectively, with index set
Ij . Based on (28), the node gain (22) can be approximated as

NodeGain(n0) =
ḡ2L
2h̄L

+
ḡ2R
2h̄R

� ḡ2

2h̄
, (30)

where ḡ (or ḡL, ḡR) and h̄ (or h̄L, h̄R) are computed by using (25) and (26)
with index set I (or IL, IR). We note that (30) was firstly derived in (Li,
2010b) in a slightly di↵erent way.

4.4 Class Pair Selection

Bottou and Lin (2007) provide two methods for selecting (r, s) for an SVM
solver that we consider for our purposes. The first is based on a first-order
approximation: let tr and ts be the free variables and fix the rest to 0. For a t
with su�ciently small norm, let tr = ✏ and ts = �✏ where ✏ > 0 is some small
enough constant. The first order approximation of (23) is then:

loss(t) ⇡ loss(0) + gT t = loss(0)� ✏(�ḡr � (�ḡs)), (31)

where we have denoted the vector g = (ḡ1, . . . , ḡr, . . . , ḡs, . . . , ḡK)T . It follows
that the indices r, s resulting in largest decrement to (31) are:

r = argmax
k

{�ḡk}

s = argmin
k

{�ḡk} .
(32)

The second method, derived in a similar way, takes into account the second-
order information:

r = argmax
k

{�ḡk}

s = argmax
k

⇢
(ḡr � ḡk)2

h̄rr + h̄kk � 2h̄rk

�
,

(33)

AOSO-LogitBoost 17

where we have denoted the matrix H = {h̄ij}.
Both methods are O(K) procedures that are better than the K⇥(K�1)/2

näıve enumeration of all possible pairs. However, in our implementation we find
that (33) achieves better results for AOSO-LogitBoost.

The selection of a class pair (r, s) here is somewhat similar to the selection
of base class b in ABC Boost. Actually, Li proposed in (Li, 2008) that the
“worst class” with the largest loss be selected as b. Clearly, the max derivative
is another indicator for how “worst” it is. In this sense, our class pair selection
extends the base class idea and can be seen as a concrete implementation of
the general “worst class” idea.

The pseudocode for AOSO-LogitBoost is given in Algorithm 1 and shows
how all the above approximations are used together to iteratively find a model.
The algorithm runs on the sample {xi, yi}Ni=1 for M rounds. In each round
m it updates the values of F i = F (xi) for each of the instances xi by first
computing a rectangular partition of the feature space {Rm

j }Jj=1 and the cor-

responding node values {tmj }Jj=1, and then incrementing F i by tmj where j is
the index of the region Rm

j such that xi 2 Rm
j .

Algorithm 1 AOSO-LogitBoost for a sample {(xi, yi)}Ni=1. Parameters: v =
shrinkage factor (controls learning rate); J = number of terminal nodes; M =
number of rounds
1: F i = 0, i = 1, . . . , N
2: for m = 1 to M do

3: pi,k =
exp(Fi,k)PK

j=1 exp(Fi,j)
, k = 1, . . . ,K, i = 1, . . . , N .

4: Obtain {Rm
j }Jj=1

by recursive region partition. Node split gain is computed as (30),

where the class pair (r, s) is selected using (33) .
5: Compute {tmj }Jj=1

by (29), where the class pair (r, s) is selected using (33) .

6: F
i

= F
i

+ v
PJ

j=1

tmj I(xi 2 Rm
j), i = 1, . . . , N .

7: end for

5 Comparison to (ABC-)LogitBoost

In this section we compare the derivations of LogitBoost and ABC-LogitBoost
and provide some intuition for observed behaviours in the experiments in Sec-
tion 7.

To solve (14), ABC-LogitBoost uses K � 1 independent trees defined by

fk(x) =

(P
j tj,kI(x 2 Rj,k) , k 6= b

�
P

l 6=b fl(x) , k = b
(34)

where b is the base class. As explained in Section 3.2, b can be selected as
either the “worst class” or the “best class”.

(Li, 2010b) gives how to compute the node value and the node split gain
for building the k-th tree (k 6= b). Although derived from di↵erent motivation

18 Peng Sun, Mark D. Reid, Jie Zhou

as ours, they are actually the same with (29) and (30) in this paper, where
the class pair (r, s) is replaced with (k, b). We should not be surprised at this
coincidence by noting that AOSO’s vector tree has only one freely altering
coordinate on each node and thus “behaves” like a scalar tree. In this sense,
AOSO and ABC is comparable. Actually, ABC can be viewed as a special
form of AOSO with two di↵erences: 1) For each tree, the class pair is fixed for
every node in ABC, while it is selected adaptively in AOSO, and 2) K�1 trees
are added per iteration in ABC, while only one tree is added per iteration by
AOSO.

It seems unappealing to add just one tree as in AOSO, since many f(x)
values are untouched (i.e., , set to zeros, as illustrated in Figure 3 (c)); In
the meanwhile, ABC would be better since it updates all the f(x) values.
Considering the Boosting context, we argue, however, that AOSO should still
be preferred in an “on average” sense. After adding one tree in AOSO, the
F (x) values are updated and the gradient/Hessian is immediately recomputed
for each training example, which impacts on how to build the tree at next
iteration. Thus the F (x) values might still receive good enough updating after
several iterations, due to the adaptive class pair selection for every node at
current iteration. In contrast, the K � 1 trees in ABC use the same set of
gradients and Hessians, which are not recomputed until adding all the K � 1
trees.

Therefore, it is fair to compare ABC and AOSO in regards of number of
trees, rather than number of iterations. AOSO’s “on average” better perfor-
mance is confirmed by the experiments in Section 7.2.

To evaluate whether the adaptive class pair selection is critical, we con-
sidered a variant of AOSO-LogitBoost that adopts a fixed class pair selection.
Specifically, we still add one tree per iteration, but select a single class pair
root node and let it be fixed for all other nodes, which is very similar to ABC’s
choice. This variant was tried but unfortunately, degraded performance was
observed so the results are not reported here.

