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Abstract

Algorithms that learn sets of rules describing a concept from its exam-
ples have been widely studied in machine learning and have been applied to
problems in medicine, molecular biology, planning and linguistics. Many of
these algorithms used a separate-and-conquer strategy, repeatedly searching
for rules that explain different parts of the example set. When examples are
scarce, however, it is difficult for these algorithms to evaluate the relative
quality of two or more rules which fit the examples equally well.

This dissertation proposes, implements and examines a general technique
for modifying rule evaluation in order to improve learning performance in
these situations. This approach, called Description-based Evaluation Func-
tion Transfer (Deft), adjusts the way rules are evaluated on a target concept
by taking into account the performance of similar rules on a related support
task that is supplied by a domain expert. Central to this approach is a novel
theory of task similarity that is defined in terms of syntactic properties of
rules, called descriptions, which define what it means for rules to be similar.
Each description is associated with a prior distribution over classification prob-
abilities derived from the support examples and a rule’s evaluation on a target
task is combined with the relevant prior using Bayes’ rule. Given some natural
conditions regarding the similarity of the target and support task, it is shown
that modifying rule evaluation in this way is guaranteed to improve estimates
of the true classification probabilities.

Algorithms to efficiently implement Deft are described, analysed and used
to measure the effect these improvements have on the quality of induced theo-
ries. Empirical studies of this implementation were carried out on two artificial
and two real-world domains. The results show that the inductive transfer of
evaluation bias based on rule similarity is an effective and practical way to
improve learning when training examples are limited.
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At each increase of knowledge, as well as on the contrivance of
every new tool, human labour becomes abridged.

- Charles Babbage [1832]





CHAPTER 1

Introduction

Humans have a remarkable ability to infer general concepts from specific
examples. Learning a new language, recognising faces, choosing food from a
menu, running a pharmaceutical trial, tuning an engine or designing a house
all require us to recognise patterns amongst the particular and extract from
them the characteristic. This skill, called induction, enables us to summarise
our knowledge of the world and use it to predict, decide and act in novel
situations. Induction’s role in our everyday lives as well as our scientific,
industrial, and artistic endeavours has driven attempts to create tools that
can mimic our ability to generalise, extending our inductive reach to problems
which are too complicated or too time-consuming to solve without them. The
theoretical and empirical study of algorithms that form the basis of these
tools is a fundamental area of research within machine learning, found at the
intersection of probability theory, statistics and the cognitive and computer
sciences.

This dissertation proposes an inductive tool to extend our inductive ability
for concept learning problems defined by the following three characteristics.
Firstly, the induced concepts are to be expressed using sets of rules. These are
statements of the form “if an example has particular properties then it is an
instance of the concept”. Secondly, the examples available to learn from are
limited. That is, the number of examples is significantly fewer than required
to learn a good generalisation. The third characteristic is that examples of
related concepts are also available when learning. The proposed approach to
this type of problem is called Description-based Evaluation Function Transfer
(DEFT). This Deft approach to concept learning improves the generalisations
made from limited examples by exploiting extra information available in the
examples for the related concepts. The remainder of this dissertation presents
the theory behind this approach, including what is meant by “related concepts”
in this context, its implementation and application.

1.1. Tools for Induction

Thanks to continuing advances in computing and the rise of the internet,
we presently have the ability to cheaply and easily store, retrieve and transmit
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4 1. INTRODUCTION

huge quantities of information. This ever increasing amount of information
that pervades our lives has driven the need for better tools for its manage-
ment. Especially important are inductive tools that allow us to intelligently
summarise this information in order to derive meaning. Without them we are
left asking, “Where is the knowledge we have lost in information?” [Eliot, 1961]

Today, data-mining algorithms are commonly used on large commercial
databases to uncover sales patterns, possible fraud, and network outages [Fayyad
et al., 1996]. The proliferation of data generated in the biological sciences has
led to the creation of systems such as the “Robot Scientist” which are able to
repeatedly propose, run and analyse experiments that investigate gene func-
tionality [King et al., 2004, Muggleton, 2006]. Also, at the personal level,
managing information has been aided by inductive tools for document filing
[Bao et al., 2006], email organisation [Ho et al., 2003, Crawford et al., 2002]
and spam detection [Graham, 2002].

The learning systems used in all of the above cases are capable of learning
using a small amount of expert guidance to draw generalisations from data
that would otherwise be impossible for humans. In his Introduction to Cy-
bernetics, Ashby [1956] calls this sort of cognitive enhancement “intelligence
amplification”, likening the “intellectual power” or “power of appropriate selec-
tion” that humans display when solving problems to other forms of power that
can be amplified by machine such as sound and electricity. The cost to the
expert when supplying input to these systems can be broken down into a vari-
ety of categories. These include the cost of collecting and classifying training
examples as well as other “Human-Computer Interaction” (HCI) costs such as
“finding the right features for describing the cases, finding the right parame-
ters for optimizing the performance of the learning algorithm, converting the
data to the format required by the learning algorithm, analyzing the output of
the learning algorithm, and incorporating domain knowledge into the learning
algorithm or the learned model” [Turney, 2000].

The relative burden of these costs will depend on the problem and the
learning system. For some problems, the cost of collecting and classifying
examples is much greater than any HCI costs. In these cases, the inductive
transfer system described in this work can be seen as a method for improving
the amplificatory power or efficiency of rule learning systems. When used
successfully, the relatively small cost of providing a related task can result in
good generalisation from significantly fewer collected and classified examples
than would otherwise be required, thus achieving the same output from the
system for a lower cost of input.
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1.2. A Motivating Example

In his discussion of costs for inductive learning, Turney [2000] notes that
“every human is a potential case for medical diagnosis, but we require a physi-
cian to determine the correct diagnosis for each person”. This example of a
problem with high classification costs is expanded upon below to motivate the
approach described in this work.

Consider a physician who, after performing several expensive but conclu-
sive tests has determined that five patients have a new type of disease while
another seven do not. She would like some method of predicting whether or not
other patients have the same disease based on their attributes, the symptoms
they present or the results of some cheaper and less time-consuming tests. In
addition it is important that the predictive model be communicated to the
physician’s colleagues to allow them to identify new cases in their hospitals.
Ideally, some simple set of rules would be used to make new predictions such
as “if the patient has high-blood pressure, is over 50, chest pain and a fever
then the disease is likely to be present”.

The hospital the physician works for has a large database of all the case
histories and other medically relevant information for each of the patients in
question. Sifting through all of this information looking for meaningful pat-
terns amongst the 12 patients would be extremely time-consuming. Ideally,
some learning tool would be connected to this database which can help her
find models that discriminate between those patients with and without the
new disease. Naïvely applying such a tool would fail since due to the ex-
tremely large number of chance correlations between the presentation of the
disease and collections of patient features such as eye colour, presence of a
birthmark, or height. Without some kind of guidance, the learning tool will
suggest models that are virtually meaningless to the physician even though
they fit the available data perfectly.

In order for the learning tool to be useful it must take into account not
only the fit of the models to the examples when assessing their quality but
also how well they fit with the physician’s expectations. For example, suppose
two models for the disease, one that tests whether the patient has chest pain
and the other that tests the patient eye colour, both fit the data equally well.
For most diseases, the physician would quickly disregard the latter model. In
making this decision she brings much of her training, general knowledge and
experience with other diseases to bear.

Translating the inductive preferences of an expert into what is called an
inductive bias for a learning algorithm can be difficult. Not only does an expert
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need to know about the learning task but also how the learning algorithm’s
settings affect the resulting theory. The primary research objective of this
work is to allow domain experts to communicate a bias for a task by saying
they expect the good theories on this task to be similar to the good theories
on that task. The thesis is that when training data is limited this approach to
defining bias can improve the performance of induced theories.

1.3. Inductive Transfer of Evaluation Bias

The aim of an inductive transfer method is to allow a domain expert to
express their expectations to a learning system by saying, “I believe the theories
that perform well on task A will be similar to the theories that perform well
on task B”. Here, task A is the learning problem to be solved and is called
the target task and task B is called the support. It is the job of an inductive
transfer system to use the information available in the support task to turn
this statement into a bias that can be used to aid learning on the target task.
A bias in this context is any decision a learning system might make to choose
between two generalisations which is not strictly based on the task’s examples
[Mitchell, 1980].

When experts use a rule learning system to solve a learning task they bring
domain knowledge to bear in the choice of representation, algorithm, back-
ground information, constraints and more. These methods for communicating
bias to a learning algorithm can be extremely useful when the expert can artic-
ulate her knowledge and is skilled with those methods. Systems that perform
inductive transfer can complement these methods in situations in which do-
main knowledge is more difficult to articulate or the expert has less experience
with these traditional ways of expressing biases. This is especially true when
there are a limited number of examples available for the concept to be learnt.
Expressing a strong and correct bias for a learning task such as this requires
that the expert already have a very clear idea of what the unknown concept
might be.

The biases used by most rule learning algorithms can be categorised into
three main types: the language bias which determines which rules will con-
structed and tested by the learner, the search bias which determines the order
in which the rules will be tested and the evaluation bias which determines how
the quality of rules will be assessed1. Existing inductive transfer systems for
rule learning have focused on modifying a learner’s language and search biases.
1The relationship of these three categories to existing characterisations of bias are discussed
in Section 2.3.4.
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The approach to inductive transfer put forward here is novel in its modification
of evaluation bias.

The method Deft uses for modifying evaluation bias can be understood
with reference to the opening example. When the epidemiologist is presented
with two rules to assess, one testing chest pain and the other eye colour, her
preference for the former over the latter could be explained as follows. Al-
though both rules fit the training examples equally well the researcher knows
that rules which test for eye colour have had no predictive value for past dis-
eases that are, in her mind, similar to the present one. That is, they are
equally likely to misclassify an example as correctly classify it. On the other
hand, rules that test for chest pain have, on similar diseases in the past, tended
to classify more examples correctly than not. An evaluation that takes these
extra-evidential assessments into account will result in a preference for the
chest pain rule over the eye colour rule even though they have the same as-
sessment on the training examples.

It is important to note that inductive transfer is only another way to ex-
press bias. If the epidemiologist were to express a wrong bias for the task
by erroneously believing it similar to another task then rules learnt by the
learning system would be poor. As Englebart [1962] puts it,

[J]ust as the mechanic must know what his tools can do and
how to use them, so the intellectual worker must know the
capabilities of his tools and have good methods, strategies,
and rules of thumb for making use of them.

1.4. Research Outline and Contributions

Several concepts and mechanisms need to be clarified to implement an in-
ductive transfer system that functions in the manner described above. Firstly,
some way of expressing and incorporating extra-evidential beliefs about the
classification errors made by rules must be expressible to a rule learning al-
gorithm. Secondly, some way of using support tasks to derive an evaluation
bias that can be used in this way is required. Thirdly, to be useful, these
mechanisms should be efficient and not place too large an overhead on the ex-
pert who must use them. Finally, some theory of task similarity is required in
order to understand when the use of these mechanisms will result in improved
generalisation performance.

Bayesian methods of probability estimation [Good, 1965] are used to ad-
dress the first of these requirements as it is a theoretically well-founded way
of combining prior beliefs with observations. Many evaluation functions rely
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on estimates of classification probabilities which are poorly estimated when
training samples are limited. These estimates can be improved through the
use of priors that reflect extra beliefs about the true classification probabilities
of a rule. The precise prior to be used to evaluate a given rule depends on
its syntactic features, such as the number and type of conditions it tests. To
address the second requirement, these priors can be derived from support tasks
by evaluating a random sample of rules and determining how frequently each
syntactic feature of a rule coincides with a correct or incorrect classification.
By assuming the independence of the rule features, the collection and use of
these derived frequencies as priors can be efficiently implemented. Finally, the
focus on similarity between rules and the use of priors gives rise to a natural
definition of similarity between tasks.

