
Interpreting prediction markets: a stochastic approach

Rafael M. Frongillo Nicolás Della Penna Mark D. Reid

June 22, 2012

Abstract

We study the stochastic sequence of prices
that results from traders with beliefs drawn
from a given distribution sequentially inter-
acting with an automated market maker.
We relate this model to the classic market
equilibrium analysis, as well as to the more
recent line of research seeking to interpret
prediction market prices. Along the way,
we show a very natural stochastic mar-
ket model which exactly corresponds to a
stochastic mirror descent, and we leverage
this new connection to make claims about
the behavior of the market.

1. Introduction and literature review

The literature on the interpretation of prediction
market prices (Manski, 2004; Wolfers & Zitzewitz,
2006) has had the goal of relating the equilibrium
prices to the distribution of the beliefs of traders.
More recent work (Othman & Sandholm, 2010) has
looked at a stochastic model, and studied the behav-
ior of simple agents sequentially interacting with the
market. We continue this latter path of research,
motivated by the observation that the equilibrium
price may be a poor predictor of the behavior in a
volitile prediction market. As such, we seek a more
detailed understanding of the market than the equi-
librium point – we would like to know what the “sta-
tionary distribution” of the price is, as time goes to
infinity.

As is standard in the literature, we assume a fixed
distribution over traders’ beliefs and wealth. Our
model features an automated market maker which
adjusts the prices after a trade, according to a
fixed convex cost function C. Note that this dif-
fers slightly from the standard model, which adjusts
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the price continuously during a trade.

We obtain two results. First, we prove that the sta-
tionary point of our stochastic process defined by
the market maker and a belief distribution of traders
converges to the Walrasian equilibrium of the market
as traders wealth relative to market liquidity goes to
zero. This result, stated in Theorem 1, is quite gen-
eral as very few assumptions are made about the
demand functions of the traders – as such, it can be
seen as a generalisation of the stochastic result of
(Othman & Sandholm, 2010) to cases where agents
are are not limited to linear demands. One noted ex-
ception, however, is that our price adjustment model
simplifies the analysis slightly, whereas (Othman &
Sandholm, 2010) consider continuous price adjust-
ments.

Second, we show in Theorem 2 that when traders are
Kelly bettors (i.e. have log-utilities), the resulting
stochastic market process is equivalent to stochastic
mirror descent; see e.g. (Duchi et al., 2010). This
result adds to the growing literature which relates
prediction markets, and automated market makers
in general, to online learning; see e.g. (Abernethy
et al., 2011), (Chen & Vaughan, 2010), and (Das &
Magdon-Ismail, 2008).

This connection to mirror descent seems to suggest
that the prices in a prediction market at any given
time may be meaningless – the final point in stochas-
tic mirror descent has poor convergence guarantees.
However, standard results suggest that a prudent
way to form a “consensus estimate” from a predic-
tion market is to average the prices! The average
price, assuming our market model is reasonable, is
provably close to the stationary price. In Section 5
we give a natural example that exhibits this behav-
ior.

Beyond this, however, Theorem 2 gives us insight
into the relationship between the market liquidity
and the convergence of prices; in particular it sug-
gests that we should increase liquidity at a rate ofp
t if we wish the price to settle down at the right

rate.
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Related work A important related question that
has been examined is when are agents incentivized
to reveal their information in the prediction markets
setting. By construction a sequential proper scoring
rule based market maker is always provides the right
set of myopic incentives, (Chen et al., 2007) study
the case when agents are not myopic but rather
strategic. They show that when agents receive con-
ditionally independent signals, it is optimal to se-
quentially adjust market prices to their posterior
(given their signal and previous market prices) at
an agents first opportunity when interacting with
an automated market maker, in equilibrium. If the
signals are conditionally dependent, then truthful re-
porting is not an equilibrium and agents incentives
are to manipulate. Thus, our results apply when
beliefs are conditionally independent, it is unclear
how the strategic behaviour of agents would a↵ect
them if beliefs where conditionally dependent. Al-
ternatively, they can be interpreted as being valid
for myopic traders.