From the above analysis, we believe that AOSO-LogitBoost’s more flexible
model obtained from the adaptive split selection (as well as its immediate
model updating after adding one tree per iteration) is what contributes to its
improvement over ABC.

6 Sum-to-one Probability and Dense Hessian Matrix

As in previous discussion, both ABC or AOSO improve on the original Logit-
Boost method by dealing with dense Hessian matrix due to the Logistic loss as
given in (3). An immediate question is that whether we can derive an e↵ective
alternative surrogate loss that has a diagonal Hessian matrix “by design” –
i.e., can we define a modified Logistic loss that guarantees a diagonal Hessian
matrix? In this section, we show how the original multi-class Logistic loss can
be derived from a maximum entropy argument via convex duality, in a manner
similar to derivations of boosting updates by Shen and Li (2010), Shen and

AOSO-LogitBoost 19

Hao (2011), La↵erty (1999), and Kivinen and Warmuth (1999) and results
connecting entropy and loss by Masnadi-Shirazi and Vasconcelos (2010) and
Reid and Williamson (2010).

In contrast to earlier work, our analysis focuses on the role of the constraint
in defining the loss and the e↵ect it has on the form of its gradient and Hessian.
In particular, we’ll see that the original Logistic loss’s dense Hessian matrix
essentially results from sum-to-one constraint on class probabilities. Moreover,
we are able to obtain a diagonal Hessian matrix by dropping this constraint
when deriving an alternative to the Logistic loss from the same maximum en-
tropy formulation. By doing so we show that the optimization (i.e., via Newton
descent) becomes straightforward, however lower classification accuracy and
slower convergence rate are observed for the new loss. Therefore, we argue the
techniques used by ABC/AOSO seem necessary for dealing with the dense
Hessian matrix for the original, more e↵ective, Logistic loss.

6.1 Logistic Loss in Primal/Dual View

We now examine the duality between entropy and loss in a manner similar
to that of the more general treatment of Masnadi-Shirazi and Vasconcelos
(2010); Reid and Williamson (2010). By starting with a “trivial” maximum
entropy problem, we show how consideration of its dual problem recovers a
“composite representation” (Reid and Williamson, 2010) of a loss function in
terms of a loss defined on the simplex and corresponding link function. In case
of Shannon entropy, we show that such a construction results in the original
Logistic loss function. Appendix B.1 describes the matrix calculus definitions
and conventions we adopt, mainly from (Magnus and Neudecker, 2007).

For each feature vector x, let ⌘(x) = Pr(y|x) 2 �K be the true conditional

probability for the K classes where �K = {p 2 [0, 1]K :
PK

k=1 pk = 1} denotes
the K-simplex. Let H : �K ! R be an entropy function – a concave function
such that H(ek) = 0 for each vertex ek of �K .

Given some set of probabilities S ⇢ �K – typically defined by a set of
constraints – the MaxEnt criterion (Jaynes, 1957) advises choosing the p 2 S
such that H(p) is maximized. We consider a “trivial” instance of the MaxEnt
problem in which the set S contains only the single point ⌘, i.e., S = {⌘},
yielding the following problem:

max H(p)

s.t. p� ⌘ = 0 (35)

1Tp� 1 = 0,

where the argument x to ⌘(), p() has been omitted. Despite its apparent
triviality, the Lagrangian of this problem has an interesting form:

L(p,F ,�) = H(p) + F T (p� ⌘) + �(1Tp� 1), (36)

20 Peng Sun, Mark D. Reid, Jie Zhou

where F 2 RK , � 2 R are the so-called dual variables. The dual function is
obtained by maximizing the Lagrangian over the domain of the primal variable
p. By setting to zero the derivative of (36) w.r.t. p, we can implicitly express
p as a function of F and � via

rH(p) + �1+ F = 0. (37)

This gives us the dual function g which depends only on F , �:

g(F ,�) = H(p) + F T (p� ⌘) + �(1Tp� 1), (38)

where p = p(F ,�) as per (37), and the unconstrained convex dual problem

min g(F ,�).

Now further eliminating the dual variable � in (38) by taking derivative of
(38) w.r.t. � as

D�g(F ,�) = (D�H(p))(D�p) + F T (D�p) + �1T (D�p) + (1Tp� 1)

= (D�H(p) + �1T + F T)(D�p) + 1Tp� 1

= 1Tp� 1.

and setting to zero, we obtain the “partial” dual function:

`(F) = H(p) + F T (p� ⌘), (39)

where p = p(F) 2 RK , � = �(F) 2 R are given by the (K + 1) ⇥ (K + 1)
equation array (

rH(p) + �1+ F = 0

1Tp� 1 = 0.
(40)

In Machine Learning, (39) and (40) are precisely the “loss function” and the
“link function”, respectively (e.g., the Logistic loss (3) and Logistic link (4)).

Training boosting classifier is essentially a numerical optimization proce-
dure, where the gradient and Hessian of the loss (39) are needed. We give them
as follows.

Theorem 1 The gradient of (39) is r`(F) = p� ⌘.

See Appendix B for its proof. Note that the gradient is precisely the left-hand-
side of the constraint in primal (35), which is a common result in primal-dual
theory in convex optimization (Bertsekas, 1982).

Theorem 2 The Hessian of (39) is r2`(F) = �A�1 + 1
1TA�11A

�111TA�1 ,
where the shorthand A = r2H(p).

AOSO-LogitBoost 21

See Appendix B for its proof.
In both of the above two theorems, the dependence on F is implicit where

p is given by the Link function (40).
To this extent, we can show some concrete results in case of Logistic set-

tings. The starting point is that we adopt Shannon entropy in (35) such

that H(p) = �
PK

k=1 pk log pk. Thus its gradient and Hessian are rH(p) =
�(1 + log p1, ..., 1 + log pK)T , r2H(p) = �diag(1/p1, ..., 1/pK), respectively.
With these two expressions, it follows that the link function by solving equa-
tions (40) is precisely the Logistic link in (4). Furthermore, according to The-
orem 1 and 2 the gradient and Hessian for the loss (39) are r` = p � ⌘ and
r2` = diag(p1, ..., pK) � ppT , which are respectively no more than (??) and
(??) by noting that ⌘ reduces to 1-of-K response r when taking value on the
vertex of the probability simplex. These are shown in the left half of Table 1.