The main contribution of this work is a novel technique for modifying
rule evaluation in order to improve learning performance from limited data.
Flowing from this centrepiece is a theory of task similarity. To the author’s
knowledge this is the first theory of inductive transfer that is directly applica-
ble to rule learning systems. The implementation of this approach is the first
such system to modify evaluation heuristics used during rule search. A com-
prehensive literature survey of all the existing systems that implement transfer
for rule learning is an additional contribution to scholarship in this area.

Some of the ideas explored here have been the basis of several publications
during the author’s candidature. An early attempt at handling limited data
in inductive logic programming is described in [McCreath and Reid, 1999].
Work on concept reuse in reinforcement learning [Ryan and Reid, 2000] and
the application of rule learning to symbolic planning for reinforcement learning
[Reid and Ryan, 2000] also helped to shape some of the ideas explored here.
The use of support tasks for bias learning were explored experimentally within
a text-mining domain in [Oblinger et al., 2002]. Finally, the core of the research
presented here was first described in [Reid, 2004].

1.5. Overview

The remainder of this dissertation is organised as follows. Chapter 2 ex-
amines the problem of rule learning when training data is limited. A brief
survey is made of literature addressing the problem in general before going
into detail about approaches to inductive transfer for learning rules expressed
in first-order logic. Focus is given to a large and important class of rule learning
algorithms, called “covering” or “separate and conquer” algorithms which in-
clude many well known learning systems such as CN2 [Clark and Niblett,
1989], Foil [Quinlan, 1990] and Progol [Muggleton, 1995]. With all of these
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algorithms, the assessment of the quality of individual rules is a crucial task.
When data is limited this rule assessment becomes unreliable and is identified
as a major cause of poor generalisation.

Chapter 3 presents the theory behind description-based inductive trans-
fer. The theory defines successful transfer in terms of estimated classification
probability error, a measure of how well evaluation over training examples
estimates the true misclassification rates. Sufficient conditions are given for
when this error can be reduced through similarity-based transfer. These con-
ditions use novel but natural definitions of the similarity between the support
and target task and the regularity of the target task. An implementation of
description-based transfer for the inductive logic programming system Aleph
[Srinivasan, 2001] is described in Chapter 4. This implementation splits the
calculation of priors into two phases: a consolidation phase, which builds a
statistical summary of a support task (called a Description Frequency Table)
and a transfer phase, which uses the summary to compute classification priors.
Efficient algorithms for both phases are presented and analysed.

To test the theory and implementation, Deft was applied to four envi-
ronments. The first of these is an artificial set of learning tasks in which the
concepts are the reading preferences of five different people. The second en-
vironment involves concepts describing the movement of chess pieces. This
domain has been used by other researchers to test representational approaches
to inductive transfer [Khan et al., 1998] and makes it ideal for comparing
them to Deft’s functional approach. The third environment involves predict-
ing heart disease in patients from three different hospitals, tasks that have also
been used previously in inductive transfer studies [Silver, 2000]. The fourth
domain consists of the well-known tasks from the inductive logic programming
literature: predicting mutagenesis and carcinogenesis [Srinivasan et al., 1994,
1997]. The results of these experiments are presented in Chapter 5. Finally,
in Chapter 6 the main discoveries are reviewed in light of the objectives pre-
sented here and concludes with some new questions and suggestions for future
research.



You’re telling me the French word for “croissant” is “crois-
sant”. So French is just the same as English... Well, “see you
later” or as the French would say, “see you later”.

- Nick, from Family Ties



CHAPTER 2

Rule Learning from Limited Data

This chapter examines predictive concept learning of sets of rules and the
difficulties that arise when training examples are not available in sufficient
quantity. Section 2.1 provides an overview of terminology and definitions com-
monly found in the concept learning literature. As evaluation is a central
theme of this dissertation most of this section is dedicated to measurements
of the error and misclassification rates of hypotheses. Section 2.2 then focuses
attention on relational rule learning: concept learning using theories which are
represented by sets of rules which use predicate logic to express relational con-
ditions. To further limit the scope, Section 2.3 discusses systems that use the
popular “covering” strategy for constructing sets of rules by repeatedly finding
single rules that account for unexplained examples. Rule induction by these
systems is an optimisation problem and, when training data is limited, the
accurate evaluation of rule quality is identified as a key difficulty.

Some approaches to learning from small sets of training examples are re-
viewed in Section 2.4. Of particular interest is the growing number of tech-
niques aimed at reducing the dependence on expertly provided bias. In these
approaches learning tasks are considered to be part of an environment of tasks
that share some common bias requirements. Under this assumption it is possi-
ble for machine learning algorithms to transfer inductive experience from one
learning task to another. While much of this research has been explored using
artificial neural networks there is a small body of work on inductive transfer for
relational rule learning systems which is reviewed in Section 2.5. Finally, the
summary in Section 2.6 argues that there is no existing approach to inductive
transfer for relational learning that modifies the procedures used to evaluate
rules. As evaluation bias is considered an important bias for learning and the
one most affected when training data is limited it is a natural candidate for
inductive transfer. This observation opens the way to the main contribution of
this thesis: the Deft algorithm for learning and transferring evaluation bias
described in the remainder of this thesis.

11



12 2. RULE LEARNING FROM LIMITED DATA

2.1. Concept Learning: Terminology and Definitions

The aim of this section is to introduce some of the basic terminology and
definitions that will be used throughout the rest of this thesis. In very broad
terms, the problem investigated here is one of solving concept learning tasks.
Such a task involves developing a hypothesis that will correctly classify future
instances given specific examples of when an object belongs to a particular
category or not. This section provides an overview of problems of this type
along with the methods used to evaluate the quality of the learnt hypotheses.
Evaluation is one of the key themes of the work presented here and so some
space is dedicated to discussing contingency tables and classification probability
matrices or CPMs. These are summaries of the number and type of examples
a hypothesis correctly or incorrectly classifies. When training examples are
limited these summaries are estimated poorly and any evaluation scheme that
relies on their values will be affected. These ideas play an important part in
the discussion of rule evaluation in Section 2.3 and in Chapters 3 and 4 where
the theory and implementation of Deft is introduced.

2.1.1. Concept Learning. Following Mitchell [1997, §2.1], a concept can
be thought of as a boolean function which classifies instances (objects, situa-
tions, etc.) into two sets: those said to be in the concept and those which are
not. This abstraction captures much of the everyday use of the word “concept”.
When the instances are furniture they can be split into the concepts “chairs”
and “not chairs”, instances of mushrooms into “toxic” or “non-toxic” or each
book in a library into “books I enjoy reading” and “those I do not”. Formally,
a concept will be defined as a boolean function f : X → {+,−} that maps
instances x ∈ X to class labels y ∈ {+,−}.

Given a concept, the class labels for specific instances can be deduced from
the general case. The aim of concept learning is to do the inverse, that is,
induce the general case from specific examples of it. Put formally again, an
example (x, y) is an instance x with an associated label y. Whenever y = f(x)

the pair (x, y) is said to be an example of the concept f . An example is called
positive or negative depending of whether its label is + or − respectively.
A concept learning task consists of a set of examples E of some unknown
target concept t. To solve a task a learner must provide a boolean function
h : X → {+,−}, called a hypothesis, that agrees with the target concept on
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most or all of the instances.1

2.1.2. Evaluating Hypotheses. When a hypothesis is used to classify
examples its performance on those examples can be summarised by counting
the types of mistakes a classifier makes. These summaries, called contingency
tables, can be used to assign a number of different types of measures of quality
to a hypothesis depending on the relative importance of each kind of mistake.
For example, a hypothesis to predict a customer’s reading preferences might
suggest a book the customer does not like. In many respects this type of error
is worse than not suggesting a book the customer may have liked. Similarly,
it is more important for a hypothesis about heart disease to correctly predict
when someone has heart disease than it is to correctly predict when someone
does not.

The weighing of the importance of different classification mistakes when as-
sessing the final quality of a hypothesis will vary from learning task to learning
task depending on the intended application of induced theories. Regardless of
the specific function used to convert error counts into an assessment, the qual-
ity of any evaluation function is only as good as the values it depends on. For
this reason, the theory developed in this dissertation will focus on the values
in contingency tables for hypotheses rather than specific functions of them.
In Chapter 3, a method is proposed for improving these estimates by making
use of extra information provided by an expert in the form of tasks related to
the one being solved. By examining these improvements independently of any
specific evaluation function, this new method is applicable to a wider variety of
problems. Definitions of contingency tables and their related terms are given
below.

When a classifier h is tested against an example (x, y) its predicted label for
x is given by h(x) while the actual label for x is y. The result of the test can be
summarised as the classification pair [h(x), y]. As both h(x) and y can take on
the values {+,−} there are four possible classification pairs. The classification
pair is called positive or negative whenever the predicted label is + or −. The
modifiers true or false are added as a prefix to these names to denote whether
the actual label in the pair agrees or disagrees with the predicted one. Each
of the four classification pairs are shown in Table 2.1 along with their names
and abbreviations.
1Concept learning tasks can be framed more generally by making the weaker assumption
that the target concept is described by a distribution over X × {0, 1} rather than a func-
tion. A stronger, non-agnostic [Kearns et al., 1994] assumption is used here to simplify the
exposition.
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Table 2.1. Classification pairs with their names and abbreviations.

[i, j] Predicted Actual Name Abbreviation
[+,+] + + True Positive TP
[+,−] + − False Positive FP
[−,+] − + False Negative FN
[−,−] − − True Negative TN

When a set of examples is tested against a classifier a classification pair is
created for each example in the set. A summary of these tests can be obtained
by counting how many of each type of classification occurs over the examples.
These counts are defined as a function of the classifier h and example set E as
follows

nij(h,E) = |{(x, j) ∈ E : h(x) = i}| .

The arguments h and E will usually be dropped when there is no confusion
as to the classifier or examples under consideration. A contingency table is a
convenient way of storing these four counts for any particular classifier h and
example set E. It is defined as

nE(h) =

[
n++ n+−

n−+ n−−

]
.

The total number of examples with actual label + can be obtained by summing
the values in the first column while the total number of examples predicted to
be + by the classifier can be read off as the sum of the values in the first row.
Similarly, these values for the examples or predictions with negative labels can
be determined from the value in the second column or row, respectively.

A matrix containing the relative frequencies of each type of classification
pair can be derived from a contingency table. This classification probability
matrix (CPM) is defined to be

pE(h) =
1

N
nE(h)

where N =
∑

ij nij is the total number of examples in E. Assuming the
examples are all of some concept t and their instances have all all been drawn
independently according to some distribution P over X, the values in a CPM
can be viewed as frequentist estimates of classification pair probabilities. That
is, if a new instance x ∈ X is drawn according to P , the probability the
classification pair for x will be [i, j] is

Pr
x∈X

(h(x) = i, t(x) = j) ≈ pij(h,E) =
1

N
nij(h,E).
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2.1.3. Functions of Classification Probabilities. There are several
well-known functions of classification probabilities that will be referred to in
this thesis, especially in Chapters 4 and 5 where the Deft system is imple-
mented and experimentally tested. Two of these, generalisation accuracy and
the area under a Receiver-Operator Characteristic (ROC) curve, are used when
empirically assessing the predictive performance of a hypothesis. The rest, dis-
cussed in Section 2.3.5 below, are used by rule learning algorithms to assess
the quality of individual rules.