In (Beygelzimer et al., 2012) a model of inter-market
dynamics with kelly bettors where each time period
the market walrasian equilibrium is used (and the
dynamics of how or why this is reached are not anal-
ysed) the outcome of the event causes to be wealth
transferred. Our Theorem 2 can in a sense be seen
as a related model with kelly bettors but focusing
on the dynamics of prices relative to beliefs within
a single market (i.e. intra-market dynamics).

2. Models

For simplicity, we state our model for the binary out-
come prediction market, though in principle these
techniques could be easily extended to more compli-
cated settings. Thus, we need only track the price
⇡ of “contract 1”, as the price of contract 0 will be
1 � ⇡. We will make use of an automated market
maker – following (Abernethy et al., 2011), we will
equip our market maker with a convex function C
such that rC(R) ✓ [0, 1]. For brevity we will write
' := rC.

In full generality, our model is the following. The
market maker posts the current price ⇡

t

, and at
each time t = 1 . . . T , a trader is chosen with be-
lief p ⇠ P and wealth W ⇠ W and some demand
function d(W,⇡

t

, p) 2 R which gives the number
of contracts of the positive event that the trader
purchases. The price is then updated to ⇡

t+1

=
'('�1(⇡

t

) + d(W,⇡
t

, p)).

We will make the following assumptions:

1. Bounded wealth: 9W
max

PrW [W > W
max

] = 0

2. Decreasing demands: d(W,⇡+✏, p)  d(W,⇡, p)

3. No debt: �W/(1� ⇡)  d(W,⇡, p)  W/⇡

4. Stationary only at belief: @ d

@W

= 0 () ⇡ = p

Note that according the standard automated market
model, where the price varies continuously as con-
tracts are purchased, the total money required for
purchase d = W/⇡ will in general be higher than W .
In this sense, our model is a fixed-price approxima-
tion to the standard model, where the price is fixed
during orders, and is only updated afterwards. This
is crucial for our analysis in Section 4, but could in
principle be relaxed in Section 3.

3. Stationarity and equilibrium

We will show that in the fixed-price model, the sta-
tionary point of the stochastic process approaches
the Walrasian equilibrium point as the wealth of
the traders approaches 0 (relative to the liquidity
of the market). So that the equilibria in question
are unique, we will assume that the distributions P
and W have simply-connected support.

First, let us analyze the equilibrium point ⇡⇤, which
is simply the price at which the market clears. For-
mally, this is the following condition:

Z
1

0

Z
W

max

0

d(W,⇡⇤, p) dP(p) dW(W ) = 0. (1)

The stationary point of our stochastic process, on
the other hand, is the price ⇡s for which the expected
price fluctuation is 0. Formally, we have

E
(W,p)⇠(P,W)

[�(⇡s, d(W,⇡s, p))] = 0, (2)

where �(⇡, d) := '('�1(⇡) + d) � ⇡ is the price
fluctuation.

We now consider the limit of our stochastic process
as the ratio of the wealth to the market liquidity
approaches 0. As we have fixed the liquidity, we will
take wealth to 0, but one could equivalently think of
this limit as increasing the liquidity. As our wealth
is stochastic, we will simply scale each wealth value
by a constant ↵ ! 0, so instead of changing the
distribution W we can simply modify our demands
to d

↵

(W,⇡, p) := d(↵W,⇡, p). Now we define ⇡⇤
↵

and
⇡s

↵

to be the equilibrium and stationary points of our
process with distributions P and W and demands
d
↵

, and let ⇡⇤
0

and ⇡s

0

be the respective limits as
↵ ! 0.
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Theorem 1. For demands d satisfying conditions 1
through 4, and all convex C, ⇡s

0

= ⇡⇤
0

.