6.2 Diagonal Hessian Matrix by Dropping the Sum-to-one Constraint

In last subsection we derived the LogitBoost via a duality argument. An imme-
diate observation is that the sum-to-one constraint 1Tp� 1 = 0 in (35) seems
redundant, since it is already guaranteed by the constraint p�⌘ = 0 where ⌘
itself is sum-to-one. This means that the primal problem can be rewritten as:

max H(p) (41)

s.t. p� ⌘ = 0 (42)

Deriving its dual form, we obtain the corresponding loss

`(F) = H(p) + F T (p� ⌘), (43)

and link

rH(p) + F = 0 (44)

Still, with H(p) = �
PK

k=1 pk log pk we can obtain the link, the gradient
and Hessian for the loss, as shown in the right half of Table 1. One attractive
feature of this alternative derivation is the diagonal Hessian matrix that is
yielded. When calculating the node value or node gain, we can obtain the
precise Newton Step and Newton Decrement since the inversion of Hessian is
much easier to compute. Consequently, no e↵ort (e.g., base class selection in
ABC or class pair selection in AOSO) is needed to deal with the di�culty of
dense Hessian and all classes can be updated for each terminal node.

6.3 Degraded Performance

We refer to the modified LogitBoost without sum-to-one constraint as “K-
LogitBoost”, where all the K classes are updated at each terminal node. We
compare K-LogitBoost with AOSO-LogitBoost as in Figure 4. Noting that only

22 Peng Sun, Mark D. Reid, Jie Zhou

Table 1 The Link, gradient/Hessian for the loss with or without the sum-to-one constraint.

with sum-to-one without sum-to-one

Link p = p(F) pk = eFk
PK

j e
Fj

, k = 1, ...,K pk = eFk�1, k = 1, ...,K

Gradient r`(F) p� ⌘ p� ⌘
Hessian r2`(F) diag(p

1

, ..., pK)� ppT diag(p
1

, ..., pK)

0 500 1000 1500 2000
0

1

2

3

4

5
x 10

4 gradient

K
AOSO

(a)

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

12000

error

K

AOSO

(b)

Fig. 4 Comparison between K LogitBoost and AOSO LogitBoost on dataset M-Basic. (a)
How the L2 norm of gradient ||p � ⌘||2

2

decreases when iteration proceeds. (b) Test error
v.s. iteration.

2 classes are updated at each terminal node in AOSO, we scale the horizontal
axis (i.e., the number of iterations) by a factor 2/K for AOSO to make it a fair
comparison. As can be seen in the results, a slower convergence than AOSO
is incurred by K LogitBoost with regard to both test error and L2 norm of
gradient, although K LogitBoost is still competitive with AOSO LogitBoost.
More comparative results are provided in Section 7.3.

We provide an intuitive explanation for this phenomenon. At convergence,
the gradient p� ⌘ vanishes, and consequently, p satisfies the sum-to-one con-
straint since ⌘ is a probability. For the original Logistic loss setting, the appar-
ently redundant sum-to-one constraint for p in (35) enforces that the primal
variable p approaches ⌘ on the plane 1Tp � 1 = 0 containing the simplex
�K . In contrast, for K LogitBoost p may reside outside that plane during the
optimization procedure. The latter optimization is intuitively slower since the
L2 norm ||p� ⌘||22 never increases when p� ⌘ is projected onto a plane.

7 Experiments

In this section we compare AOSO-LogitBoost with ABC-LogitBoost, which
was shown to outperform original LogitBoost in Li’s experiments (Li, 2010b,
2009b). We test AOSO on all the datasets used in (Li, 2010b, 2009b), as listed

AOSO-LogitBoost 23

Table 2 Datasets used in our experiments.

datasets K #features #training #test

Poker525k 10 25 525010 500000
Poker275k 10 25 275010 500000
Poker150k 10 25 150010 500000
Poker100k 10 25 100010 500000
Poker25kT1 10 25 25010 500000
Poker25kT2 10 25 25010 500000
Covertype290k 7 54 290506 290506
Covertype145k 7 54 145253 290506
Letter 26 16 16000 4000
Letter15k 26 16 15000 5000
Letter2k 26 16 2000 18000
Letter4K 26 16 4000 16000
Pendigits 10 16 7494 3498
Zipcode 10 256 7291 2007
(a.k.a. USPS)
Isolet 26 617 6238 1559
Optdigits 10 64 3823 1797

Mnist10k 10 784 10000 60000
M-Basic 10 784 12000 50000
M-Image 10 784 12000 50000
M-Rand 10 784 12000 50000
M-Noise1 10 784 10000 2000
M-Noise2 10 784 10000 2000
M-Noise3 10 784 10000 2000
M-Noise4 10 784 10000 2000
M-Noise5 10 784 10000 2000
M-Noise6 10 784 10000 2000

in Table 2. In the top section are UCI datasets and in the bottom are Mnist
datasets with many variations (see (Li, 2010a) for detailed descriptions).3

To exhaust the learning ability of (ABC-)LogitBoost, Li let the boost-
ing stop when either the training loss is small (implemented as  10�16) or
a maximum number of iterations, M , is reached. Test errors at last itera-
tion are simply reported since no obvious over-fitting is observed. By default,
M = 10000, while for those large datasets (Covertype290k, Poker525k,
Pokder275k, Poker150k, Poker100k) M = 5000. We adopt the same cri-
teria, except that our maximum iterations MAOSO = (K� 1)⇥MABC , where
K is the number of classes. Note that only one tree is added at each iteration
in AOSO, while K � 1 are added in ABC. Thus, this correction compares the
same maximum number of trees for both AOSO and ABC.