The most commonly used measure of predictive performance is the gener-
alisation accuracy of a hypothesis. That is, the probability that the hypothesis
will correctly predict the class label of a new example drawn from the same
distribution used when inducing that hypothesis. The true generalisation ac-
curacy of a hypothesis h is given by

acc(h) = Pr
x∈X

(h(x) = t(x))

where t is the target concept and X is a complete set of examples for that
concept. Given an incomplete set of examples E, the true positive and true
negative rates in the classification probability matrix pE(h) for a hypothesis
can be used to estimate the true generalisation accuracy as follows

accE(h) = p++ + p−− .

Generalisation accuracy places equal importance on misclassifying a positive
example as it does a negative example. For some learning tasks this can mean
high accuracies for a classifier can be reported even though it may be over-
general and incorrectly classifying every (rarely occurring) negative example.
This can misleadingly suggest that an induced classifier is very similar to the
target concept when in fact it is not. This problem can be avoided in two
ways. One is to ensure that the example set has an equal number of positive
and negative examples even when the true distribution of class labels may not
be equal. Alternatively, the area under a receiver-operator curve (ROC) can
be used as a measure that is independent of class distribution.

A ROC curve provides an informative, visual summary of the generalisation
performance of a learning algorithm by plotting points defined by the true
positive and false positive rates of a classifier [Fawcett, 2004]. These rates are
the values that appear in a CPM divided by their respective column totals.
The true positive rate tpr and the false positive rate fpr for a hypothesis with
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Figure 2.1. An example ROC plot. The point A represents a
classifier with a true positive rate of 0.7 and a false positive rate
of 0.2. The shaded area under the curve (AUC) is a measure of
classifier A’s performance.

CPM p(h) are given by

tpr =
p++

p++ + p−+

fpr =
p−+

p−+ + p−−
.

The false negative rate fnr and true negative rate tnr are defined similarly.
These rates are independent of class distribution as the denominator in the
true positive (respectively, false negative) rate is the proportion of positive
(respectively, negative) examples.

ROC curves are most useful for learning algorithms that produce classifiers
which are controlled by a parameter, such as the cutoff probability for naïve
Bayes classifiers or number of nearest neighbours for clustering algorithms. By
varying the parameter, the resulting set of (tpr, fpr) points form a curve which
shows learning performance under a range of conditions. When only one point
(tpr, fpr) is available (as in the case with most rule learning algorithms) a
curve can still be formed by connecting the point with (0,0) (the “always false”
classifier) and (1,1) (the “always true” classifier). An example of such a curve
for a classifier with a true positive rate of 0.7 and a false positive rate of 0.2 is
shown in Figure 2.1.

As the true positive and false positive rates are independent of the class
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distribution of the examples, so too is the Area Under a ROC Curve (AUC).
The one-point ROC curve for a hypothesis h, as described above, has an area
equal to the average of the true positive rate tpr and the true negative rate
tnr, that is

auc(h) =
tpr + tnr

2
.

Statistically, the AUC is equivalent to the Wilcoxon test of ranks [Hanley and
McNeil, 1982]. This measurement of hypothesis quality will be the preferred
one in the experimental evaluation of Deft in Chapter 5.

The belief that an estimate of the generalisation accuracy, AUC or any
other measure of performance based on a training set of examples is a good
approximation of the true values of those functions is known as the inductive
learning hypothesis [Mitchell, 1997, §2.2.2]:

Any hypothesis found to approximate the target function well
over a sufficiently large set of training examples will also approx-
imate the target function over the other unobserved examples.

This assumption forms the cornerstone of inductive learning and hinges on
the condition that the training set be “sufficiently large”. Section 2.4 below
considers the problem of learning when this condition does not hold. This is
done in the context of rule learning, where the hypotheses are expressed as
sets of rules as introduced in the next section.

2.2. Relational Rule Learning

A well-studied class of concept learning algorithms represent theories as
collections of statements of the form “if an instance satisfies these conditions
then classify it like so”2. One advantage of this representation is that the in-
duced theories are relatively easy for humans to comprehend. Rule learning
algorithms have been successfully applied to problems in chemistry, medicine,
linguistics, and engineering [Langley and Simon, 1995].3 Rules can be partic-
ularly expressive when their conditions can include relations between objects
that constitute instances. Molecules [Srinivasan et al., 1994], web pages [Co-
hen, 1998], sentences [Cussens, 1998], citation and movie databases [Jensen
and Neville, 2002] and genomic pathways [King et al., 2004] are just a few ex-
amples of domains where examples and concepts are most naturally expressed
using relations.
2One might say that these statements satisfy the “rule” rule: if if then then.
3Langley and Simon use the term “rule learning” to refer to systems which induce both sets
of rules or decision trees. The examples listed here are for the applications they survey
which used induced sets of rules.
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2.2.1. Definitions. In general, a rule is an expression of the form “if
condition A is true for an instance then condition B is also true”. In the
context of classification, they can be used quite naturally for prediction: “if
a mushroom has spots then it is toxic”, “if a book’s genre is science-fiction
then I will enjoy reading it”. As this thesis is primarily concerned with binary
classification tasks like these the focus of this section will be on rules that
predict the membership of an instance in a concept. A rule r like this can be
written as

c→ +

which is understood to mean “if condition c is true for an instance then that
instance is labelled +”.

As all the rules considered here have the same consequent, “assign the label
+”, the important part of a rule is its antecedent c. If c is true for an instance
x we will write x ∈ c and say that c matches (or covers) x. Exactly how this
matching relationship is defined depends on the representation used for both
instances and the rule conditions.

In one common representation instances have a number of primitive at-
tributes that can be inspected, such as a book’s genre or date of publication.
Rule conditions then perform one or more tests comparing these attributes
with a known value (“the book’s genre is drama”, “the book was published be-
fore 1984”). In these representations, a rule condition will match an instance if
all the condition’s tests are satisfied. The learning of rules using this represen-
tation is known as attribute-value rule learning. Systems such as CN2 [Clark
and Niblett, 1989], Ripper [Cohen, 1995a] and their derivatives fall into this
category of learners.

Given a rule r and a matching relationship ∈ for its condition c, a classifier
hr can be defined like so

hr(x) =

+ if x ∈ c

− otherwise.

Assigning a negative label to non-matching instances by default is known as
negation as failure: any instance that fails to match a rule is assumed not
to be part of the concept. Because of the close relationship between a rule
r = c→ +, its condition c and its interpretation as a classifier hr these terms
will often be deliberately conflated and throughout the discussion there will
be talk of instances being matched (x ∈ r) or classified (r(x) = +) by rules.

Classifiers can also be built for sets of rules by assigning an instance a
positive label if any rule in the set matches it and assigning it a negative label
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otherwise. If R = {r1, . . . , rn} is a set of rules then it can be interpreted4 as a
classifier hR by defining

hR(x) =

+ if x ∈ ri for some ri ∈ R

− otherwise
.

The matching relationship between an instance and a rule is central to the
definition of rule-based classifiers. As mentioned earlier, this relationship is
determined by the representation of both the rules and instances. The majority
of this dissertation is concerned with a particular type of representation and
matching for rules that is based on first-order logic.

2.2.2. Relational Rules. The attributes in attribute-value learning can
be thought of as functions from instances to values. That is, only a single
value can be associated with each attribute for a given instance. A book can
only have one genre and one date of publication, for example. A limitation of
an attribute-value representation becomes apparent when trying to express a
condition like “the book has an author who was born in Spain”. The problem
here is that a book may have more than one author and so the relationship
between a book and its author cannot be expressed as a function.

One approach to this problem, known as “propositionalisation” [Krogel
et al., 2003], is to create new attributes such as “nationality of the first author”,
“nationality of the second author”, and so on. Another approach is to let the
value of an attribute be a set (“nationalities of all authors of this book”) and
add set membership queries to the representation language [Cohen, 1996]. An
earlier, more general approach, and the one considered here, is to do away with
the requirement that attributes be functions and allow arbitrary relations, such
as “author-of”, between objects in rule conditions. Relational rule learning is
the name given to the induction of these types of rules.

2.2.3. Syntax. Relations and relational rules are often expressed using
first-order logic5 or a subset or first-order logic that can be implemented in
the programming language Prolog [Bratko, 1990, is a standard reference].
In Prolog, specific things such as a particular book, its author or the year
it was written are identified using constants and written in lower-case (e.g.
4This is common way of interpreting a set of rules as a classifier but it is not the only way.
Fürnkranz [1999, §2.3] surveys other methods for both binary and multi-class classification
tasks.
5First-order logic is a large and technical field and it is beyond the scope of this thesis
to discuss it in a detailed and formal manner. The summary here is based on the one
found in Table 10.3 of [Mitchell, 1997]. For an in-depth discussion the reader is pointed to
[Nienhuys-Cheng and de Wolf, 1997].
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don_quixote, cervantes, 1650). Variables are used to stand for non-specific
things such as “some book” or “some author” and customarily denoted with
an upper-case first letter (e.g. Book, Author). Collectively, constants and
variables are known as terms. Functions of terms, such as the successor of a
number (e.g. succ(1650)) are also terms. Any term can be used to replace
a variable in a logical expression. Book might be replaced by don_quixote,
for example. The mapping which states which variables will be replaced by
which terms is known as a substitution. Relations, like authorship, that exist
between terms are expressed through symbols called predicates. The name of a
predicate sometimes appears with a number after it (e.g. author/2) denoting
its arity, the number of terms the predicate relates. Together, the constants,
functions and predicates form what is called an alphabet and defines the set of
symbols which can be used to build logical expressions.

When a predicate is instantiated with a particular set of terms it is called
a literal. The literal author(don_quixote,cervantes), for example, can be
used to express that Cervantes is the author of Don Quixote. The negation of
a literal is also a literal and is denoted by placing the negation symbol “¬” in
front of a literal, for example ¬author(don_quixote,dan_brown). This can
be used to express the denial of a particular relationship. Literals that have
no negation sign are called positive literals to distinguish them from negative
literals. When literals do not contain any variables, as in the examples above,
they are called ground literals. Positive ground literals are known as atoms
and are typically used to represent instances when learning relational rules.

Rule conditions are expressed in first-order logic using disjunctions of lit-
erals, known as clauses. A clause with p positive literals Hi and n negative
literals ¬Bi is denoted

H1 ∨ . . . ∨Hp ∨ ¬B1 ∨ . . . ∨ ¬Bn.

Since the rules of logic state ¬(X ∨ Y ) = ¬X ∧ ¬Y and define (X ← Y ) =

X ∨ ¬Y a clause is commonly written as an implication

H1 ∨ . . . ∨Hp ← (B1 ∧ . . . ∧Bn)

and the literals Hi and Bi are respectively known as head and body literals.
Clauses with at most one head literal are called Horn clauses and are the
most common form of clauses used in rule induction. For convenience, Horn
clauses will often be written using the same notation as Prolog programs, that
is H:-B1, . . . , Bn. The set of all clauses that can be built up from a given
alphabet is called a language.

Once a language is specified by choosing the terms and predicates, rule
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conditions and instances for relational rule learning can be represented using
clauses from that language. In order to classify instances according to rules a
matching relation ∈ between them needs to be specified.

