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Abstract

We develop a generalization of randomized coordinate descent for smooth convex
problems, where the coordinates specify arbitrary subspaces, and derive standard
O(1/ε) and O(1/ log ε) rates. For the special case of overlapping 2-block sub-
spaces (i.e. graphs), which has received attention in the literature recently, we
derive a convergence rate on a given graph in terms of its algebraic connectivity.
Using this connection, we introduce bounds for graph topologies not previously
considered. We conclude with preliminary progress toward the interesting open
question: what is the best network structure for a given optimization problem?

1 Introduction and Previous Work

Often motivated by large machine learning problems, several randomized coordinate descent meth-
ods have appeared in the literature recently, with increasing levels of sophistication. While earlier
methods focused on updates which only modified disjoint blocks of coordinates [1, 2], more recent
methods allow for more general configurations, such as overlapping blocks [3, 4, 5]. As we will see,
there is a common technique underpinning many of the papers mentioned above. Roughly speaking,
the recipe is as follows:

1. Derive a quadratic upper bound via Lipschitz continuity;
2. Minimize this upper bound to obtain the update step;
3. Pick a norm based on the update which captures the expected progress per iteration;
4. Use the definition of the dual norm and the convexity of the objective to relate this progress

to the optimality gap and a global notion of distance (the functionR2 below);
5. Chain the per-iteration progress bounds into a convergence rate.

We will follow this recipe to present and analyze a general randomized coordinate descent method
(Algorithm 1), which we call randomized subspace descent (RSD), whose coordinate updates cor-
respond to m arbitrary subspaces. We will represent each subspace i using an orthogonal projection
matrix Πi ∈ Rn×n, where an update in coordinate i is constrained to be in the image space of Πi.
In other words, if the algorithm performs an update xt+1 ← xt + d, we require d ∈ im(Πi).

Formally, our optimization problem is the following:

min
x∈Rn

F (x) s.t. Cx = b , (1)

for some C ∈ Rn′×n and b ∈ Rn′ . To achieve the full feasible set {x : Cx = b}, we choose x0

with Cx0 = b, and require that the span of the image spaces of {Πi}mi=1 is equal to im(I − C+C),
where C+ is the Moore-Penrose pseudoinverse.1 For example, in Section 3 we will need

∑
i xi = c

for some c ∈ R; by the above, to satisfy this constraint we need only ensure 1 ∈ ker Πi for all i.
Also, in contrast to [1, 2], we do not assume that the matrices Πi have disjoint images.

1By properties of the pseudoinverse, the solutions to Cx = b can be written x = C+b+ (I − C+C)y for
any y ∈ Rn; taking differences between xt and x0 yields the image condition.
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We believe that our analysis can be used to recover the smooth-objective results from the papers
mentioned above. The previous work dealing with coordinate blocks are immediate special cases,
with Πi being diagonal with value ones on coordinates in the block and zero elsewhere. As we
will see in Section 3, graphical settings can be captured by Π(i,j) = 1

2 (ei − ej)(ei − ej)
> and

more generally, hypergraphs by ΠS = IS − 1
|S|1S1

>
S where 1S is the binary vector with ones on

S ⊆ [n]. We note that many of the papers cited above have further generalizations which we ignore
for simplicity. For example, the non-Euclidean norms used in Richtárik and Takáč [2] may still be
used by invoking their Lemma 10 appropriately; similarly, high-probability results follow from [2,
Thm 1]. Results for composite objectives are less immediate, though we believe our approach can
be extended to those settings as well.

Finally, we remark that while previous work in coordinate methods was largely motivated by the
low per-iteration costs of computing coordinate gradients, it may seem unlikely that such benefits
would extend to arbitrary subspaces. As such, we view our contribution as a theoretical unification,
providing a simple principled approach to deriving such algorithms in situations where gradient
computations in certain subspaces are much more efficient than in the whole space.

2 The Algorithm

We now present our algorithm, randomized subspace descent. The inputs are a smooth convex
function F : Rn → R, feasible initial point x0 ∈ Rn, matrices {Πi ∈ Rn×n}mi=1 satisfying
span({Πi}) = im(I − C+C), smoothness parameters {Li}mi=1, and distribution p ∈ ∆m.