The most important tuning parameters in LogitBoost are the number of
terminal nodes J , and the shrinkage factor v. In (Li, 2010b, 2009b), Li re-
ported results of (ABC-)LogitBoost for a number of J-v combinations. We
report the corresponding results for AOSO-LogitBoost for the same combina-
tions. In the following, we intend to show that for nearly all J-v combi-
nations, AOSO-LogitBoost has lower classification error and faster
convergence rates than ABC-LogitBoost.

3 Code and data are available at http://ivg.au.tsinghua.edu.cn/index.php?n=People.
PengSun

http://ivg.au.tsinghua.edu.cn/index.php?n=People.PengSun
http://ivg.au.tsinghua.edu.cn/index.php?n=People.PengSun

24 Peng Sun, Mark D. Reid, Jie Zhou

Table 3 Summary of test classification errors. Lower one is in bold. Middle panel: J =
20,v = 0.1 except for Poker25kT1 and Poker25kT2 on which J , v are chosen by validation
(See the text in 7.1); Right panel: the overall best. Dash ”-” means unavailable in (Li, 2010b,
2009b). Relative improvements (R) and P -values (pv) are given.

Datasets #tests ABC AOSO R pv ABC⇤ AOSO⇤ R pv
Poker525k 500000 1736 1537 0.1146 0.0002 - - - -
Poker275k 500000 2727 2624 0.0378 0.0790 - - - -
Poker150k 500000 5104 3951 0.2259 0.0000 - - - -
Poker100k 500000 13707 7558 0.4486 0.0000 - - - -
Poker25kT1 500000 37345 31399 0.1592 0.0000 37345 31399 0.1592 0.0000
Poker25kT2 500000 36731 31645 0.1385 0.0000 36731 31645 0.1385 0.0000
Covertype290k 290506 9727 9586 0.0145 0.1511 - - - -
Covertype145k 290506 13986 13712 0.0196 0.0458 - - - -
Letter 4000 89 92 -0.0337 0.5892 89 88 0.0112 0.4697
Letter15k 5000 109 116 -0.0642 0.6815 - - - -
Letter4k 16000 1055 991 0.0607 0.0718 1034 961 0.0706 0.0457
Letter2k 18000 2034 1862 0.0846 0.0018 1991 1851 0.0703 0.0084
Pendigits 3498 100 83 0.1700 0.1014 90 81 0.1000 0.2430
Zipcode 2007 96 99 -0.0313 0.5872 92 94 -0.0217 0.5597
Isolet 1559 65 55 0.1538 0.1759 55 50 0.0909 0.3039
Optdigits 1797 55 38 0.3091 0.0370 38 34 0.1053 0.3170
Mnist10k 60000 2102 1948 0.0733 0.0069 2050 1885 0.0805 0.0037
M-Basic 50000 1602 1434 0.1049 0.0010 - - - -
M-Rotate 50000 5959 5729 0.0386 0.0118 - - - -
M-Image 50000 4268 4167 0.0237 0.1252 4214 4002 0.0503 0.0073
M-Rand 50000 4725 4588 0.0290 0.0680 - - - -
M-Noise1 2000 234 228 0.0256 0.3833 - - - -
M-Noise2 2000 237 233 0.0169 0.4221 - - - -
M-Noise3 2000 238 233 0.0210 0.4031 - - - -
M-Noise4 2000 238 233 0.0210 0.4031 - - - -
M-Noise5 2000 227 214 0.0573 0.2558 - - - -
M-Noise6 2000 201 191 0.0498 0.2974 - - - -

7.1 Classification Errors

7.1.1 Summary

In Table 3 we summarize the results for all datasets. Li (2010b) reports that
ABC-LogitBoost is insensitive to J , v on all datasets except for Poker25kT1
and Poker25kT2. Therefore, Li reports classification errors for ABC simply
with J = 20 and v = 0.1, except that on Poker25kT1 and Poker25kT2
errors are reported by using each other’s test set as a validation set. Based on
the same criteria we report AOSO in the middle panel of Table 3 where the
test errors as well as the improvement relative to ABC are given. In the right
panel of Table 3 we provide the comparison for the best results achieved over
all J-v combinations when the corresponding results for ABC are available in
(Li, 2010b) or (Li, 2009b).

We also tested the statistical significance between AOSO and ABC. We
assume the classification error rate is subject to some Binomial distribution.
Let z denote the number of errors and n the number of tests, then the esti-
mate of error rate p̂ = z/n and its variance is p̂(1 � p̂)/n. Subsequently, we
approximate the Binomial distribution by a Gaussian distribution and perform
a hypothesis test. The p-values are reported in Table 3.

AOSO-LogitBoost 25

Table 4 Summary of test error rates for (ABC- and AOSO-)LogitBoost and deep learning
algorithms on variants of Mnist . SVM-RBF: SVM with RBF kernel; SVM-POLY: SVM
with polynomial kernel; DBN-1(-3): Deep Belief Network with 1(3) hidden layers; NNET:
Neural Network with 1 hidden layer; SAA-3: Stacked Auto Associator with 3 hidden lay-
ers. See (Larochelle et al, 2007) for details. For each dataset, the lowest error among all
algorithms is in bold, while the lower one between ABC and AOSO is in italic.

M-Basic M-Rotate M-Image M-Rand

SVM-RBF 3.05% 11.11% 22.61% 14.58%
SVM-POLY 3.69% 15.42% 24.01% 16.62%
NNET 4.69% 18.11% 27.41% 20.04%
DBN-3 3.11% 10.30% 16.31% 6.73%
SAA-3 3.46% 10.30% 23.00% 11.28%
DBN-1 3.94% 14.69% 16.15% 9.80%

ABC 3.20% 11.92% 8.54% 9.45%
AOSO 2.87% 11.46% 8.33% 9.18%

7.1.2 Comparisons with SVM and Deep Learning

For some problems, we note LogitBoost (both ABC and AOSO) outperforms
other state-of-the-art classifier such as SVM or Deep Learning.

On dataset Poker, (Li, 2009b) reports that linear SVM works poorly (the
test error rate is about 40%), while ABC-LogitBoost performs far better (i.e.
< 10% on Poker25kT1 and Poker25kT2). AOSO-LogitBoost proposed in this
paper has even lower test error than ABC-LogitBoost, see Table 3.

