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Abstract

We introduce a new framework to model interactions among
agents which seek to trade to minimize their risk with respect
to some future outcome. We quantify this risk using the con-
cept of risk measures from finance, and introduce a class of
trade dynamics which allow agents to trade contracts contin-
gent upon the future outcome. We then show that these trade
dynamics exactly correspond to a variant of randomized coor-
dinate descent. By extending the analysis of these coordinate
descent methods to account for our more organic setting, we
are able to show convergence rates for very general trade dy-
namics, showing that the market or network converges to a
unique steady state. Applying these results to prediction mar-
kets, we expand on recent results by adding convergence rates
and general aggregation properties. Finally, we illustrate the
generality of our framework by applying it to agent interac-
tions on a scale-free network.

1 Introduction
The study of dynamic interactions between agents who each
have a different stake in the world is of broad interest, espe-
cially in areas such as multiagent systems, decision theory,
and economics. In this paper, we present a new way to model
such dynamic interactions, based on the notion of risk mea-
sures from the finance literature.

The agents in our model will each hold a position, which
states how much the agent stands to gain or lose for each
possible outcome of the world. The overall outlook of an
agent’s position will be quantified by their risk measure,
which simply captures the “riskiness” of their position. To
minimize their risks, agents change their positions by trad-
ing contingent contracts amongst themselves; these con-
tracts state that the owner is entitled to some amount of
money which depends on this future outcome. Traders can
be thought of as residing on a network, the edges or hyper-
edges of which dictate which agents can trade directly.

This simple setting gives rise to several natural questions,
which we would like to understand: Given a set of agents
with initial positions, can a stable equilibrium be found,
where no agents can trade further for mutual benefit? If such
an equilibrium exists, can the agents converge to it using a
trading protocol, and if so what is the rate of convergence?
How does the structure of the underlying network affect
change these answers? What is the distribution of the agents’

risks at equilibrium, and how does an agent’s final risk de-
pend on his position in the network? This paper addresses
and provides answers to many of these questions.

Our model is heavily inspired by the work of Hu and
Storkey (2014), who use risk-measure agents to draw con-
nections between machine learning and prediction markets.
Another motivation comes from Abernethy et al. (2014),
who study a prediction market setting with risk-averse
traders whose beliefs over the outcomes are members of
an exponential family of distributions. Both papers analyze
the steady-state equilibrium of the market, leaving open the
question of how, and how fast, the market may arrive at that
equilibrium. In fact, both papers specifically point to rates
and conditions for convergence in their future work.

The contributions of this paper are threefold. First, we
develop a natural framework to model the interactions of
networked agents with outcome-contingent utilities, which
is tractable enough to answer many of the questions posed
above. Second, by showing that our trading dynamics can be
recast as a randomized coordinate descent algorithm, we es-
tablish convergence rates for trading networks and/or agent
models which are more general than the two prediction mar-
ket papers above. Third, along the way to showing our rates,
we adapt and generalize existing coordinate descent algo-
rithms from the optimization literature, e.g. Nesterov (2012)
and Richtárik and Takáč (2014), which may be of indepen-
dent interest.

2 Setting
Let Ω be a finite set of possible outcomes. Following
(Föllmer and Schied, 2004), a position is simply a func-
tion from outcomes to the reals, X : Ω → R. Positions
can be thought of as random variables which are intended to
represent outcome-contingent monetary values. Denote by
1 : Ω → R the constant position with 1 : ω 7→ 1. The set
of all positions under consideration will be denoted X and
will be assumed to be closed under linear combination and
contain at least all the outcome-independent positions {α1 :
α ∈ R}. We will denote by ∆ the set of probability distri-
butions over Ω, namely ∆ = {p ∈ [0, 1]

Ω
: 〈p,1〉 = 1},

where 〈p, x〉 =
∑
ω∈Ω p(ω)x(ω) is the inner product. Note

that 〈p,X〉 = Eω∼p [X(ω)], the mean under p.
When viewed as a vector space in RΩ, the set of positions



X introduced above is a subspace of dimension k ≤ |Ω|.
Hence, it must have a basis of size k, and thus we must
have some φ : Ω → Rk with the property that for all
X ∈ X , there is some r ∈ Rk such that X(ω) = r · φ(ω) =∑
i riφ(ω)i for all ω ∈ Ω.
We will make extensive use of this “compressed” form of

X , which we denote by R = Rk. Define the counterpart
X[r] ∈ X of r ∈ R to be the position X[r] : ω 7→ r · φ(ω).
The presence of outcome-independent positions then trans-
lates into the existence of some r$ ∈ R satisfying X[r$ ] =
1. Finally, we denote by Π := conv(φ(Ω)) the convex hull
of the basis function φ.