Algorithm 1 Randomized Subspace Descent
1: for iteration t in {0, 1, 2, · · · } do
2: Sample i from p
3: xt+1← xt − 1

Li
Πi∇F (xt)

4: end for

We will assume that F is Li-smooth with respect to the image space of Πi; this is step 1 of our
recipe. Precisely, we require the existence of constants Li such that for all y ∈ im(Πi),

F (x+ y) ≤ F (x) + 〈∇F (x), y〉+ Li

2 ‖y‖
2
2 , (2)

and refer to this condition as F being Li-Πi-smooth. Note that as prescribed by step 2 of our general
approach, minimizing this bound over all x′ for y = Πix

′ yields the update on line 3 of the algorithm
by properties of orthogonal projections (see the proof of Theorem 1).

For step 3, we now introduce a seminorm ‖ · ‖A which will measure the progress per iteration:

‖x‖A :=

(
m∑
i=1

pi
Li
‖Πix‖22

)1/2

. (3)

Note that this is a Euclidean seminorm ‖x‖A = 〈Ax, x〉 with A =
∑
i
pi
Li

Πi. Finally, for
step 4 of our recipe, we will need the dual norm of ‖ · ‖A, from which we may define the distance
function we need. Let X(A) := {x0 + Ay : y ∈ Rn} denote the optimization domain, and
Fmin := minx∈X(A) F (x) and F arg := arg minx∈X(A) F (x) denote the minimum and minimizers
of F , respectively.

‖y‖∗A :=

{
〈A+y, y〉1/2 if y ∈ im(A)

∞ otherwise.
(4)

R(x0) := max
x∈X(A):F (x)≤F (x0)

max
x∗∈F arg

‖x− x∗‖∗A . (5)

One can indeed check that ‖ · ‖∗A is the dual norm of ‖ · ‖A, in the sense that
(

1
2‖ · ‖

2
A

)∗
= 1

2‖ · ‖
∗ 2
A .

We are now ready to prove an O(1/t) convergence rate for Algorithm 1. Our analysis borrows
heavily from [2] and [4]; we give the proof in Appendix A.
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Theorem 1. Let F , {Πi}i, {Li}i, x0, and p be given as in Algorithm 1, with the condition that F is
Li-Πi-smooth for all i. Then

E
[
F (xt)− Fmin

]
≤ 2R2(x0)

t
. (6)

As is standard in the literature, when F is strongly convex, we obtain linear convergence.
Theorem 2. Let F , {Πi}i, {Li}i, x0, and p be given as in Algorithm 1, with the condition that F is
Li-Πi-smooth for all i, and additionally that F is µ-strongly convex with respect to ‖ · ‖∗A. Then

E
[
F (xt)− Fmin

]
≤ (1− µ)

t
(F (x0)− Fmin) . (7)

To illustrate the power of Theorem 1, we will show next how to study updates on a graph or hyper-
graph, each of which correspond to special cases of the subspaces {Πi}i.

3 Special Case: Graphs and Hypergraphs

In this section we consider a special case of Algorithm 1, where we have a linear constraint
∑
i xi =

c on the coordinates, and the subspaces correspond to graphs (overlapping pairs of coordinates), or
hypergraphs (overlapping subsets of coordinates).2 In the graphical case, we will leverage existing
results in spectral graph theory to analyze new graphs currently not considered in the literature. Note
that we focus here on uniform probabilities to highlight the connections to spectral graph theory; for
an analysis of the optimal probabilities, see Necoara et al. [4].