Proof. We define “excess demand” functions for our
two cases:

Z⇤
↵

(⇡) :=
1

↵
E[d

↵

(W,⇡, p)]

Zs

↵

(⇡) :=
1

↵
E[�(⇡, d

↵

(W,⇡, p))],

where expectations are taken over P,W here and
throughout. Note that for all ↵, ⇡s

↵

is the unique
zero of Zs

↵

, and likewise for ⇡⇤
↵

and Z⇤
↵

, since the
expectation is the same integral as in (1).

Note that by conditions 2 and 3, we must have for
all ⇡  p,

lim
↵!0

d
↵

(W ) = lim
↵!0

d(↵W )  lim
↵!0

↵W/⇡ = 0. (3)

Moreover, this limit is uniform in both p and W ,
since d

↵

(W,⇡, p)  ↵W
max

/⇡. The same argument
holds for ⇡ > p. Now let s = '�1(⇡), and consider
the pointwise limit of the fluctuations:

lim
↵!0

�(⇡, d
↵

(W,⇡, p))

d
↵

(W,⇡, p)
= lim

d!0

�(⇡, d)

d

= lim
d!0

'('�1(⇡) + d)� ⇡

d

= lim
d!0

'(s+ d)� '(s)

d

= r'(s) = r2C(s).

Relatedly, observe that d↵(0,⇡, p) = 0 by condition
3, and thus

lim
↵!0

d
↵

(W,⇡, p)

↵
= lim

↵!0

�W
d(0,⇡, p)� d(↵W,⇡, p)

W↵

= �W @

@W

d(0,⇡, p).

We are now ready to analyze the limit excess de-
mands Z⇤

0

and Zs

0

:

Zs

0

(⇡) := lim
↵!0

1

↵
E[�(⇡, d

↵

(W,⇡, p))]

= lim
↵!0

E

�(⇡, d

↵

(W,⇡, p))

d
↵

(W,⇡, p)

d
↵

(W,⇡, p)

↵

�

= E

lim
↵!0

�(⇡, d
↵

(W,⇡, p))

d
↵

(W,⇡, p)

d
↵

(W,⇡, p)

↵

�

= E

r2C(s)

✓
�W

@

@W
d(0,⇡, p)

◆�

= �W ·r2C(s) E
⇥

@

@W

d(0,⇡, p)
⇤
,

where we used the limit uniformity to exchange the
limit and expectation. More directly, we also have

Z⇤
0

(⇡) = �W E
⇥

@

@W

d(0,⇡, p)
⇤
.

Thus, as r2C � 0 by convexity of C, the zeros of
Z⇤
0

and Zs

0

must be the same, namely ⇡⇤
0

= ⇡s

0

.

4. Kelly model as mirror descent

In the fixed-price model with Kelly betters, our up-
date is the following

⇡
t+1

= '

✓
'�1(⇡

t

) +
W

⇡

p� ⇡

1� ⇡

◆
, (4)

where W and p are drawn (independently) from P
and W. We will show that this is equivalent to a
stochastic mirror descent of the form

x
t+1

= argmin
x2R

{⌘ x ·rF (x
t

; ⇠) +D
R

(x, x
t

)}, (5)

where at each step ⇠ ⇠ ⌅ are i.i.d. and R is some
strictly convex function. We will refer to an algo-
rithm of the form (5) a stochastic mirror descent of
f(x) := E

⇠⇠⌅

[F (x; ⇠)].

Theorem 2. The stochastic update for fixed-price
Kelly betters (4) is exactly a stochastic mirror de-
scent of f(⇡) = W · KL(p,⇡), where p and W are
the means of P and W, respectively.

Proof. By standard arguments, the mirror descent
update (5) can be rewritten as

x
t+1

= rR⇤(rR(x
t

)�rF (x
t

; ⇠)),

where R⇤ is the conjugate dual of R. Take R = C⇤,
let ⇠ = (p,W ) ⇠ (P,W), and take F (x; (p,W )) =
W · (KL(p, x) +H(p)). Then

rF (x; (p,W )) = W

✓
�p

x
+

1� p

1� x

◆

= �W

x

p� x

1� x
.