2.2.4. Semantics. Informally, we would like the matching relation to be
defined so that the instance enjoy(don_quixote) will match the condition

enjoy(B):-author(B,A),born(A,spain)

if the variable B can be substituted with don_quixote and there is some term
that can be substituted for variable A (e.g. cervantes) so that the body
literals in the clause are true.

The truth or falsity of literals and clauses is specified through a Herbrand
interpretation which, for the purposes of this thesis, can be thought of as the
set of ground atoms that are to be considered to represent all the true facts.
The truth value for more complex expressions, such as clauses, are derived
from the ground facts using the standard truth tables for logical connectives
such as ∨ and ∧. Details can be found in [Nienhuys-Cheng and de Wolf, 1997,
§3.4].

If an expression F , such as a literal or clause, is true under the inter-
pretation I the interpretation is said to be a model for the expression. A
contradiction, such as the empty clause �, is an expression that has no mod-
els. If every model for F is also a model for G - that is, G is true whenever
F is - we say that F entails G and write F |= G. Consequently, if F |= �

then F has no models and is also a contradiction. Expressions with at least
one model cannot entail a contradiction and are said to be satisfiable. This is
written F 6|= �.

The relations referred to by the predicates author/2 and born/2 in the
example above are called background knowledge. Relations which are part of
the background knowledge are defined by a set of clauses and are used when
determining whether a condition matches an instance as follows. If e is an atom
(i.e. positive ground literal), C a clause and B the background knowledge then
we define C to match e (with respect to the background B) if and only if B

and C together entail e. That is,

e ∈B C iff B ∧ C |= e.

This definition of the matching relation is comparable to what De Raedt [1997,
§3.2] calls the intensional inductive logic programming framework for learning.
As stated earlier, relational rule learning involves learning sets of rules with
clauses as conditions. The clausal matching relation just described is what
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allows these conditions to be tested against examples and therefore defines the
classifying behaviour of sets of clausal rules called relational classifiers.

Learning relational classifiers from examples is what is known as a su-
pervised learning problem, in contrast to unsupervised rule learning where
class labels are not available. Unsupervised rule learning problems ask that a
learner produce a set of rules that describe frequent patterns within a training
dataset. Problems of this type are commonly called association rule mining
[Zhang and Zhang, 2002] or rule discovery [De Raedt and Dehaspe, 1997, Flach
and Lachiche, 2001]. Although the work presented in this dissertation may be
applicable to rule learning in the unsupervised setting it is not the main focus
at this time and so its discussion is deferred to Chapter 6. Relational classi-
fiers are also a less general type of classifier than the sets of clauses, or logic
programs, which are used in the general inductive logic programming frame-
work. In general ILP a hypothesis H covers an example e if it, along with
the background knowledge, entails the example. That is, if B ∧H |= e holds.
This more general condition allows for program synthesis [Flener and Yilmaz,
1999]: the induction of recursively defined relations such as list membership.
ILP systems such as MIS [Shapiro, 1983] and Hyper [Bratko, 1999] solve
program synthesis tasks by systematically generating and testing entire logic
programs against training examples. In theory, this program synthesis is also
able to induce relational classifiers. However a simpler strategy called sequen-
tial covering takes advantage of the fact that in relational classification tasks
no interplay between clauses is required to determine whether an example is
matched. As the focus of this thesis is on classification rather than program
synthesis its focus is further narrowed to algorithms which adopt this strategy
to learn sets of rules as classifiers.

2.3. Sequential Covering Algorithms

Algorithms that learn concepts as sets of rules have been studied for over
forty years and the resulting literature on this topic is both broad and deep.
Any attempt at surveying its entirety in this dissertation would be misguided.
Instead, the purpose of this section is to focus on a widely used family of rule
learning algorithms known as sequential covering algorithms whose common
ancestor is Michalski’s AQ algorithm [Michalski, 1969]. These algorithms all
share the same general strategy for building a classifier from a set of training
examples: while there are uncovered positive examples, find a single rule that
covers at least some of these and make it part of the classifier.

One such sequential covering algorithm called Progol, originally proposed
and implemented by Muggleton [1995], is examined in some detail in this
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section. This is done for two reasons. First, the Progol algorithm is an
efficient and widely used instance of this class of rule learners, and secondly
this particular algorithm forms the core of the implementation of the inductive
transfer system Deft introduced in Chapter 4. The particular implementation
of Progol that is used throughout this thesis is the one found in the ILP
system Aleph [Srinivasan, 2001].

The remainder of this section frames the rule searches performed by Aleph
and other algorithms as an optimisation problem in which the function to op-
timise is one that assigns a measure of quality to each rule. The biases of rule
searching algorithms can be understood as constraints on the candidate solu-
tions, the order in which candidates are evaluated and the evaluation function
to optimise. Of these, the evaluation function is considered the most important
for the purposes of this thesis and is examined in some detail.

2.3.1. Separate and Conquer Rule Learning. A generic sequential
covering algorithm for inducing sets of rules from examples is shown in Algo-
rithm 1. This strategy sometimes goes by the name “separate and conquer” as
the inner loop of this procedure repeatedly calls FindRule to cover part of
the example set and then separates out those examples that were covered from
those that were not. By repeating this loop until all positive examples are
covered a set of rules is constructed which explains all the positive examples.

Algorithm 1 SeqCover - Sequential Covering Algorithm for Learning Sets
of Rules
1: H = {}
2: while E+ is not empty do
3: Call FindRule(E) to get rule r
4: Remove examples in E+ covered by r
5: Add r to H
6: end while

There are many slight variations on the basic covering algorithm. The
restriction that all the positive examples be covered can be weakened to handle
erroneously labelled examples. A post-pruning of the rules and their conditions
can be performed based on a “hold-out” set of examples separate from those
used to find the rules. While these modifications have some effect on the
algorithm and the quality of the rules it induces, its real nature is determined
by the workings of the FindRule procedure.

The FindRule procedure takes a set of examples E as input and returns
a single rule r that explains at least some of those examples. The dozens of
methods used to implement this procedure for covering algorithms are compre-
hensively surveyed by Fürnkranz [1999]. To avoid going into too much detail it
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is enough to consider the implementations of FindRule as searches of a rule
space. All of these different types of search have the following general struc-
ture. First, a language for the rules is chosen and the search is initialised with
some starting rule. Then, the rule space is explored by repeatedly evaluating
and refining rules and, eventually, the search terminates and the best rule is
returned.

A particular instance of the FindRule procedure can be characterised
by describing how it implements the language, search, and evaluation aspects
when solving a learning problem. Section 2.5 below reviews several relational
rule learning systems which use inductive transfer to modify one or more of
these three aspects. The majority of those systems are built upon variants of
the covering algorithm for relational learning. The inductive transfer system
introduced in this thesis also has a covering algorithm as its foundation. This
algorithm, called Progol, is implemented as part of the ILP system Aleph
which is now described.

2.3.2. Aleph and Progol. The Aleph system is the Swiss-army knife
of first-order rule learners.6 Its design and implementation in Prolog is very
modular and incorporates ideas and algorithms from a variety of other systems.
This generality makes it a valuable “prototype for exploring ideas” [Srinivasan,
2001] in inductive logic programming. Only a small part of the Aleph system
was modified and used for the implementation and exploration of inductive
transfer for rule learning in this dissertation. Specifically, its slight variation
on the original inverse entailment algorithm in Progol [Muggleton, 1995] will
act as the main learning algorithm within Deft. Hereafter, when the term
Aleph is used it is meant in this restricted sense.

Given a collection of positive and negative ground facts Aleph induces a
theory as a set of Horn clauses using the sequential covering strategy described
above. Each clause in the theory is constructed from predicates defined in the
task’s background knowledge. The way in which literals can be combined in
the body of a clause is determined by mode and type constraints as well as
an upper limit on the variable depth within a clause (set using the Aleph
parameter i). These two static constraints are used to define what Muggleton
[1995, Definition 22] calls the “depth-bounded mode language” for the task.
Clauses in the depth-bounded mode language are called the legal clauses for
the learning task at hand.

Even for relatively simple learning tasks the total number of legal clauses
for a problem can be potentially infinite which make complete searches for an
6Aleph is an acronym for A Learning Engine for Proposing Hypotheses
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Algorithm 2 The FindRule procedure as it is implemented in Aleph: a
general-to-specific, breadth-first, branch-and-bound optimisation of evaluation
score over a refinement lattice of clauses.
1: procedure FindRule(E)
2: Select (x, +) ∈ E+ and compute ⊥ = Bottom(x)
3: Initialise best = x and set bestscore = Score(best, E)
4: Initialise Q = a FIFO queue containing only the empty rule �
5: while Q is not empty do
6: Remove head from the front of Q
7: for all rules new ∈ Refine(head,⊥) do
8: if Bound(new, E) ≥ bestscore then
9: Add new to the back of Q

10: if Accept(new, E) and Score(new, E) > bestscore then
11: Set best = new and bestscore = Score(new, E)
12: end if
13: end if
14: end for
15: end while
16: return best
17: end procedure

optimal clause infeasible. To avoid this impracticality, Aleph’s FindRule
procedure (shown in Algorithm 2) implements a general-to-specific, breadth-
first search which uses several techniques to carefully limit its exploration of
the set of legal clauses.

The first and most important of these techniques is the construction of a
bottom clause by the procedure Bottom in line 2. The construction process
uses a technique called “saturation”, or “elaboration” [Sammut and Banerji,
1986], in which an instance is generalised and conjoined with any related facts
that are derivable from the background knowledge. The precise details of
this procedure are not relevant to this discussion and the reader is referred
to [Muggleton, 1995, §8.1] for more information. All the detail required here
is that this procedure will, when passed an instance x, construct the most
specific legal clause, denoted ⊥, that covers that instance. The bottom clause
generally consists of tens or hundreds of literals. Since the bottom clause is
most specific, any other legal clause that subsumes ⊥ must necessarily cover
the instance x. By only considering legal clauses which subsume the bottom
clause, the search is constrained to finding a legal clause which must cover x,
greatly reducing the complexity of the search.

In its main loop, the FindRule procedure repeatedly removes the foremost
clause head from its search queue for refinement. The Refine procedure en-
sures that only legal specialisations of the clause are constructed and that each
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Algorithm 3 The Score and Bound procedures used within the search
implemented by FindRule
1: procedure Score(r, E)
2: n = the contingency table nE(r)
3: return f(n; r)
4: end procedure

.
5: procedure Bound(r, E)
6: n = the contingency table nE(r)

7: nmax =

[
n++ 0
n−+ n−− + n+−

]
8: return f(nmax; r)
9: end procedure

refinement subsumes the bottom clause ⊥. The most general specialisations
of head satisfying both these conditions are created efficiently in one of three
ways: by adding a single literal from ⊥ to head, by substituting a variable in
head with a constant from ⊥, or by binding two variables from head with each
other. The specialisations are further constrained by limiting the total num-
ber of literals, or length, of the clauses returned by Refine. The maximum
allowed clause length is controlled by the Aleph parameter clauselength.

After their construction, each refinement of head is evaluated and poten-
tially pruned from the search using an A∗-like admissible pruning heuristic.
The evaluation and pruning are handled by the Score and Bound proce-
dures respectively. These are shown in Algorithm 3 and, although relatively
simple, some space is devoted to these routines here as they are the only ones
that are modified for use in the inductive transfer system Deft introduced in
Chapter 4.