As intuition about φ and Π, it is helpful to draw anal-
ogy to the setting of prediction markets. As we will see in
Section 4, the function φ can be thought of as encoding the
payoffs of each of k outcome-contingent contracts, or secu-
rities, where contract i pays φ(ω)i for outcome ω. The space
Π then becomes the set of possible beliefs {〈p, φ〉 : p ∈ ∆}
of the expected value of the securities.

Risk Measures
Following Hu and Storkey (2014), agents in our framework
will each quantify their uncertainty in positions via a (con-
vex monetary) risk measure ρ : R → R satisfying, for all
r, r′ ∈ X :

• Monotonicity: ∀ω X[r](ω) ≤ X[r′](ω)⇒ ρ(r) ≥ ρ(r′).

• Cash invariance: ρ(r + c · r$) = ρ(r)− c for all c ∈ R.

• Convexity: ρ(λr + (1− λ)r′) ≤ λρ(r) + (1− λ)ρ(r′)
for all λ ∈ [0, 1].

• Normalization: ρ(0) = 0.

The reasonableness of these properties is usually argued as
follows (see, e.g., (Föllmer and Schied, 2004)). Monotonic-
ity ensures that positions that result in strictly smaller pay-
offs regardless of the outcome are considered more risky.
Cash invariance captures the idea that if a guaranteed pay-
ment of $c is added to the payment on each outcome then
the risk will decrease by $c. Convexity states that merging
positions results in lower risk. Finally, normalization is for
convenience, stating that a position with no payout should
carry no risk.

In addition to these common assumptions, we will make
two regularity assumptions:

• Expressiveness: ρ is everywhere differentiable, and
closure{∇ρ(r) : r ∈ R} = Π.

• Strict risk aversion: the convexity inequality above is
strict unless r − r′ = λr$ for some λ ∈ R.

Expressiveness is related to the dual formulation given be-
low; roughly, it says that the agent must take into account
every possible distribution over outcomes when calculating
the risk. Strict risk aversion says that an agent should strictly
prefer a mixture of positions, unless of course the difference
is outcome-independent.

A key result concerning convex risk measures is the
following representation theorem (cf. Föllmer and Schied
(2004, Theorem 4.15), Abernethy, Chen, and Vaughan
(2013, Theorem 3.2)).

Theorem 1 (Convex Risk Representation). A functional ρ :
R → R is a convex risk measure if and only if there is a
closed convex function α : Π→ R ∪ {∞} such that

ρ(r) = sup
π∈relint(Π)

〈π,−r〉 − α(π). (1)

Here relint(Π) denotes the relative interior of Π, the in-
terior relative to the affine hull of Π. Notice that if f∗ de-
notes the convex conjugate f∗(y) := supx 〈y, x〉 − f(x),
then this theorem states that ρ(r) = α∗(−r). This result
suggests that the function α can be interpreted as a penalty
function, assigning a measure of “unlikeliness” α(π) to each
expected value π of the securities defined above. Equiva-
lently, α(〈p, φ〉) measures the unlikeliness of distribution p
over the outcomes. We can then see that the risk is the great-
est expected loss under each distribution, taking into account
the penalties assigned by α.

Risk-Based Agents
We are interested in the interaction between two or more
agents who express their preferences for positions via risk
measures. Burgert and Rüschendorf (2006) formalise this
problem by considering N agents with risk measures ρi for
i = 1, . . . , N and asking how to split a position r ∈ R in
to per-agent positions ri satisfying

∑
i ri = r so as to min-

imise the total risk
∑
i ρi(ri). They note that the value of

the total risk is given by the infimal convolution ∧iρi of the
individual agent risks — that is,

(∧iρi)(r) := inf

{∑
i

ρi(ri) :
∑
i

ri = r

}
. (2)

A key property of the infimal convolution, which will un-
derly much of our analysis, is that its convex conjugate is
the sum of the conjugates of its constituent functions. See
e.g. Rockafellar (1997) for a proof.