Furthermore, as rR⇤ = rC = ', we have '�1 =
(rR⇤)�1 = rR by duality, and thus our update
becomes

x
t+1

= rR⇤(rR(x
t

)�rF (x
t

; ⇠)),

= '

✓
'�1(x

t

)� W

x

p� x

1� x

◆
,

which exactly matches the Kelly update (4). Finally,
the function this mirror descent is minimizing is

f(x) = E[F (x; ⇠)]

= E[Wp log x+W (1� p) log(1� x)]

= W · (KL(p, x) +H(p)) ,
3



which of course is equivalent to W ·KL(p, x) as the
entropy term does not depend on x.

Theorem 2 not only identifies a fascinating connec-
tion between machine learning and our stochastic
prediction market model, but it also allows us to
use powerful existing techniques to make broad con-
clusions about the behavior of our model. Consider
the following result:

Proposition 1 ((Duchi et al., 2010)). If
krF (⇡; p)k2  G2 for all p,⇡, and R is �-strongly
convex, then with probability 1� �,

f(⇡
T

)  min
⇡

f(⇡)+

✓
D2

⌘T
+

G2⌘

2�

◆ 
1 + 4

r
log

1

�

!
.

In our context, Proposition 1 says that the average
of the prices will be a very good estimate of the min-
imizer of f , which as suggested by happens to be the
underlying mean belief p of the traders! Moreover,
as the Kelly demands are linear in both p and W , it
is easy to see from Theorem 1 that p is also the sta-
tionary point and the Walrasian equilibrium point
(the latter was also shown by (Wolfers & Zitzewitz,
2006)). On the other hand, as we demonstrate next,
it is not hard to come up with an example where the
instantaneous price ⇡

t

is quite far from the equilib-
rium at any given time period.

Before moving to our example, we make one final
point. The above relationship between our stochas-
tic market model and mirror descent sheds light on
an important question: how might an automated
market maker adjust the liquidity so that the mar-
ket actually converges to the mean of the traders’
beliefs? The learning parameter ⌘ can be thought of
as the inverse of the liquidity, and as such, Propo-
sition 1 suggests that increasing the liquidity as

p
t

will cause the mean price to converge to the mean
belief.

5. Example: biased coin

Consider a classic Bayesian setting where a coin has
unknown bias Pr[heads] = q, and traders have a
prior �(↵,↵) over q (i.e., traders are ↵-confident that
the coin is fair). Now suppose each trader indepen-
dently observes n flips from the coin, and updates
her belief; upon seeing k heads, a trader would have
posterior �(↵+ k,↵+ n� k).

When presented with a prediction market with con-
tracts for a single toss of the coin, where and con-
tract 0 pays $1 for tails and contract 1 pays $1 for

heads, a trader would purchase contracts as if ac-
cording to the mean of their posterior. Hence, the
belief distribution P of the market assigns weight
P(p) =

�
n

k

�
qk(1�q)n�k to belief p = (↵+k)/(2↵+n),

yielding a biased mean belief of (↵ + nq)/(2↵ + n).
We show a typical simulation of this market in
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Figure 1. Price movement for Kelly betters with

binomial(q = 0.6, n = 6, ↵ = 0.5) beliefs in the LMSR

market with liquidity parameter b = 10.

Figure 1, where traders behave as Kelly betters in
the fixed-price LMSR. Clearly, after almost every
trade, the market price is quite far from the equilib-
rium/stationary point, and hence the classical sup-
ply and demand analysis of this market yields a poor
description of the actual behavior, and in particular,
of the predictive quality of the price at any given
time. However, the mean price is consistently close
to the mean belief of the traders, which in turn is
quite close to the true parameter q.

6. Conclusion and future work

There appears to be substantial possibility to gener-
alise theorem 1 to more general classes of cost func-
tions and relaxing the fixed-price assumption. The
equivalence to mirror decent stablished in theorem
2 may lead to a better understanding of the opti-
mal manner in which a automated prediction mar-
ket ought to increase liquidity so as to maximise ef-
ficiency.
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