The Score and Bound routines do essentially the same thing. They
construct a contingency table for the rule r based on the training data E and
then pass both the rule and the table to the rule evaluation function f which is
discussed further below. The value returned by f is an estimate of the quality
of the rule r in the case of Score, and an upper bound on the quality of
any refinement of r when returned by Bound. The upper bound is obtained
by applying the evaluation function to a modified version of the contingency
table in which all of the misclassified negative examples (as counted by n−+)
are assumed to be corrected classified and hence added to n−− .

The upper bound used here can be justified as follows. Since any refinement
of the rule r is necessarily a specialisation it cannot cover any more examples
than those covered by r. That is, the counts in the top row of the contingency
table for r can only decrease, with the difference being added to the corre-
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sponding term in the bottom row. The best refinement of r will therefore be
one that decreases the misclassification counts n−+ without covering any fewer
correctly classified examples. Such a refinement will have the best possible
evaluation score according to f provided that f does not penalise a reduction
in the false positive rate which does not affect the true positive rate. A rule
with a bound that is not an improvement on the best score seen by a search
is pruned since such a rule cannot be refined to produce a higher scoring rule.

Rules can only be considered for inclusion in a theory if they are the best
ones seen during a search and also meet some user-defined “acceptability” con-
ditions. These are implemented through the Accept procedure which is called
in line 10 of the FindRule algorithm. In Aleph, this procedure is used to
ensure that the returned rules do not cover too many negative examples. Ex-
actly how many negative examples can be covered is controlled by a minacc
setting. When set to the value K ∈ [0, 1], the Accept procedure will only
allow a rule r into a theory if its “rule accuracy” (also known as precision),

n++

n+++n+−
, is greater than or equal to K.

The process used by the FindRule procedure within Aleph and other
covering algorithms for rule learning can be viewed abstractly as a way of
systematically generating rules from a predefined space and then testing them
against the training data according to some measure of quality. Whichever
rule returns the highest score within the space searched is the one selected
and added to the theory. As the measure of rule quality is determined from a
(possibly small) sample of classified instances this estimated quality can differ
from the same measure applied to the entire instance space. In this sense, rule
learning algorithms can be seen as optimising an estimate of true rule quality
over a space of candidate rules.

2.3.3. Rule Finding as Estimate Optimisation. Finding rules that
explain a set of training examples is often framed as a particular type of search
problem called a optimisation problem in which a function must be maximised
over a set of candidates. Formally, an optimisation problem consists of a
discrete candidate space C and an objective function f : C → R. The solution
set Sf to such a problem is the set of all candidates that maximise the objective
function. If f ∗ = maxc∈C f(c) is the optimal value of the objective function
then

Sf = {c ∈ C : f(c) = f ∗}.

Any element of the solution set is known as a solution. In rule learning the
candidate space is the set of rules defined by the language used for the learning
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task and the objective function is the evaluation function used to score the
rules.

Traditional optimisation problems, such as finding shortest paths and job
scheduling, use an objective function which is the true measure of the quality
of a solution. The length of an optimal path or schedule is exactly the number
of steps or time that solution will require. There are also situations when the
values given to candidates are only an estimate of the actual values required.
Imagine having to choose the person with the highest reach from a group at
a dinner party in order to fetch something. If everyone is sitting down and
the choice is made based on sitting height then a person with long legs may
be overlooked in favour of someone with a long torso. This may lead to a
sub-optimal choice for someone to fetch the wine from the top shelf. This is
analogous to the situation in rule learning: the evaluation function is only an
estimate of the actual value of a rule based on the available training data. The
value assigned to a rule on a training set may differ greatly from its value on
a large test set.

An optimisation problem that uses an estimated objective function, f̄ (e.g.
a person’s sitting height or training set evaluation) in place of the actual eval-
uation, f (the person’s reach or test set evaluation), to score candidates con-
stitutes an estimate optimisation problem. Provided the solution set Sf̄ for
the estimate optimisation problem has some candidates in common with the
solution set Sf for the actual optimisation then it is possible that an optimi-
sation using the estimate will return an actual solution. However, if there are
many candidates in Sf̄ that are not in Sf there is a good chance that an esti-
mated solution will not be an actual solution. It is also worth noting that an
algorithm using a poor f̄ as an evaluation estimate may still select candidates
with good f values if its search of the candidate space is incomplete. This is
because candidates with optimal f̄ values may not be tested and those with
sub-optimal f̄ values may be in Sf .

A visualisation of a rule search as an estimate optimisation is shown in
Figure 2.3. Ideally, a search of the rule space would return a rule from the set
labelled “Actual Best”. This set contains the rules that maximise the evaluation
function f as it is evaluated over some large and representative test set of
examples. The set labelled “Estimated Best” corresponds to the solution set
for fE, the evaluation function computed with respect to the training examples
E. A typical algorithm for finding good rules within the space would repeatedly
refine a starting rule (as shown by the arrows) evaluating the resulting rules
using fE.

Agreement between an evaluation function and its estimate depends on
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Figure 2.2. Rule search as an estimate optimisation problem.

whether the training examples used to estimate the evaluation function is rep-
resentative of the entire instance space. When a large number of examples of
the target concept are made available to the learner, the estimated classifica-
tion probabilities for candidate rules will be close to their true values. When
training data is scarce these estimates may be poor and the resulting scores
given to rules by f̄ can rank rules very differently to f . The effect of limited
data on rule evaluation is taken up again in Section 2.4 below.

2.3.4. Language, Search and Evaluation Bias. The bias of a learning
algorithm is any extra-evidential decision-making procedure that determines
which hypothesis is induced by a learner from a given set of training examples.
Formally, Mitchell [1997, §2.7.3] defines the bias of a learning algorithm to be
“the set of additional assumptions ... sufficient to justify its inductive inferences
as deductive inferences”. The framing of rule search as an estimate optimisation
problem provides a way of decomposing the additional assumptions required for
the SeqCover algorithm into three factors: language, search and evaluation
bias as shown in Figure 2.3. The language bias is defined by the choice of
candidate space while the evaluation bias corresponds to a selection of the
objective function f . The search bias covers all the other aspects that are
used to order and dynamically prune an exploration of the candidate space.
This categorisation is similar to the one given by Fürnkranz [1999] in his review
of separate-and-conquer rule learning algorithms with a couple of exceptions.
Firstly, what he denotes as “search bias” is a combination of what is here called
evaluation bias (which he calls “search heuristics”) and search bias. Evaluation
bias is considered a separate type of bias here as it is central to much of the
theory developed in the next chapter. Secondly, Fürnkranz identifies “over-
fitting avoidance bias” as a separate category of bias that is primarily used to
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Figure 2.3. Rule learning as a search controlled by language,
search and evaluation biases.

manage noisy data. While this is an important type of bias it is not directly
relevant to the work here. Nédellec et al. [1996] also offer a categorisation of
bias similar to Fürnkranz, organising biases into one of “language”, “search”
and “validation”. What is termed evaluation bias here would be a type of
search bias that they call an “intermediate validation criteria”. Once again,
evaluation bias is put into its own category here due to its importance in this
work.

Inductive logic programming has been a popular formalism for rule learning
due to the amount of control over a learner’s language bias that is available
through the specification of the background predicates for a learning task.
Most ILP systems, including Aleph, allow background predicates to be de-
fined using arbitrary Prolog programs. This expressiveness provides a great
deal of flexibility when it comes to defining a space of candidate rules. Com-
plex predicates implementing ranges, disjuncts or other transformations can be
defined as logic programs built from the predicates originally available with the
training data. Predicates implementing more sophisticated techniques such as
predicate invention [Khan et al., 1998] and numerical regression [Srinivasan
and Camacho, 1996, 1999] are also possible. Further structure can be given
to the set of rule candidates through the imposition of restrictions on the way
literals can be joined. Mode and type restrictions on predicates [Shapiro, 1983]
and restrictions on variable depth and clause length are used by many ILP sys-
tems including Progol [Muggleton, 1995] to prohibit the generation of overly
complex or nonsensical clauses. Many other types of constraints for allowable
clauses are also available in Aleph including task specific pruning rules and
integrity constraints which further constrain the rules allowed in induced the-
ories. Explicitly defining rule spaces through rule models [Morik, 1993, Kietz
and Wrobel, 1992], generative grammars [Cohen, 1994], and clause set or tem-
plates [Dehaspe and De Raedt, 1996, Nédellec et al., 1996] has also proved



2.3. SEQUENTIAL COVERING ALGORITHMS 31

useful for some problems. While these are all powerful techniques they do
require their users to have well-defined ideas regarding the form of the clauses
expected to be in the target theories.

The search bias of a learning algorithm is determined by the search strategy
used to explore the candidate space defined by the language bias. These strate-
gies fall into three main camps: the top-down or general-to-specific search, the
bottom-up or specific-to-general search, and stochastic search techniques. The
first of these categories is exemplified by Foil [Quinlan, 1990], the second
by Marvin [Sammut, 1981] (and later Golem [Muggleton and Feng, 1990])
and the third by the probabilistic search methods explored in [Srinivasan,
1999]. Top-down search strategies tend to induce rules with fewer literals than
bottom-up systems as the termination condition for the rule search is met
well before the entire space is explored. For efficiency reasons, many imple-
mentations of rule search use incomplete search techniques such as greedy or
beam search. In these cases the order in which rules are added to or removed
from the beam will affect the induced theory. As well as the coarse control
provided by the selection of a search direction and parameters such as beam
size, finer-grained control can be obtained through the use of relational clichés
[Silverstein and Pazzani, 1991] and rule deferral [Cohen, 1993] to determine
the order in which rules are generated.

2.3.5. Rule Evaluation. According to Fürnkranz [1999, §4.3] the “most
influential bias” is the “search heuristic” (here called evaluation bias) as it
“estimates the quality of rules found in the search space and ideally guides
the search algorithms into the right regions of the hypothesis space”. There
is no single relationship that best defines this quality in terms of how many
positive and negative examples a rule should cover so that the separate and
conquer algorithm returns the best possible set of rules. Simply returning
a rule that covers no negative examples and the most positives may not be
appropriate for all target theories, especially when it is likely that a perfectly
discriminating theory cannot be expressed with rules from the candidate set.
When predicting the presence of a disease, for example, it may be crucial
that future instances of the disease be correctly predicted and occasionally
falsely predicting disease when it is not present is acceptable. In this case
rules that cover many positive examples and perhaps a few negatives would
be more valuable than rules that cover fewer negative examples at the expense
of covering fewer positive examples. The situation is reversed when predicting
reading recommendations. Predicting someone will like a book when, actually,
they will not is far worse than making fewer positive recommendations. For
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these reasons the specification of what constitutes a good quality rule is a
type of bias as the most appropriate rule evaluation function depends on the
learning task7. Some space is dedicated to examining evaluation bias here as
it is this aspect of a rule learning algorithms that will be modified by the
inductive transfer method described in the next chapter.

For the purposes of this thesis there are two main types of rule evalua-
tion functions: purity-based functions and description-based functions.8 An
evaluation function is called purity-based if it can be written as a function of
the values in rule contingency tables. That is, a purity-based assessment of a
rule only depends on the number of correctly and incorrectly classified exam-
ples rather than any properties of specific examples or properties of the rule
itself. Put formally, the value of purity-based evaluation function fE(r) for a
given rule r and example set E can be written as a function gp of the rule’s
contingency table on E

fE(r) = gp(n)

where n = nE(r) is the contingency table for r. Evaluation functions of this
type have been the subject of some analysis recently [Vilalta and Oblinger,
2000, Fürnkranz and Flach, 2003]. The conclusions drawn from that research
have shown that, for the purposes of ranking rules by their quality, there are
essentially two prototypical evaluation functions: precision and cost-weighted
difference. The precision of a rule r is the proportion of positive examples in
a training set that were correctly classified as positive by r. That is,

prec(r) =
n++

n++ + n+−

.