On those variants of Mnist specially designed for testing various Deep
Learning algorithms, Li reported ABC’s results by simply setting J = 20,
v = 0.1 and concluded that ABC are comparable to or better than Deep
Learning. We provide AOSO’s results in Table 4.

7.1.3 Detailed Results

We provide one-on-one comparison between ABC and AOSO over a number
of J-v combinations, as follows.

Mnist10k, M-Image, Letter4k and Letter2k. For these four datasets,
classification errors are reported in (Li, 2010b) with every combination of
J 2 {4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 30, 40, 50} and v 2 {0.04, 0.06, 0.08, 0.1}.
The comparison with AOSO-LogitBoost is listed in Table 5, Table 6, Table 7
and Table 8.

Poker25kT1 and Poker25kT2. These are the only two datasets on
which ABC-MART4 outperforms ABC-LogitBoost in experiments by Li (2010b).
Thus we cite the results for both ABC-MART and ABC-LogitBoost in Table 9
and Table 10, with J 2 {4, 6, 8, 10, 12, 14, 16, 18, 20} and v 2 {0.04, 0.06, 0.08, 0.1}.
The comparison with AOSO-LogitBoost is also listed. Unlike on previous
datasets, AOSO-LogitBoost is a bit sensitive to parameters, which is also ob-
served for ABC-MART and ABC-LogitBoost by Li (2010b).

4 To put it simple, one gets MART (Multiple Additive Regression Trees (Friedman, 2001))
by replacing the Hessian (23) with identity matrix. ABC-MART is its adaptive base class
version(Li, 2009a).

26 Peng Sun, Mark D. Reid, Jie Zhou

Table 5 Test classification errors on Mnist10k. In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 2630 2515 2600 2414 2535 2414 2522 2392
J = 6 2263 2133 2252 2146 2226 2146 2223 2134
J = 8 2159 2055 2138 2046 2120 2046 2143 2055
J = 10 2122 2010 2118 1980 2091 1980 2097 2014
J = 12 2084 1968 2090 1965 2090 1965 2095 1995
J = 14 2083 1945 2094 1938 2063 1938 2050 1935
J = 16 2111 1941 2114 1928 2097 1928 2082 1966
J = 18 2088 1925 2087 1916 2088 1916 2097 1920
J = 20 2128 1930 2112 1917 2095 1917 2102 1948
J = 24 2174 1901 2147 1920 2129 1920 2138 1903
J = 30 2235 1887 2237 1885 2221 1885 2177 1917
J = 40 2310 1923 2284 1890 2257 1890 2260 1912
J = 50 2353 1958 2359 1910 2332 1910 2341 1934

Table 6 Test classification errors on M-Image. In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 5539 5445 5480 5404 5408 5387 5430 5310
J = 6 5076 4909 4925 4851 4950 4801 4919 4822
J = 8 4756 4583 4748 4587 4678 4599 4670 4594
J = 10 4597 4436 4572 4445 4524 4448 4537 4467
J = 12 4432 4332 4455 4350 4416 4331 4389 4332
J = 14 4378 4264 4338 4277 4356 4240 4299 4245
J = 16 4317 4163 4307 4184 4279 4202 4313 4258
J = 18 4301 4119 4255 4176 4230 4167 4287 4188
J = 20 4251 4084 4231 4101 4214 4093 4268 4167
J = 24 4242 4049 4298 4077 4226 4067 4250 4120
J = 30 4351 4022 4307 4025 4311 4026 4286 4099
J = 40 4434 4002 4426 4033 4439 4047 4388 4090
J = 50 4502 4067 4534 4077 4487 4064 4479 4121

Table 7 Test classification errors on Letter4k . In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 2630 2515 2600 2414 2535 2414 2522 2392
J = 6 2263 2133 2252 2146 2226 2146 2223 2134
J = 8 2159 2055 2138 2046 2120 2046 2143 2055
J = 10 2122 2010 2118 1980 2091 1980 2097 2014
J = 12 2084 1968 2090 1965 2090 1965 2095 1995
J = 14 2083 1945 2094 1938 2063 1938 2050 1935
J = 16 2111 1941 2114 1928 2097 1928 2082 1966
J = 18 2088 1925 2087 1916 2088 1916 2097 1920
J = 20 2128 1930 2112 1917 2095 1917 2102 1948
J = 24 2174 1901 2147 1920 2129 1920 2138 1903
J = 30 2235 1887 2237 1885 2221 1885 2177 1917
J = 40 2310 1923 2284 1890 2257 1890 2260 1912
J = 50 2353 1958 2359 1910 2332 1910 2341 1934

Letter, Pendigits, Zipcode, Isolet and Optdigits. For these five
datasets, classification errors are reported by Li (2010b) with every combina-
tion of J 2 {4, 6, 8, 10, 12, 14, 16, 18, 20} and v 2 {0.04, 0.06, 0.08, 0.1} (except
that v 2 {0.06, 0.1} for Isolet). The comparison with AOSO-LogitBoost is
listed in Table 11, Table 12, Table 13, Table 14 and Table 15.

AOSO-LogitBoost 27

Table 8 Test classification errors on Letter2k . In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 2347 2178 2299 2162 2256 2179 2231 2189
J = 6 2136 2049 2120 2058 2072 2021 2077 2005
J = 8 2080 1975 2049 1977 2035 1985 2037 1997
J = 10 2044 1954 2003 1935 2021 1926 2002 1936
J = 12 2024 1924 1992 1905 2018 1916 2018 1906
J = 14 2022 1912 2004 1874 2006 1888 2030 1881
J = 16 2024 1889 2004 1899 2005 1888 1999 1899
J = 18 2044 1873 2021 1882 1991 1862 2034 1894
J = 20 2049 1870 2021 1875 2024 1884 2034 1862
J = 24 2060 1854 2037 1865 2021 1860 2047 1860
J = 30 2078 1851 2057 1865 2041 1860 2045 1867
J = 40 2121 1882 2079 1870 2090 1879 2110 1861
J = 50 2174 1915 2155 1915 2133 1851 2150 1868