Let us first consider an optimization problem on the complete graph, which picks an edge (i, j)
uniformly at random and optimizes in coordinates i and j under the constraint that xt+1

i + xt+1
j =

xti+xtj . One can check that this corresponds to the projection matrix Π(i,j) = 1
2 (ei−ej)(ei−ej)>,

where ei is the ith standard unit vector. Assuming a global smoothness constant L, one can calculate

A = 2
Ln(n−1)

∑
(i,j)

Π(i,j) = 1
L(n−1)

(
I − 1

n11
>) , A+ = L(n− 1)(I − 1

n11
>) ,

where 1 is the all-ones vector. Now as im(A) = ker(1), this gives

‖x‖∗ 2
A = L(n− 1)‖x‖22 . (8)

Similarly, the complete rank-k hypergraph gives ‖x‖∗ 2
A = Ln−1

k−1‖x‖
2
2. (Compare to eq. (3.10)

and the top of p.21 of [4].) Letting C0 = 4Lmaxx∈X(A):F (x)≤F (x0) maxx∗∈F arg ‖x − x∗‖22,
which is independent of the (hyper)graph as long as it is connected, we thus have a convergence
rate of n−1

2 C0
1
t for the complete graph, and more generally n−1

2(k−1) C0
1
t for the complete k-graph.

Henceforth, we will consider the coefficient in front of C0 to be the convergence rate.

The above matrixA is a scaled version of what is known as the graph Laplacian; given graphGwith
adjacency matrix A(G) and degree matrix D(G) with the degrees of each vertex on the diagonal,
the Laplacian is the matrix

L = L(G) := D(G)−A(G) . (9)
One can check that indeed, L = 2

∑
(i,j)∈E(G) Π(i,j), meaning A = p

2LL, where p = 1/|E(G)| is
the uniform probability on edges.

The graph Laplacian is a well-studied object in spectral graph theory and other domains, and we
can use existing results to establish bounds for other graphs of interest. To draw this connection, we
note two facts: (1) for symmetric matricesB, the norm 〈Bx, x〉1/2 can be bounded by the maximum
eigenvalue of B, and (2) the maximum eigenvalue of B+ is equal to the inverse of the smallest
nonzero eigenvalue of B, provided again that B is symmetric.3 Putting these together, we can
therefore bound ‖ · ‖∗A using the smallest nonzero eigenvalue of A, and hence of L. It is easy to
see that the smallest eigenvalue is λ1(G) = 0 with eigenvector 1, and as G is connected, we will

2Everything in this section also holds for a graphical or hypergraphical structure on blocks of coordinates;
just add Kronecker products with the appropriate identity matrix.

3These facts follow from the operator norm and singular-value decomposition for the pseudoinverse, re-
spectively, together with the fact that singular values are eigenvalues for symmetric matrices.
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Table 1: Algebraic connectivities for common graphs.

Figure 1: Average (in bold) of 30 runs of a separable ob-
jective for the complete and star graphs. The empirical
gap in iteration complexity is just under 2 (cf. Fig. 2).

have λ2(G) > 0. Thus, the smallest nonzero eigenvalue of A is simply p
2Lλ2(G), so we have the

following for any connected graph G:

‖x‖∗ 2
A ≤ 2L

|E(G)|
λ2(G)

‖x‖22 . (10)

Of course, by the above definition of C0 and Theorem 1, this yields the result

E
[
F (xt)− Fmin

]
≤ |E(G)|

λ2(G)
C0

1

t
, (11)

showing us how tightly related this eigenvalue is to rate of convergence of Algorithm 1.

The second-smallest eigenvalue λ2(G) is called the algebraic connectivity of G, and is itself thor-
oughly studied in spectral and algebraic graph theory. For example, it is known (and easy to check)
that λ2(Kn) = n, where Kn denotes the complete graph; this together with |E(Kn)| = n(n− 1)/2
immediately gives eq. (8). In [6], algebraic connectivities are also given for the path on n vertices
Pn, the cycle Cn, the bipartite complete graph K`,k for k < `, and the k-dimensional cube Bk. We
collect these eigenvalues together yields Table 1.

Substituting the values in Table 1 into eq. (10), we can directly compare the theoretical convergence
rates for different graphs. For example, the star graph Kn−1,1 has rate (n − 1)(1)/(1) = (n − 1),
which is only a factor of 2 away from the complete graph.4 The path and cycle fare much worse,
yielding roughly n/2(n−2/2) = n3 as n becomes large (applying the Taylor expansion and ignoring
π terms). Finally, an interesting result due to Mohar [7] says that for any connected graph on n
vertices, we have λ2(G) ≥ 4/(ndiam(G)) where diam(G) is the diameter of G. Hence for any
connected graph,

E
[
F (xt)− Fmin

]
≤ n |E(G)|diam(G)

4
C0

1

t
, (12)

which is useful for sparse graphs of small diameter. See Appendix B for more on hypergraphs.