As the name suggests, the cost-weighted difference function has a parameter
called cost c ∈ [0, 1] that trades off the relative importance of covering positive
examples and covering negative examples. That is,

cwdc(r) = cn++ − (1− c)n+− .

The default evaluation function used by Aleph is called coverage and is defined
to be cov(r) = n++ − n+− . This evaluation function ranks rules the same way
as cwd when c = 1

2
. Setting the cost in this way means incorrectly classifying

a positive or negative example incurs the same penalty.
7This asymmetry in the importance of errors is sometimes handled by assigning costs to
each type of misclassification [Elkan, 2001]. When a learner attempts to minimise these
costs during learning they act as an evaluation bias.
8Fürnkranz [1999] makes a similar distinction with the categories “basic heuristics” and
“complexity estimates” roughly corresponding to the two here.
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Description-based evaluation functions allow the assessment of rule quality
to depend on rule features such as the number or type of conditions in a rule.
This allows the evaluation function to explicitly encode a preference for shorter
rules or rules with particular conditions or structure. Formally, if gd is some
function that ascribes some measure of complexity to rules then a description-
based evaluation function has the form

fE(r) = F (gp(n), gd(r))

where r, E, gp and n are as described above. The function F combines the
purity and complexity of a rule so that one may be traded off against the other.
As an example, the default evaluation function used by the ILP system Pro-
gol [Muggleton, 1995] is a description-based evaluation called compression.
This is defined as comp(r) = cov(r)− len(r) where cov(r) is the purity-based
coverage of r just discussed and len(r) is the number of literals in r. This
function trades off the coverage of a rule and its complexity, preferring shorter
and possibly less accurate rules over longer but more accurate ones. Here,
gp = cov, gd = len and F (a, b) = a− b. This and other description-based eval-
uation functions are generally motivated by the theory of minimum description
length (MDL) [Rissanen, 1978, Pfahringer, 1995] or minimum message length
(MML) [Wallace and Georgeff, 1983] to decide how to trade-off complexity
and accuracy.9 In more complex evaluation functions, the exact nature of
this trade-off is controlled by a human expert through the specification of the
encoding to be used for defining a rule’s description length.

Defining a description-based evaluation function can be difficult in general
and requires that the expert make many decisions regarding the relative im-
portance of rule purity, the presence of certain literals in the rule, rule length
and so on. In Chapter 3 a method is given for converting an arbitrary purity-
based function gp into a description-based function using information gleaned
from support tasks related to the primary one being solved. This means the
many decisions regarding the relative importance of a rule’s description can be
replaced by a choice of support task. Because existing description-based eval-
uation functions are also functions of purity-based functions these can also be
modified using the same technique, making it a broadly applicable way to mod-
ify evaluation bias. However, at least three types of evaluation heuristic do not
fit into the above categories of purity- and description-based evaluation. These
are gain heuristics, proof-complexity heuristics and process-oriented heuristics.
They are briefly discussed below in order to delimit the scope of this thesis.
9“A little inaccuracy sometimes saves tons of explanation” Saki [1968].
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Gain heuristics such as information gain [Quinlan, 1990] measure the qual-
ity of a rule with respect to the rule it was refined from, meaning rule quality is
not strictly a function of its purity and complexity. Process-oriented heuristics
[Domingos, 1998] use information about the entire history of a rule search to
reduce the probability of choosing a candidate that might overfit the training
data. This is done by quantifying the probability that the best rule seen during
a search fits the data purely by chance and factoring it into the evaluation func-
tion. Because of this dependence on search history, process-oriented heuristics
are not purity- or description-based in the sense defined here. Heuristics that
use proof-complexity [Muggleton et al., 1992] as a quality measure take into
account the number of resolution steps it takes to determine whether or not a
rule covers an example. An examination of whether the present work can be
extended to other types of evaluation heuristic is left for future research.

Purity-based and description-based evaluation functions both depend on
the contingency table of a rule in order to make their assessments. The rela-
tionship between the actual and estimated quality of a rule therefore depends
on the reliability of the values in the contingency tables. The reliability of
these values when data is limited is the topic of the next section.

2.4. Learning from Limited Data

Obtaining correctly classified examples for a concept learning problem is a
crucial but sometimes costly task, especially if experts are required to classify
the examples. In some chemical domains for example, datasets with a limited
number of training examples are “not unusual” since “data are often sparse, and
bioassays expensive” [Srinivasan and King, 1999]. In this section the difficulties
of learning from limited training examples are examined and a brief review of
approaches to this problem is presented. These approaches invariably involve
some selection of strong and correct biases. As stated in the previous section
these biases for rule learning algorithms fall into three categories: language,
search and evaluation. Much work has been done on mechanisms to express
these biases, especially language biases, in rule learning. However these can
be difficult for a domain expert to specify without some knowledge of the
workings of the learning algorithm. Systems that perform inductive transfer
allow a bias to be expressed by a domain expert by supplying the system with
examples of related tasks. It is then the job of the inductive transfer system
to find a good bias for the limited data task knowing that the domain expert
believes a bias for the related tasks should also be suitable for the main task.
Successful inductive transfer means fewer examples need to be collected and
classified for new tasks to achieve good inductive performance. Since the costs
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for collecting and classifying the related task examples are not incurred again
when they are reused, inductive transfer can be seen as a way of amortising
the cost of learning over a number of different tasks.

2.4.1. How Little is Not Enough? In an idealised machine learning
problem a learner is expected to induce a hypothesis that is consistent with
the training examples, that is, one which classifies them as would the target
concept. Each training example can be thought of as a constraint on the set
of consistent hypotheses. The subset of the hypothesis space consistent with
the training data is known as the version space [Mitchell, 1977]. The main
problem when learning from small amounts of data is that the version space is
under-constrained and can therefore contain very many candidate hypotheses.
In this situation a learner must rely heavily on its inductive bias to decide
between them [Mitchell, 1980].

As mentioned in Section 2.1.3 above, the belief that the estimate of the mis-
classification error from the training set is a good approximation of the true
error of a hypothesis is known as the inductive learning hypothesis. Central
to this hypothesis is the assumption that “a sufficiently large set of training
examples” is available to the learner. Research in computational learning the-
ory has quantified the term “sufficiently large” for broad classes of learning
problems [Kearns and Vazirani, 1994]. Such results are framed within the
PAC (Probably Approximately Correct) setting [Valiant, 1984] and provide
lower bounds on the minimum number of examples required to ensure that a
hypothesis with low training set error has, with high probability, a low true er-
ror. For rule learning, Džeroski et al. [1992] and later Cohen [1995b] provided
PAC lower bounds on the number of examples required to learn theories using
representations that are restricted subsets of full Horn clause logic.

While the PAC bounds provide a theoretical answer to the question of
“how few is limited?” the notion is intended more broadly and practically here
with “limited data” referring to any task for which learning with more data
would lead to significantly better theories. The imprecision of this definition
is intentional and is similar in spirit to the one Good [1965] used to talk of
estimation from “effectively small samples”. By this he meant “the sample is
small for the purpose of estimating some probability, though the sample might
be absolutely large”. Similarly, “limited data” will be taken to mean that
theories of higher quality can be induced from potentially larger datasets even
if the number of available training examples is absolutely large. This means
that a task is deemed to have limited training examples relative to a particular
learning algorithm and its biases. Techniques for learning from limited data all
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attempt to modify a learner’s bias in some way in order to reduce the number
of examples required to induce a good hypothesis.

2.4.2. Contingency Classes. A simple counting argument can be used
to show why learning rules from a limited amount of training data is inherently
difficult without a good bias. Suppose a training set E for a learning task has
|E+| positive and |E−| negative examples. A contingency table n for this
example set must satisfy

|E+| = n++ + n−+

|E−| = n+− + n−−

regardless of which rule is being tested on the examples. As each entry in a
contingency table must be a non-negative integer there are only K = (|E+|+
1)(|E−| + 1) possible contingency tables for the given training set. When the
overall number of examples in a training set is low there will only be a small
number of unique contingency tables. For instance, in the case of five positive
and five negative examples there are only 36 unique contingency tables. When
the candidate space R has more than K rules there must necessarily be at least
one contingency table shared by two or more rules. A given set of training
examples E therefore partitions the rule space R into K contingency classes,
one for each possible contingency table n:

Cn(E) = {r ∈ R : nE(r) = n}.

Rules that have the same contingency table will, by definition, be assigned the
same quality assessment by any purity-based evaluation function fE. In fact,
many purity-based evaluation functions (such as precision) will map different
contingency classes, and all the rules within them, to the same evaluation
score.

The true evaluation scores, as assigned by f , vary over the rules within
each contingency class. In this case, the search and language biases of the
learning algorithm must be relied upon to determine which rules are to be
selected. Alternatively, description-based evaluation functions can also exert a
preference between rules within a contingency class. If, like the comp function,
the evaluation function penalises overly long rules, the shortest rules within a
class will be selected. If these biases select for rules with high true evaluation
score then the learner can be expected to return good theories.

Although the selection of a correct bias for a task is critical for ensuring
good theories are learnt when examples are limited, it is a potentially difficult
and time-consuming process. The remainder of this section looks at ways in
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which a domain expert can specify a bias at a high-level. By giving a learning
system extra information in the form of a task that is believed to have similar
bias requirements to the one that is to be solved, procedures for automatically
discovering such a bias can be used and the extracted bias transferred to the
limited data task.

2.4.3. Meta-Learning: Beyond Single Task Learning. Much of con-
cept learning research within machine learning has been focused on developing
efficient algorithms that can induce accurate theories from a single batch of
training data and characterising the classes of concepts for which such al-
gorithms exist. When training data is limited there is simply not enough
information available for a learner to be expected to induce high-quality the-
ories without strong hints in the form of inductive biases. The selection of
an appropriate bias is both crucial and necessary within a single task learning
framework. Careful selection is crucial because poor choices can make learning
difficult, if not impossible, and necessary since it has been shown that there is
a “conservation law for generalisation performance” [Schaffer, 1994, Wolpert,
1996]. That is, that there is no single learner or bias that will always return
the most accurate hypotheses across all possible learning tasks.10

The selection of a bias by an expert is made based on her experience with
various algorithms and their performance on a variety of tasks. To reduce
the amount of routine decision-making required of the expert, it would be
useful to automate part or all of this process. This calls for systems that are
able to modify or select their own biases and requires the study of concept
learning to move away from learning tasks in isolation. This realisation and
shift in research is currently over a decade old and systems that subscribe to
this approach and are able to “increase in efficiency through experience” do
so under the banner of “meta-learning” [Vilalta and Drissi, 2002, provide a
survey]. Several overviews of this now large field are provided in books [Thrun
and Pratt, 1997a], workshop proceedings [Caruana et al., 1995], journal special
issues [Giraud-Carrier et al., 2004] and literature reviews from doctoral theses
[Bensusan, 1999, Morin, 1999, Silver, 2000].