Table 9 Test classification errors on Poker25kT1 . In each J-v entry, the first is for ABC-
MART, the second for ABC-LogitBoost and the third for AOSO-LogitBoost. Lower one is
in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 90323 102905 89561 67417 71450 69674 49403 51226 56702 42126 42140 47165
J = 6 38017 43156 34460 36839 39164 32716 35467 37954 31714 34879 37546 31399
J = 8 39220 46076 33188 37112 40162 32566 36407 38422 32031 35777 37345 31562
J = 10 39661 44830 34203 38547 40754 33251 36990 40486 32873 36647 38141 32316
J = 12 41362 48412 35448 39221 44886 34489 37723 42100 33641 37345 39798 33241
J = 14 42764 52479 36495 40993 48093 37122 40155 44688 35465 37780 43048 34840
J = 16 44386 53363 39087 43360 51308 38111 41952 47831 37766 40050 46968 37275
J = 18 46463 57147 42047 45607 55468 40906 45838 50292 41227 43040 47986 41859
J = 20 49577 62345 43394 47901 57677 44614 45725 53696 43065 44295 49864 46479

Table 10 Test classification errors on Poker25kT2 . In each J-v entry, the first is for ABC-
MART, the second for LogitBoost and the third for AOSO-LogitBoost. Lower one is in
bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 89608 102014 90120 67071 70886 69921 48855 50783 57028 41688 41551 47447
J = 6 37567 42699 34602 36345 38592 32982 34920 37397 31840 34326 36914 31645
J = 8 38703 45737 33456 36586 39648 32883 35836 37935 32288 35129 36731 31790
J = 10 39078 44517 34429 38025 40286 33570 36455 40044 33125 36076 37504 32547
J = 12 40834 47948 35725 38657 44602 34773 37203 41582 33930 36781 39378 33417
J = 14 42348 52063 36666 40363 47642 37371 39613 44296 35711 37243 42720 35021
J = 16 44067 52937 39238 42973 50842 38208 41485 47578 37851 39446 46635 37454
J = 18 46050 56803 42233 45133 55166 40978 45308 49956 41252 42485 47707 42047
J = 20 49046 61980 43506 47430 57383 44754 45390 53364 43317 43888 49506 46666

Table 11 Test classification errors on Letter . In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 125 133 121 134 122 121 119 114
J = 6 112 103 107 104 101 106 102 109
J = 8 104 98 102 100 93 96 95 99
J = 10 101 94 100 93 96 98 93 88
J = 12 96 88 100 91 95 92 95 92
J = 14 96 88 98 89 94 88 89 88
J = 16 97 88 94 93 93 90 95 96
J = 18 95 91 92 95 96 91 93 91
J = 20 95 90 97 89 93 87 89 92

28 Peng Sun, Mark D. Reid, Jie Zhou

Table 12 Test classification errors on Pendigits. In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 92 86 93 85 90 84 92 85
J = 6 98 86 97 85 96 84 93 85
J = 8 97 84 94 84 95 84 93 86
J = 10 100 84 98 83 97 84 97 83
J = 12 98 84 98 82 98 83 98 83
J = 14 100 84 101 81 99 84 98 83
J = 16 100 83 97 84 98 82 96 82
J = 18 102 88 97 83 99 83 97 81
J = 20 106 83 102 82 100 83 100 83

Table 13 Test classification errors on Zipcode. In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 111 104 108 105 114 104 107 101
J = 6 101 99 102 100 98 106 99 104
J = 8 99 99 95 98 96 102 98 95
J = 10 97 98 94 99 97 96 94 102
J = 12 98 99 98 97 99 100 93 100
J = 14 100 96 99 98 97 100 92 94
J = 16 98 97 95 97 99 96 98 103
J = 18 96 96 98 100 101 104 98 100
J = 20 97 98 96 97 100 95 96 99

Table 14 Test classification errors on Isolet . In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold. Dash ”-” means
unavailable.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 - 56 55 54 - 56 55 57
J = 6 - 55 59 56 - 54 58 54
J = 8 - 54 57 54 - 53 60 55
J = 10 - 54 61 54 - 55 62 56
J = 12 - 52 63 54 - 54 64 50
J = 14 - 48 65 51 - 54 60 55
J = 16 - 55 64 57 - 57 62 58
J = 18 - 55 67 57 - 53 62 57
J = 20 - 51 63 57 - 56 65 55

Table 15 Test classification errors on Optdigits. In each J-v entry, the first is for ABC-
LogitBoost and the second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 41 43 42 41 40 40 41 39
J = 6 43 40 45 39 44 39 38 39
J = 8 44 38 44 37 45 41 45 41
J = 10 50 37 50 38 46 36 42 38
J = 12 50 37 48 38 47 35 46 41
J = 14 48 38 46 41 51 40 48 40
J = 16 54 39 51 37 49 38 46 38
J = 18 54 41 55 38 53 40 51 41
J = 20 61 37 56 34 55 36 55 38

Fig. 5 Errors vs. iterations on selected datasets and parameters. Top row: ABC (copied
from (Li, 2010b)); Bottom row: AOSO (horizontal axis scaled to compensate the K � 1
factor).

AOSO-LogitBoost 29

Table 16 #trees added when convergence on selected datasets. R stands for the ratio
AOSO/ABC.