(∧iρi)∗ =
∑
i

ρ∗i . (3)

Hu and Storkey (2014) identify a special, market making
agent with risk ρ0 that aims to keep its risk constant rather
than minimising it. The risk minimising agents trade with
the market maker by paying the market maker ρ0(−r) dol-
lars in exchange for receiving position r, thus keeping the
market maker’s risk constant. We will revisit these special
constant-risk interactions in Section 4. For now, we will con-
sider quite general trading dynamics.

3 Trade Dynamics
We now describe how agents may interact with one another,
by introducing certain dynamics of trading among agents.
Recall that we have N agents, and each agent i is endowed
with a risk measure ρi. We further endow agent i with an
initial position r0

i ∈ R, and let r0 =
∑
i r

0
i . We will start

time at t = 0 and denote the position of trader i at time t by
rti .

A crucial concept throughout the paper is that of surplus.
Given a subset of the agents willing to trade among them-
selves, we can quantify the total net drop in risk that group
can achieve.



Definition 1. Given rS = {ri}i∈S for some subset of agents
S, the S-surplus of r is the function Φ : R|S| → R defined
by ΦS(rS) =

∑
i∈S ρi(ri)−(∧iρi)(

∑
i∈S ri). In particular,

Φ(r) := Φ[N ](r) is the surplus function.

We now define trade functions, which are efficient in the
sense that all of this surplus is divided, perhaps unevenly,
among the agents present. A trade dynamic will then be sim-
ply a distribution over trade functions.
Definition 2. Given some subset of nodes S ⊆ [N ], we say
a function f : RN → RN is a trade function on S if

1.
∑
i∈S f(r)i =

∑
i∈S ri,

2. the S-surplus is allocated, meaning ΦS(f(r)S) = 0,
3. for all j /∈ S we have f(r)j = rj .

The following result shows that trade functions have re-
markable structure: once the subset S is specified, the trade
function is completely determined, up to cash transfers. In
other words, the surplus is removed from the position vec-
tors, and then it is redistributed as cash to the traders, and the
choice of trade function is merely in how this redistribution
takes place. The fact that the derivatives match has strong
intuition from prediction markets: agents must agree on the
price. Note that all proofs may be found in the full version
of the paper Frongillo and Reid (2014).
Theorem 2. The trade functions on any S ⊆ [N ] are
unique up to zero-sum cash transfers. Moreover, if f is a
trade function on S, then ∇ρi(f(r)i) = π∗S for all i, where
π∗S = minπ∈Π

∑
i∈S αi(π)−

〈
π,
∑
i∈S ri

〉
.

Our notion of trade dynamics, defined below, is quite in-
tuitive — predefined groups of agents Si gather at random
to negotiate a trade which minimizes their total risk, sub-
ject to the constraint that trading may only be among those
gathered.
Definition 3. Given m subsets S = {Si}mi=1 and m trade
functions fi on Si, and a distribution p ∈ ∆m with full sup-
port, a trade dynamic is the randomized algorithm which se-
lects fi with probability pi and takes rt+1 = fi(r

t). A fixed
point r of the trade dynamic is a point with fi(r) = r for all
i ∈ [m].

We now give a few natural instantiations of trade dynam-
ics which we will use throughout the paper. Let G be a di-
rected graph with a node for each agent. An edge dynamic
has a trade function f(i,j) on {i, j} for each edge (i, j) in
G, where if r′ = f(i,j)(r) we have ρj(r′j) = ρj(rj) and
ρi(r

′
i) = ρi(ri) − Φ{i,j}(r{i,j}). In other words, the agents

minimize their collective risks, but agent i takes all of the
surplus. Similarly, a node dynamic has a trade function fi
for each node i ∈ [N ], on Si = {j : (i, j) ∈ E(G)} ∪ {i},
the out-neighborhood of i, and r′ = fi(r) satisfies ρj(r′j) =
ρj(rj) for j ∈ Si \ {i} while ρi(r′i) = ρi(ri)− ΦSi

(rSi
).