The focus in this thesis in on a particular type of meta-learning that
Vilalta and Drissi [2002] call “inductive transfer”. This term encompasses a
range of others used in the literature including “learning to learn” [Thrun and
Pratt, 1997b], “multitask learning” [Caruana, 1997, Silver and Mercer, 1998]
and “transfer of learning” [Bensusan, 1999]. Research into inductive transfer
10Even if the conservation law does not hold, as it has been argued by Rao et al. [1995], and
there is a general bias for learning it is of little comfort to the practitioner as its existence
is solidly in the realm of the theoretical.
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departs from traditional machine learning by assuming that the learner is sit-
uated in an environment of tasks that share bias requirements. Within these
environments the learner can drawn on information gathered from past or par-
allel learning experiences as well as examples for the main concept that is to
be learnt. If these other experiences are able to help with present and future
learning tasks then some learning about learning must have taken place. As
Thrun and Pratt [1997b] put it:

Given a family of tasks, training experience for each of these
tasks, and a family of performance measures (e.g., one for
each task), an algorithm is said to learn to learn if its perfor-
mance at each task improves with experience and with the
number of tasks.

They also argue that approaches to learning to learn “appear to be applicable
to any application that involves cheap data and expensive data. This includes
systems that must be trained by a customer (where data is often expensive),
and that can practice the learning task by itself while still at the factory
(where data is cheap)”. This is especially true of text-based domains in which
large corpora of easily categorised documents, such as newsgroups, can be used
to form biases when learning from similar, user-classified documents, such as
email [Oblinger et al., 2002].

2.4.4. Inductive Transfer. For the purposes of this thesis, an environ-
ment for inductive transfer consists of at least two learning tasks. When a
learner is required to solve one of these tasks it will be called the target task
and one or more of the remaining tasks in the environment will be used as sup-
port tasks. The aim of an inductive transfer system is to induce an accurate
or otherwise suitable classifier for the target task using the examples available
for the target and support tasks. These systems consist of one or more base-
level learning components (or base learners) and a component that is able to
modify the bias of the base learners (the meta learner).11 The base learning
components are often standard machine learning algorithms, or slight variants,
that are applied to single tasks to produce classifiers. When the system as a
whole is exposed to multiple tasks (either sequentially or in parallel) its meta
learner can record information concerning the tasks and the performance of its
base learners. This is used by the meta learner to combine, select or modify
11A noteworthy exception to this is found in the work of Jürgen Schmidhuber [Schmidhuber,
2004, 1997] in which the distinction is blurred between learning at the base-level and learning
at the meta-level.
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the base learning algorithms and their classifiers in order to improve the per-
formance of the entire system on future or target tasks. An inductive transfer
system is considered to have succeeded in performing inductive transfer if the
modifications made to the base learner’s bias result in better classifiers than if
the base learner was used without any modification.

One of the simplest forms of inductive transfer is direct transfer “in which
a learned classifier is simply copied from one [task] to another” [Cohen and
Kudenko, 1997]. In this case, a base learner would be applied to the support
task examples and the resulting classifier used as the solution to the target
task. In the case where the support and target are for concepts with a large
overlap in training examples this can be a successful approach, especially if
there are many examples available for the support task. Direct transfer lies on
the extreme of what is generally meant by inductive transfer since no learning
is actually performed on the target task. Therefore, any information available
in its examples is not used. More sophisticated approaches to transfer make
use of both the support and target examples through a variety of meta learning
and base learning algorithms as illustrated in the following examples.

The Multi-Task Learning (MTL) system described in [Caruana, 1997] uses
an Artificial Neural Network (ANN) as the base learner. The MTL system
learns concepts for the target task and support task in parallel using a shared
network architecture. The support task examples influence the learning pro-
cess since the back-propagation algorithm used by the base learner must find
suitable network weights that are shared between the target and support con-
cepts. Adaptations of this idea for sequential rather than parallel multi-task
learning have been explored in the consolidation system of Silver and Mercer
[1995] and the Task Rehearsal Method (TRM) of Silver [2000].

In their Task Clustering (TC) system Thrun and O’Sullivan [1996] use a
nearest-neighbour clustering algorithm with an adjustable distance metric as
a base learner. The meta learner in this case simultaneously optimises the
weights that parameterise the distance metric using examples from a collec-
tion of tasks. Tasks with similar optimal weights are clustered together and
deemed to be similar. When a novel target task is encountered the TC system
determines the task cluster most similar to the target task and then uses that
cluster’s optimal distance metric for classifying future target task instances.

2.5. Inductive Transfer in Rule Learning

Having discussed inductive transfer in general, this section will now focus
on how these approaches have been used in relational rule learning and ILP
systems. Two aspects of relational learning make it a prime candidate for bias
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learning techniques such as these. The first is the size of the search spaces
encountered. The combinatorial nature of variable bindings mean the number
of clauses can grow very rapidly as the size of clauses under consideration
increases. As discussed in Section 2.4, this increases the minimum expected
number of examples required for good generalisation. Secondly, when the
task is individual-centred [Flach and Lachiche, 1999, Lavrač and Flach, 2001]
background knowledge needs to be added for each example used. When the
examples are graphs, as in molecular domains [Srinivasan et al., 1997, 1994] or
finite element models [Dolsak and Muggleton, 1992], the amount of information
needed to specify each example can be large and often expensive to obtain.
For these two reasons it is more likely that relational learning tasks will have
insufficient data when compared to similar, propositional tasks.

While a great deal of research has been carried out on biases for single
task learning in ILP there are only a handful of systems that attempt to
transfer these biases between tasks. The remainder of this section provides
a chronological review of all six of these systems and an analysis in terms of
the biases they infer. Wherever possible a system’s review will include brief
descriptions of any empirical work that assesses its ability to transfer bias. This
is to create a picture of the type of environments current inductive transfer
approaches to relational learning have been tested upon.

2.5.1. Clint-CIA (1989). The interactive concept learning system,
Clint-CIA [De Raedt and Bruynooghe, 1989, De Raedt and Bruynhooghe,
1992] is one of the earliest first-order concept learning systems to transfer
inductive experience between two or more learning tasks.

The base learner used by Clint-CIA is Clint [DeRaedt and Bruynooghe,
1988], an interactive learner developed to work as a learning apprentice. In
this paradigm, the learning system is given a set of positive and negative
examples as training data but can also repeatedly query a user during its
specific-to-general search for clauses. The search is constrained by a sequence
of concept description languages L1, . . . , Ln that define progressively weaker
restrictions on allowable clauses. For example, L1 might only allow clauses
where all variables in the body of a clause must also appear in the head, L2

might loosen this to allow one variable not appearing in the head, and so on.
Starting with the first concept description language and an uncovered positive
example, Clint constructs the most specific clause within L1 that covers the
example. If this starting clause covers any negative examples Clint shifts
its language bias by moving to the next concept description language and
tries again. Once a consistent starting clause is found it is generalised by
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systematically dropping single predicates and querying the user about these
changes.12 This process of requesting examples, shifting bias, generalising and
asking questions continues until the clause is generalised as much as possible
without covering negative examples.

The Constructive Induction by Analogy (CIA) component of Clint-CIA
aims to reduce the number of search steps and queries to the user by allowing
the system to improve its generalisation ability through analogies with previ-
ously learnt concepts. This transfer mechanism is based on the assumption
that “concept-descriptions are often very similar in the sense that they are
instantiations of the same second order schema” [De Raedt and Bruynhooghe,
1992, §5.2]. A second order schema is a generalisation of a first order clause in
which predicate names are replaced with predicate variables : terms that can
be instantiated using predicate symbols. For example, the predicate variables
P, Q and R in the second order schema P(X) :- R(X,Y), Q(Y) might be substi-
tuted with the predicate symbols like, author, and french to create the clause
like(X) :- author(X,Y), french(Y) in the book preferences domain.

Second order schemata are created from first order clauses using the inverse
of instantiation. At the end of its search, a clause found by Clint is generalised
into a schema by replacing all of its predicate symbols with predicate variables.
Clint-CIA makes use of these second order schemata in two ways. The first
is by proposing concepts that are instances of a schema whenever one matches
part of a newly learnt concept. These proposed concepts are shown to the user
who can give them names if they are deemed to be meaningful. For example,
suppose the following definition for grandson has just been learnt:

grandson(G,C) :- parent(G,X1), parent(X2,C), equal(X1,X2), male(C).

The schema P(X,Y) :- R(X,Y), Q(Y) matches this clause and so the user is
asked if

P(X,Y) :- parent(X,Y), male(Y)

is a useful concept. If the user recognizes this as the “son” relation, it can be
named as such and stored in the knowledge base for later use. The addition
of these extra predicates modifies the language bias used by Clint and can
make future tasks easier to learn.

The second way the second order schemata are used is by modifying the
search actions available to Clint allowing it to guess at the target concept.
When a starting clause is found, all the second order schemata are tested
against it and if part of the starting clause matches a schema, the match is
12The types of queries Clint can ask of the user are: requests for a new training example,
a classification label for an instance proposed by Clint, and whether a predicate in a
justification for an example is irrelevant or not.
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proposed to the user as a candidate for the target concept. This means target
concepts similar to past ones can be found quickly by analogy instead of the
predicate-by-predicate generalisation of the starting clause. It is important to
note that both of these methods require the user to decide on the relevance
or validity of the concepts derived from second order schemata. This is quite
different to the majority of learning to learn approaches and their goal of
independent agents within an environment of tasks.

Experiments with Clint-CIA presented in [De Raedt and Bruynhooghe,
1992] show that its analogical approach to inductive transfer invents several
useful intermediary concepts and helps reduce the number of queries made to
the user. These results were shown to be the case in two distinct environments.
In the family environment training examples for 29 different kinship relation-
ships (including “grandparent”, “sibling”, “sister”, “daughter in law”, “nephew”
and “male cousin”) were presented to Clint-CIA in a sequence for learn-
ing with the concepts “parent”, “male”, “female” and “married” as background
knowledge. During this sequence, the CIA component helped “guess” 14 of
the 31 required clauses using the second schema method described above and
invented eight meaningful predicates using the first method. The remaining 17
clauses were found using the standard predicate-by-predicate generalisation.

Similar results were also obtained in a chess environment. Here, the con-
cepts to be learnt were the rules for the movement of chess pieces (Rook,
Bishop, Queen, Knight, King, and Pawn) on a board that could contain other
pieces of either colour in various arrangements. The background knowledge
given to Clint-CIA consisted of various piece and tile relationships such as
“on the same row”, “nothing in between”, “adjacent”, “vertical distance”, etc. In
this environment the CIA component created seven schemata and using these
was able to correctly guess 14 of the 21 clauses required to describe all the
piece movement concepts.

2.5.2. Mobal-MAT (1989). Like the Clint system, Mobal [Morik,
1993, Wrobel, 1994] fits into the “apprentice” category of learning systems,
working with a user to interactively and inductively create a knowledge base.13

The design principle that distinguishes the two systems is the focus in Mobal
on a balanced interaction between the system and its user. The aim is to avoid,
without preventing, unnecessary user inspection and interaction. Mobal ac-
complishes this through a uniform representation of facts, rules and other
13Mobal is derived from the earlier Blip system [Morik, 1989]. As the ideas in Mobal
encompass those in Blip only Mobal will be discussed here.



2.5. INDUCTIVE TRANSFER IN RULE LEARNING 43

information and the careful modularisation of the system’s learning tools so
that one can easily provide input to another.

From the perspective of inductive transfer, the tools in Mobal that are
most interesting are its Rule Discovery Tool (RDT), Concept Learning Tool
(CLT) and Model Acquisition Tool (MAT). The first two of these can be seen
as the base level learner which the latter helps through learning better biases.
The use of rule models is the mechanism that allows the MAT to modify the
constraint bias used by the base level learner.