Mnist10k M-Rand M-Image Letter15k Letter4k Letter2k

ABC 7092 15255 14958 45000 20900 13275
R 0.7689 0.7763 0.8101 0.5512 0.5587 0.5424

Table 17 #trees added when convergence on Mnist10k for a number of J-v combinations.
For each J-v entry, the first number is for ABC, the second for the ratio AOSO/ABC.

v = 0.04 v = 0.06 v = 0.1
J = 4 90000 1.0 90000 1.0 90000 1.0
J = 6 90000 0.7740 63531 0.7249 38223 0.7175
J = 8 55989 0.7962 38223 0.7788 22482 0.7915
J = 10 39780 0.8103 27135 0.7973 16227 0.8000
J = 12 31653 0.8109 20997 0.8074 12501 0.8269
J = 14 26694 0.7854 17397 0.8047 10449 0.8160
J = 16 22671 0.7832 11704 1.0290 8910 0.8063
J = 18 19602 0.7805 13104 0.7888 7803 0.7933
J = 20 17910 0.7706 11970 0.7683 7092 0.7689
J = 24 14895 0.7514 9999 0.7567 6012 0.7596
J = 30 12168 0.7333 8028 0.7272 4761 0.7524
J = 40 9846 0.6750 6498 0.6853 3870 0.6917
J = 50 8505 0.6420 5571 0.6448 3348 0.6589

Fig. 6 Errors vs. iterations on Mnist10k. J 2 {4, 6, 8, 10, 12, 14, 16, 18, 24, 30, 40, 50}

Fig. 7 Errors vs. iterations on selected datasets and parameters.

7.2 Convergence Rate

Recall that we stop the boosting procedure if either the maximum number of
iterations is reached or the training loss is small (i.e. the loss (1)  10�16).
The fewer trees added when boosting stops, the faster the convergence and
the lower the time cost for either training or testing. We compare AOSO with
ABC in terms of the number of trees added when boosting stops for the results
of ABC available in (Li, 2010b, 2009b). Note that simply comparing number
of boosting iterations is unfair to AOSO, since at each iteration only one tree
is added in AOSO and K � 1 in ABC.

Results are shown in Table 16 and Table 17. Except for when J-v is too
small, or particularly di�cult datasets where both ABC and AOSO reach
maximum iterations, we found that trees needed in AOSO are typically only
50% to 80% of those in ABC.

Figure 7 shows plots for test classification error vs. iterations in both ABC
and AOSO and show that AOSO’s test error decreases faster. More plots
for AOSO are given in Fig 6 and Fig 7. We only choose the datasets and
parameters on which the plots of ABC are provided in (Li, 2010b).

30 Peng Sun, Mark D. Reid, Jie Zhou

0 100 200 300 400 500
0

50

100

150

200

250

300
optdigits

K
AOSO

0 200 400 600 800
0

50

100

150

200

250

300

350

400

450
pendigits

K
AOSO

0 200 400 600 800
0

50

100

150

200

250

300

350

400
zipcode

K
AOSO

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

letter2k

K

AOSO

0 500 1000 1500
0

5000

10000

15000

mnist10k

K

AOSO

0 500 1000 1500 2000 2500
0

2000

4000

6000

8000

10000

12000

14000

16000

M−Image

K
AOSO

Fig. 8 Comparison between K-LogitBoost and AOSO-LogitBoost on datasets Optdigits,
Pendigits, Zipcode, Letter2k, Mnist10k, M-Image with parameters J = 20 and v = 0.1:
how the testing error decreases with iterations.

7.3 Comparison between K-LogitBoost and AOSO-LogitBoost

In Figure 8 we provide comparison between K-LogitBoost and AOSO-LogitBoost
on several datasets. The parameters for both algorithms are J = 20, v = 0.1.
As can be seen, K-LogitBoost converges slower than AOSO-LogitBoost, con-
firming our arguments in Section 6.3.

8 Conclusions

We present an improved LogitBoost, namely AOSO-LogitBoost, for multi-class
classification. Compared with ABC-LogitBoost, our experiments suggest that
our adaptive class pair selection technique results in lower classification error
and faster convergence rates.

Acknowledgements We appreciate Ping Li’s inspiring discussion and generous encour-
agement. Comments from NIPS2011 and ICML2012 anonymous reviewers helped improve
the readability of this paper. This work was supported by National Natural Science Foun-
dation of China (61020106004, 61021063, 61005023), The National Key Technology R&D
Program (2009BAH40B03). NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the ARC
through the ICT Centre of Excellence program.

References

Bertsekas DP (1982) Constrained optimization and Lagrange multiplier meth-
ods. Academic Press, Boston

AOSO-LogitBoost 31

Bottou L, Lin CJ (2007) Support vector machine solvers. In: Bottou L,
Chapelle O, DeCoste D, Weston J (eds) Large Scale Kernel Machines,
MIT Press, Cambridge, MA., pp 301–320, URL http://leon.bottou.org/

papers/bottou-lin-2006

Freund Y, Schapire R (1995) A desicion-theoretic generalization of on-line
learning and an application to boosting. In: Computational learning theory,
Springer, pp 23–37

Friedman J (2001) Greedy function approximation: a gradient boosting ma-
chine. The Annals of Statistics 29(5):1189–1232

Friedman J, Hastie T, Tibshirani R (1998) Additive logistic regression: a sta-
tistical view of boosting. Annals of Statistics 28(2):337–407

Jaynes E (1957) Information theory and statistical mechanics. The Physical
Review 106(4):620–630

Kégl B, Busa-Fekete R (2009) Boosting products of base classifiers. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning,
ACM, pp 497–504

Kivinen J, Warmuth MK (1999) Boosting as entropy projection. In: Proceed-
ings of the Twelfth Annual Conference on Computational Learning Theory,
ACM, pp 134–144

La↵erty J (1999) Additive models, boosting, and inference for generalized di-
vergences. In: Proceedings of the Twelfth Annual Conference on Computa-
tional Learning Theory, pp 125–133

Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical
evaluation of deep architectures on problems with many factors of variation.
In: Proceedings of the 24th international conference on Machine learning,
ACM, pp 473–480

Li P (2008) Adaptive base class boost for multi-class classification. Arxiv
preprint arXiv:08111250

Li P (2009a) Abc-boost: adaptive base class boost for multi-class classification.
In: Proceedings of the 26th Annual International Conference on Machine
Learning, ACM, pp 625–632

Li P (2009b) Abc-logitboost for multi-class classification. Arxiv preprint
arXiv:09084144

Li P (2010a) An empirical evaluation of four algorithms for multi-class clas-
sification: Mart, abc-mart, robust logitboost, and abc-logitboost. Arxiv
preprint arXiv:10011020