A third dynamic we will consider uses a notion of
fairness; call a trade function f on S fair if it satisfies
ρi(f(r)i) = ρi(ri) − 1

|S|ΦS(rS) for all i ∈ S. Then a fair
trade dynamic is simply a mixture of fair trade functions.
Returning to the graph theme, we may define fair versions
of the node and edge dynamics above, in the natural way.

For all these types of trade dynamics, we will see that the
only crucial property is that of connectedness, which ensures
that trades can eventually travel from one agent to any other.
Given this property, we show a quite general equilibrium re-
sult.

Definition 4. A trade dynamic with subsets S is connected
if the hypergraph with nodes [N ] and hyperedges S is a con-
nected hypergraph.

Theorem 3. Let π∗ = minπ∈Π

∑
i αi(π) −

〈
π, r0

〉
. There

exists r∗ ∈ RN such that for all connected trade dynamics
D, the unique fixed point of D is r∗, up to zero-sum cash
transfers. Moreover, Φ(r∗) = 0 and∇ρi(r∗i ) = π∗ for all i.

The result of Theorem 3 is somewhat surprising — not
only is there a unique equilibrium (up to cash transfers) for
all connected dynamics, but all connected dynamics have
the same equilibrium! If one restricts to connected graphi-
cal networks, this means that the equilibrium does not de-
pend on the network structure. The power of our framework
is that the equilibrium analysis holds regardless of the way
agents interact, as long as information is allowed to spread to
all agents eventually. In fact, one could even consider an ar-
bitrary process choosing subsets St of agents to trade at each
time t; if the set S of subsets which are visited infinitely of-
ten yields a connected hypergraph, then the proof Theorem 3
still applies.

Now that the existence of an equilibrium has been estab-
lished, we turn to the question of convergence. The proof of
our rates is in the full version; the technique is to show that
our trade dynamics are performing a type of randomized co-
ordinate descent algorithm, where the coordinate subspaces
correspond to subsets S of agents, and then use standard
techniques to analyze it. Let us briefly see why coordinate
descent is a useful analogy for our dynamics. Recall that we
have m subsets of agents Si, and that each trade function
fi only modifies the positions of agents in Si. Thinking of
(r1, . . . , rN ) as a largeNk vector (recallR = Rk), the trade
function fi is thus modifying only |Si| blocks of k entries.
Moreover, fi is minimizing the sum of the risks of agents in
Si. Hence, ignoring for now the constraint that the sum of
the positions remain constant, fi is performing a block co-
ordinate descent step of the surplus function Φ on this block
of coordinates.

Theorem 4. For any connected trade dynamic, we have
E [Φ(rt)] = O(1/t).

Amazingly, Theorem 4 holds for all connected trade dy-
namics, as they each minimize the surplus in whichever Si
is chosen, and that is enough for the coordinate descent
bounds to apply. In fact, it is more than enough: as the proof
technique only tracks the optimality gap, the rates extend
to less efficient trade dynamics, as long as they achieve a
drop in surplus within a constant factor of an optimal dy-
namic. This suggests that our convergence results are ro-
bust with respect to the model of rationality one employs;
if agents have bounded rationality and cannot compute po-
sitions which would exactly minimize their risk, but instead
approximate it within a constant factor of the gradient up-
date, the rate remains O(1/t).



4 Application to Prediction Markets
Our analysis was motivated in part by work that considered
the equilibria of prediction markets with specific models of
trader behavior: traders as risk minimizers (Hu and Storkey,
2014); and traders with exponential utilities and beliefs from
exponential families (Abernethy et al., 2014). In both cases,
the focus was on understanding the properties of the market
at convergence, and questions concerning whether and how
convergence happened were left as future work. We now ex-
plain how this earlier work can be seen as a special case of
our analysis with an appropriate choice of network structure
and dynamics. In doing so we also generalize several earlier
results.

Following Abernethy, Chen, and Vaughan (2013), a cost
function-based prediction market consists of a collection of
k outcome-dependent securities {φ(·)i}ki=1 that pay φ(ω)i
dollars should outcome ω ∈ Ω occur. A market maker be-
gins with an initial position r0 ∈ R, the liability vector, and
a cost function C : R → R. A trader who wishes to pur-
chase a bundle of securities r ∈ R is charged price(r) :=
C(rt + r)−C(rt) by the market maker which then updates
its liability to rt+1 = rt + r. The desirable properties for
cost functions are quite different from those of risk mea-
sures (e.g. information incorporating, arbitrage-free), yet as
observed by Hu and Storkey (2014), the duality-based rep-
resentation of cost functions is essentially the same as the
one for risk measures (compare Theorem 1 and (Abernethy,
Chen, and Vaughan, 2013, Theorem 5)). In essence then,
cost functions are risk measures, though because liability
vectors measure losses and position vectors measure gains,
we simply have ρC(r) = C(−r).