4 Future Work: What is the Optimal Network?

As we have demonstrated above, our general approach to choosing coordinate subspaces combines
very naturally with the literature on spectral graph theory, yielding a reasonably rich understanding
of the convergence rates for various choices of network structure. In particular, one can use this
approach to analyze algorithms for specific networks without needing to start from scratch.

Our study opens up the interesting question: what graph G offers the lowest expected number of
iterations? We conjecture that the bound |E(G)|/λ2(G) is minimized by the complete graph.5
However, in practice if the edges in the graph correspond to physical or logical connections which
each incur some cost, it may be desirable to trade off the number of edges with the convergence rate;
in this case we expect expander graphs, which already have numerous ties to network design [9], to
be optimal, as they offer high algebraic connectivity with few edges. Finally, it would be of interest
to compute similar bounds for general classes of hypergraphs, to better understand the trade-offs
between the convergence rate and the size/connectivity of coordinate subspaces.

4While of course these are merely upper bounds on the true rates, they match Figures 1 and 2 quite well.
5In particular, a proof seems to follow from results in [8].
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A Proofs

Before giving the proof, we note that the result in [2, Thm 11] also holds for general Euclidean
norms ‖ · ‖(i). We leave out such extensions as ultimately the only change is in the update step (by
leveraging e.g. [2, Lemma 10] instead of our pseudoinverse update) and the form of the dual norm.
Lemma 1 below verifies that ‖ · ‖A is still a seminorm in these cases.

Proof of Theorem 1. To begin, suppose subspace i is chosen at step t, and consider the update
xt+1 = xt − y for y ∈ im(Πi). The drop in the objective can be bounded using eq. (2),

F (xt)− F (xt − y) ≥
〈
∇F (xt), y

〉
− Li

2
‖y‖22 . (13)

By properties of orthogonal projections, we have

arg max
y∈im(Πi)

〈
∇F (xt), y

〉
− Li

2
‖y‖22 = arg min

y∈im(Πi)

∥∥∥y − 1
Li
∇F (xt)

∥∥∥
2

= 1
Li

Πi∇F (xt) ,

and choice of y gives our update on line 3. Substituting this y into eq. (13) gives

F (xt)− F (xt+1) ≥
〈
∇F (xt), 1

Li
Πi∇F (xt)

〉
− Li

2
‖ 1
Li

Πi∇F (xt)‖22

=
1

2Li
‖Πi∇F (xt)‖22 .

Now looking at the expected drop in the objective, we have

F (xt)− E
[
F (xt+1)|xt

]
≥

m∑
i=1

pi
1

2Li
‖Πi∇F (xt)‖22 =

1

2
‖∇F (xt)‖2A . (14)

To complete step 4 of our recipe and relate our per-round progress to the gap remaining, we observe
that

F (xt)− Fmin ≤ max
x∗∈arg minx F (x)

〈
∇F (xt), x∗ − xt

〉
≤ max
x∗∈arg minx F (x)

‖∇F (xt)‖A ‖x∗ − xt‖∗A

≤ ‖∇F (xt)‖A max
x∗∈arg minF

max
x:F (x)≤F (x0)

‖x∗ − x‖∗A

= ‖∇F (xt)‖A R(x0) ,

where we used convexity of F , the definition of the dual norm, the fact that F (xt) is non-
increasing in t, and finally the definition of R. We now have F (xt) − E

[
F (xt+1)|xt

]
≥

(F (xt) − Fmin)/(2R2(x0)). The remainder of the proof follows an argument of [4] by analyz-
ing ∆t = E

[
F (xt)− Fmin

]
. From the last inequality we have ∆t+1 ≤ ∆t − ∆2

t/2R2(x0), and
since ∆t+1 ≤ ∆t, this gives ∆−1

t ≤ ∆−1
t+1 − (2R2(x0))−1. Summing these inequalities gives the

result.