Li P (2010b) Robust logitboost and adaptive base class (abc) logitboost. In:
Conference on Uncertainty in Artificial Intelligence

Magnus JR, Neudecker H (2007) Matrix di↵erential calculus with applications
in statistics and econometrics, 3rd edn. John Wiley & Sons

Masnadi-Shirazi H, Vasconcelos N (2010) Risk minimization, probability elic-
itation, and cost-sensitive svms. In: Proceedings of the International Con-
ference on Machine Learning, pp 204–213

Reid MD, Williamson RC (2010) Composite binary losses. The Journal of
Machine Learning Research 11:2387–2422

http://leon.bottou.org/papers/bottou-lin-2006
http://leon.bottou.org/papers/bottou-lin-2006

32 Peng Sun, Mark D. Reid, Jie Zhou

Schapire R, Singer Y (1999) Improved boosting algorithms using confidence-
rated predictions. Machine learning 37(3):297–336

Shen C, Hao Z (2011) A direct formulation for totally corrective multi-class
boosting. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pp 2585–2592

Shen C, Li H (2010) On the dual formulation of boosting algorithms. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 32(12):2216–2231

Zou H, Zhu J, Hastie T (2008) New multicategory boosting algorithms based
on multicategory fisher-consistent losses. The Annals of Applied Statistics
2(4):1290–1306

A Proof for Property 2

First, we give without proof the lemma below that is well known in Matrix Analysis:

Lemma 1 Let x, y be K dimensional vector, A = xyT
be their out-product. Then the K

eigen values for A are {yTx, 0, ..., 0
| {z }
K�1

}.

A.1 For Positive Semi Definiteness

Let Q̂ = diag(
p
pi,1, ...

p
pi,K), q = (

p
pi,1, ...

p
pi,K)T . For any x 2 RK , let y = Q̂x. Then

xTHix = xT P̂ x| {z }
y

T
y

�xTppTx
| {z }
y

T
qq

T
y

= yT (I � qqT)y.

(45)

From Lemma 1, we have that the eigen values for qqT are {1, 0, ..., 0
| {z }
K�1

} by noting qT q = 1.

Then the eigen values for its first order matrix polynomial I�qqT is {0, 1, ..., 1
| {z }
K�1

}, i.e. all the

eigen values are non-negative. So it follows that the quadratic yT (I � qqT)y � 0.

A.2 For the rank

First, assume the number of non-zero elements in pi equals the number of classes:  = K.
We write Hi as

Hi = P̂ (I � 1pT
i) (46)

where P̂ = diag(pi,1, ..., pi,K) is full rank. So we have

rank(Hi) = rank(I � 1pT
i) (47)

Noting Lemma 1,the eigenvalues for A = 1pT
i are {1, 0, ..., 0

| {z }
K�1

}. It follows that the eigenvalues

for its matrix (first order) polynomial I � A is {0, 1, ..., 1
| {z }
K�1

}, which proves that rank(P̂ �

pip
T
i) = K � 1.

AOSO-LogitBoost 33

Then we assume  < K. We collect the non-zero elements in pi,k to the upper left
corner in matrix Hi and drop the corresponding zero elements by permutation. Repeat
the procedure for  = K and we obtain that rank(Hi) =  � 1. Note that since pi is a
probability,  � 1.

A.3 For eigenvector

It’s straightforward by noting that pi is a probability and thereby satisfies the sum-to-one
constraint.

B Proof for Theorem 1 and 2

B.1 Conventions for Matrix Calculus

Before the proof, we introduce our conventions for matrix calculus, which are borrowed from
(Magnus and Neudecker, 2007).

Let �(x) : RK ! R be a scalar function defined for K-dim vector x, its gradient is a
K-dim vector r

x

�(x). In particular, we use the symbol D to represent the derivative, which
is no more than the transpose of gradient D

x

�(x) = (r
x

�(x))T and thus a K-dim row
vector. Without confusion from context, we sometimes abbreviate them as r� and D�.

For the vector function ⇠(x) : RK ! RK , the matrix D⇠ 2 RK⇥K is precisely the
Jacobian matrix. Therefore, the Hessian matrix of scalar function �() can be expressed by
the Jacobian of its gradient r2� = D(r�).

B.2 For Theorem 1

From first equation of (40) we have

DH(p) + F T = ��1. (48)

By applying derivative w.r.t F on both sides of the second equation of (40) we have

1

T (Dp) = 0. (49)

By noting both (48) and (49), it follows that

D`(F) = (DH(p))(Dp) + (p� ⌘)T (DF) + F T (Dp) (50)

= ��1T (Dp) + (p� ⌘)T (51)

= (p� ⌘)T , (52)

which completes the proof.

B.3 For Theorem 2

The (K + 1) ⇥ (K + 1) equations (40) defines an implicit function p = p(F) 2 RK , � =
�(F) 2 R. We apply to it the derivative w.r.t. F on both sides and have

(
(DF) + (r2H(p))(Dp) + 1(D�) = 0

1

T (Dp) = 0
(53)

34 Peng Sun, Mark D. Reid, Jie Zhou

Noting DF = I as well as the formula for inverse of block matrix, we obtain from (53) the
following equation:


Dp
D�

�
= �


r2H(p) 1

1

T 0

��1


I
0

�
(54)

= �

A�1 +A�1

1(�1

TA�1

1)1TA�1 ⇥
⇥ ⇥

� 
I
0

�
(55)

where the abbreviation A = r2H(p) and the symbol ”⇥” means formula we don’t care. It
thus follows from above formula

Dp = �(A�1 +A�1

1(�1

TA�1

1)1TA�1). (56)

In the meanwhile, by applying derivative tor`(F) in Theorem 1 we precisely haver2`(F) =
(Dp)T . This completes the proof.

	Introduction
	The Problem Setup
	Interplay between Tree Model and Optimization
	The AOSO-LogitBoost Algorithm
	Comparison to (ABC-)LogitBoost
	Sum-to-one Probability and Dense Hessian Matrix
	Experiments
	Conclusions
	Proof for Property 2
	Proof for Theorem 1 and 2