In the prediction market of Hu and Storkey (2014), agents
have risk measures ρi and positions ri. A trade of r between
such and agent a market maker with cost function C and po-
sition rt makes the agent’s new risk ρi(ri+r−price(r) ·r$)
since the market maker charges price(r) dollars for r. Sim-
ilarly, one can check that the market maker’s risk remains
constant for all trades of this form.

An agent minimizing its risk implements the trading func-
tion (Definition 2) f : (−rt, ri) 7→ (−rt − r, ri + r) since
minr ρi(ri + r− (C(rt + r)−C(rt)) · r$) = minr ρi(ri +
r) + ρC(−rt− r) by cash invariance of ρi, guaranteeing the
surplus between the agent and market maker is zero. Thus,
one could think of agents in a risk-based prediction market
as residing on a star graph, with the market maker in the cen-
ter. By Theorem 3, any trade dynamic which includes every
agent with positive probability will converge, and Theorem 4
gives an O(1/t) rate of convergence.

An important special case is where agents all share the
same base risk measure ρ, but to different degrees bi which
intuitively correspond to a level of risk affinity. Specifically,
let ρi(r) = biρ(r/bi), where a higher bi corresponds to a
more risk-seeking agent.1 As we now show, the market equi-
librium gives agent i a share of the initial sum of positions
r0 proportional to his risk affinity, and the final “consensus”
price of the market is simply that of a scaled version of r0.

1Note however that agents are still risk-averse; only in the limit
as b → ∞ do the traders become risk-neutral.

Theorem 5. Let ρ be a given risk measure, and for each
agent i choose an initial position r0

i ∈ R and risk defined by
ρi(ri) = biρ(ri/bi) for some bi > 0. Let r0 =

∑
i r

0
i , and

define r ∈ RN by ri = bir
0/
∑
j bj . Then r is the unique

point up to zero-sum cash transfers such that Φ(r) = 0.
Moreover, r satisfies for all i,

∇ρi(ri) = ∇ρ
(
r0/

∑
j bj

)
. (4)

This result generalizes those in §5 of Abernethy et al.
(2014), where traders are assumed to maximize an expected
utility of the form Ub(w) = −b exp(−w/b) under beliefs
drawn from an exponential family with sufficient statistic
given by the securities φ. The above result shows that ex-
actly the same weighted distribution of positions at equi-
librium occurs for any family of risk-based agents, not just
those derived from exponential utility via certainty equiv-
alents (Ben-Tal and Teboulle, 2007). In addition, this gen-
eralization shows that the agents need not have exponential
family beliefs: their positions ri act as general natural pa-
rameters, and 1/bi acts as a general measure of risk aversion.
Finally, this connection also means our analysis applies to
their setting, addressing their future work on dynamics and
convergence.
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Figure 1: Percentage of captured surplus per trader vs. number of
trading neighbors for fair edge dynamic (green circles) and fair
node dynamic (blue crosses). The dashed black line shows the fair
distribution for 200 agents (0.5%).

5 Conclusions
We have developed a framework to analyze arbitrary net-
works of risk-based agents, giving a very general analysis of
convergence and rates, and addressing open issues in both
Hu and Storkey (2014) and Abernethy et al. (2014). We view
this as a foundation, which opens more questions than it an-
swers. For example, can we improve the asymptotic rates
of convergence? One potential technique would be to show
that trading never leaves a bounded region, and carefully ap-
plying bounds for strongly convex functions (modulo the r$

direction), which could give a rate as fast as O(1/2t). An
even broader set of questions has to do with the distribution
of risk — how does the network topology effect the outcome
on the agent level? As our experiments show (Fig. 1), even
local properties of the network may have a strong effect on
the final distribution of risks, and understanding this rela-
tionship is a very interesting future direction.
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