Proof of Theorem 2. Our proof is essentially that of Nesterov [1, Thm 2] and Richtárik and Takáč [2,
Thm 12]. By definition of µ-strongly convex, we have for all y ∈ Rn,

F (y)− F (xt) ≥
〈
∇F (xt), y − xt

〉
+ µ

2 ‖y − x
t‖∗ 2
A .

Independently minimizing each side of this inequality over y, we obtain from [2, Lemma 10],

Fmin − F (xt) ≥ − 1
2µ‖∇F (xt)‖2A.

Now combining with eq. (14), we have

F (xt)− E
[
F (xt+1)|xt

]
≥ 1

2
‖∇F (xt)‖2A ≥ µ(F (xt)− Fmin) .

Taking expectations and rearranging, we have E
[
F (xt+1)− Fmin

]
≤ (1 − µ)E

[
F (xt)− Fmin

]
,

from which the result follows by induction.
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Lemma 1. Let seminorms {‖ · ‖(i)}mi=1 and positive weights {wi}mi=1 be given, and define the
function ‖ · ‖W : Rn → R by

‖x‖W =

(
m∑
i=1

wi‖x‖2(i)

)1/2

. (15)

Then ‖ · ‖W is a seminorm. It is additionally a norm if and only if ‖x‖(i) = 0 holds for all i only
when x = 0.

Proof. First, note that we may fold the weights into the seminorms, ‖x‖′(i) := ‖√wi x‖(i), so we can
assume wi = 1 for all i without loss of generality. Let ϕ : Rn → Rm be given by ϕ(x)i = ‖x‖(i).
Then ‖x‖W = ‖ϕ(x)‖2.

• Absolute homogeneity. First observe that ϕ(αx) = |α|ϕ(x) by homogeneity of the ‖ · ‖(i).
Then ‖αx‖W = ‖|α|ϕ(x)‖2 = |α|‖x‖W .

• Subadditivity. We first recall the fact that if xi ≥ yi for all i, then ‖x‖2 ≥ ‖y‖2. Combining
this fact with subadditivity of the ‖ · ‖(i) and then of ‖ · ‖2, we have

‖x+ y‖W = ‖ϕ(x+ y)‖2 ≤ ‖ϕ(x) + ϕ(y)‖2
≤ ‖ϕ(x)‖2 + ‖ϕ(y)‖2 = ‖x‖W + ‖y‖W .

We now show the norm condition. First, we assume ‖x‖(i) = 0 for all i implies x = 0; we will show
Separation. We clearly have ‖0‖W = 0. By the above, ‖x‖W = 0 implies ‖ϕ(x)‖2 = 0, yielding
‖x‖(i) = 0 for all i by definiteness of ‖ · ‖2, and hence x = 0 by assumption.

For the converse, observe that any x 6= 0 with ‖x‖(i) = 0 for all i would imply a violation of
definiteness, as ϕ(x) = 0 and hence ‖x‖W = ‖ϕ(x)‖2 = ‖0‖2 = 0.

B Hypergraphs

Here we briefly show how to analyze general hypergraphs. Representing a hypergraph as a collection
S of hyperedges S ⊆ [n], we may define the degree matrix D(S) to be the diagonal matrix with
D(S)ii = #{S ∈ S : i ∈ S}, and the “adjacency” matrix to be A(S)ij =

∑
S∈S:i,j∈S 1/|S|.

Then for uniform probabilities we have A = p
L (D(S) − A(S)). This follows from observing that

for subset S, we have ΠS = IS − 1
|S|1S1

>
S , and counting as we sum. Taking the complete k-graph

yields D(S) =
(
n−1
k−1

)
I and A(S)ij = 1

k

(
n−2
k−2

)
= k−1

k(n−1)

(
n−1
k−1

)
for i 6= j and A(S)ii = 1

k

(
n−1
k−1

)
;

putting these together gives A = 1

L(n
k)
n
k
k−1
n−1

(
n−1
k−1

)
(I − 1

n11
>)) = n−1

L(k−1) (I − 1
n11

>). Similar

computations may be done for other hypergraphs of interest.
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Figure 2: Thirty runs of a separable objective under the complete and star graphs. The ratio between star and
complete of the number of iterations needed to achieve a given objective value is plotted, with the average in
bold.
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