Rule models are very similar to the second order schemata used by the
Clint-CIA system described above. Like schemata, rule models are second
order, making use of predicate variables that can be replaced by predicate sym-
bols from the background knowledge.14 The main difference between schemata
and rule models, however, is in their use. In Clint-CIA schemata are used
to invent new concepts or allow the Clint search procedure to “jump” to a
potential target clause. In contrast, rule models are used by the RDT to define
its entire search space - much like the concept description languages used by
Clint - which it then explores in a general-to-specific fashion.

The RDT, given a set of facts and a set of rule models, is expected to
return a set of clauses that are: a) each instantiations of one of the given rule
models and b) the most general generalisations of the given facts. It finds
this set of clauses by systematically generating and testing each of the possible
instantiations of the rule models against the facts. The order in which these are
tried is a consequence of a natural subsumption-like generality relationship15

over the rule models. The most general rule models are tried first, followed by
the next most general, and so on.

The rules returned by the RDT need only be deductively supported by the
facts and the existing knowledge base. This condition is weaker than the usual
concept learning requirement that the learnt rules and background knowledge
explain the training examples. Even if all the facts are for a particular target
concept the RDT can return rules that do not mention that concept. The task
of the CLT within Mobal is to call the RDT and guarantee that the rules it
returns characterise the target concept. This is achieved by the CLT partially
instantiating the rule models it gives to the RDT so each rule model contains
the target concept.
14One slight difference is that rule models place an extra restriction on substitutions: two
distinct predicate variables in a rule model cannot be instantiated to the same predicate
symbol.
15Rule model R1 is more general than R2 if for all predicate variable substitutions Σ there
exists a first order substitution of terms σ such that R1Σσ ⊆ R2Σ.
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The MAT within Mobal allows the system to construct new rule models
thereby shifting its constraint bias. When new rules are entered into its knowl-
edge base the MAT tests to see if they are instances of any of the available rule
models. If this is not the case, a new rule model is created by turning the pred-
icate symbols in the rule into predicate variables, much like the Clint-CIA
approach. The newly created model is then added to the rule model hierarchy
and used for future inductions by the RDT. An important observation about
this process is that since rules can only be created by RDT from the existing
rule models, any such rule will not give rise to new rule models. New rule
models can only be created from rules that are entered into the knowledge
base by a user.

Both Mobal and Clint-CIA require human intervention to when learning
or shifting their biases. This is what makes them “learning apprentice” systems
rather than traditional concept learners. We now turn our attention to systems
that can automatically detect and transfer biases between learning tasks.

2.5.3. Learning Relational Clichés (1993). Relational cliché is the
name given to “potentially useful combinations of predicates” that are “seman-
tically meaningful” [Silverstein and Pazzani, 1991] when searching a space of
rule candidates. The ILP system Focl [Pazzani and Kibler, 1992] performs a
greedy search, repeatedly adding a single literal with the highest information
gain at each step. This strategy can mistakenly overlook the addition of deter-
minate structural predicates as they provide no information gain. For example,
when building a rule for book preferences a predicate author(Book, Author)

would never be added to a rule since every book has an author. Therefore, re-
gardless of the training data, it will not help discriminate between positive and
negative examples. This is unfortunate since the pair of literals author(Book,

Author), nation(Author, uk) may give a very good split between a reader’s
likes and dislikes but will not be considered due to the greedy avoidance of the
author/2 predicate.

A relational cliché or RC consists of a pattern that describes how two
literals are to be connected and a set of restrictions that limit the ways in
which the pattern can be instantiated. The most general RC used in Focl
is the unconstrained cliché (UC) which allows any two predicates to bind to
one another in any manner. More specific RCs, such as the “partof” cliché or
“threshold comparator” cliché describe common logical tests. The latter, for
example, has the following pattern pred(...,A,...) & comp(A, Thresh) and
the restrictions that: argument A be a new variable, Thresh be a constant with
the same type as A and comp be a comparator predicate such as less-than or
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not-equal-to. Focl tries adding all possible instantiations of its available RCs
whenever it reaches a point in its search where no single additional literal will
improve the information gain of the rule being built.

In their paper “Learning Relational Clichés”, Silverstein and Pazzani [1993]
describe a fairly involved method of automatically discovering and organising
RCs. To begin with, only the unconstrained cliché can be used by Focl when
learning new concepts. Once a new concept is learnt, all pairs of conjunc-
tions within the new theory are examined to build a set of cliché instantiation
candidates or CICs. These are the conjunctions which have the maximum in-
formation gain over the training data but would not have been found during
a literal-by-literal search. Each CIC is then transformed into the RC with
the most specific pattern and restrictions that subsume it. Finally, the newly
created RCs are added to a cliché hierarchy which is ordered by subsumption
and pruned using a heuristic that trades off a RC’s coverage and efficiency on
the task just attempted.

It is worth noting here that the RCs constructed using this LRC process
do not actually extend the range of hypotheses Focl can induce beyond that
which is possible using only the unconstrained cliché. Any conjunction of lit-
erals that can be instantiated from a RC can also be instantiated from the UC.
The aim of building up and pruning the cliché hierarchy is to reap the benefits
of a search with look-ahead while minimising its computational overhead.

2.5.4. Concept Sharing in M-Focl (1993). The M-Focl system of
Datta and Kibler [1993] is based on “the idea of learning multiple concepts
during classification, and biasing reuse of conceptual structures”. Based on
Focl [Pazzani and Kibler, 1992], M-Focl’s method of inductive transfer is
summed up by the authors as the ability to “dynamically [change] its repre-
sentational bias by introducing new terms that have been found to be useful
in the past”. The new terms are created by inspecting the rules induced for a
secondary task and are added as extra background knowledge before inducing
a classifier on the primary task. This “concept sharing” extends the learner’s
background knowledge so that rules that would have been previously excluded
by the language bias or overlooked by Focl’s greedy, general-to-specific search
can be considered for use in the primary task.

Three modes for constructing new predicates from rules induced for a sec-
ondary task are presented and tested with M-Focl: CNR (concept rules),
CLR (clause rules) and CJR (conjunct rules). These differ in which struc-
tures within the learnt secondary concept are turned into new predicates for
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learning on the primary task. In the CNR mode, M-Focl transfers the en-
tire learnt secondary concept as a single new predicate whereas in CLR and
CJR modes M-Focl creates, respectively, new predicates for each clause or
each two-predicate conjunct that appears in two or more clauses. The imple-
mentation of the concept sharing methods are better understood through the
following example.

Returning to the book preferences scenario discussed earlier, suppose this
theory was induced for books a reader might like:
like(B) :- nation(B, aus), genre(B, scifi), year(B, 90s).
like(B) :- nation(B, aus), genre(B, horror), year(B, 90s).
like(B) :- nation(B, uk), genre(B, scifi).

In its CNR mode, M-Focl would simply add a renamed version of the like/1

predicate, defined using the same clauses, to the background knowledge. Fu-
ture inductions would be able to introduce this new predicate into rules. To
see how this might make learning easier, suppose a second reader liked exactly
the same type of books as the first with the extra proviso that they be short.
This second reader’s book preferences could then be represented using a single
clause:

like(B) :- cnr(B), size(B, short)

where cnr is the renamed version of the first reader’s like/1 predicate.
When M-Focl is in CLR mode, each of the above clauses defining the

like/1 predicate would be added to the background knowledge with unique
names such as clr1, clr2 and clr3. With these extra predicates in the back-
ground knowledge, the rule like(B) :- clr2(B), size(B, short) would cap-
ture a preference for short Australian horror novels written in the 1990s.

The conjunct rule mode, CJR, enables M-Focl to reuse even smaller parts
of previously learnt concepts. Whenever a pair of predicates appears in at least
two rules, a new predicate symbol is invented and defined using the conjunct.
In the example above there is only one such repeated conjunct, nation(B,

aus), year(B, 90s), which appears in the first two of the example rules above.
Only repeated conjuncts are named and reused in order to keep the number
of invented predicates manageable.

M-Focl and its various transfer modes were empirically tested on two do-
mains: chess piece movements and poker hands. The chess domain consists
of four types of learning tasks, each requiring the learner to induce rules de-
scribing the movement of a single chess piece on an empty chessboard. The
chess pieces considered are the Knight, Rook, Bishop and Queen. Tasks in the
poker hand domain present the learners with examples in the form of a hand
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consisting of five cards, each with a suit (hearts, clubs, etc) and a rank (ace,
2, 3, etc). The five target concepts in this domain correspond the following
special hands in poker: pair, three of a kind, four of a kind, two pair and full
house.

The authors were concerned with how the CNR, CLR and CJR methods
affected the generalisation accuracy, concept size and search complexity when
compared to Focl on the same tasks. A variety of training set sizes were
tested in both domains, and in the chess domain attribute noise was added to
test M-Focl’s robustness to training set errors. In general, the results showed
that, when training data is limited, concept sharing can increase generalisation
accuracy and reduce the induced concept size, though often at the expense of
increasing the search complexity. No single transfer method, however, consis-
tently outperformed any other. On the noise-free chess domain transferring
whole concepts (CNR) or clauses (CLR) was more successful in improving ac-
curacy and decreasing concept size than transferring conjuncts (CJR). When
noise was added the CLR and CJR approaches were better than CNR which
did not improve on the accuracy of the base learner Focl. On the poker
domain, CNR had a lower accuracy than Focl on average while the CLR
and CJR methods dramatically reduced learnt concept size while improving
accuracy.

2.5.5. Repeat Learning in Progol (1998). A similar but more so-
phisticated type of representational inductive transfer is the Repeat Learning
approach proposed by Khan et al. [1998]. This framework assumes that if a
learner’s hypothesis language is less expressive than that needed to succinctly
describe the target concepts presented to it, the learner should be able to
shift representation languages by inventing predicates. The authors implement
such a predicate inventing learner using the constraint solving mechanism of
Progol 4.4. This implementation will be referred to as RL-Progol in the
remainder of this thesis.

Constraint solving is a type of “lazy-evaluation” [Srinivasan and Camacho,
1996] in which specified predicates collect values substituted into their input
arguments during training. When such a predicate is used in a rule during
testing and is required to give a value for their output arguments, all the
collected input values are passed to its definition for processing. This technique
extends the type of background predicates that can be used in rules, allowing
predicates that compute the maximum value or perform linear regression on
the set of input constants.
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RL-Progol uses constraint solving to invent predicates. This is done
by introducing a “lazy” literal invent(P, X) into a bottom clause wherever its
mode declaration will allow it. This is defined in such a way that whenever
a clause containing such a literal is evaluated against a training example, all
the substitutions for the input variable X such that the clause covers that
example are collected and recorded to a Prolog database. Once this is done
for all the examples, the constants in the database are saved as a model for
an invented predicate symi. During testing, the literal invent(symi, X) is
interpreted as symi(X) with the model saved for it during the training phase.
The symi predicates invented during a support task run are saved along with
their models and added as extra background knowledge in subsequent learning
tasks, expanding the representation language of the learner.

The predicates invented and transfered by RL-Progol aid learning from
limited data by reducing the number of rules required to express a concept.
This can help avoid the “small disjunct” problem [Holte et al., 1989] where rules
covering only a small portion of the instance space can be under-represented in
a training sample. Taking the book preferences domain as an example again,
consider a task with a target concept “the reader likes a book if it is Australian
romance, science-fiction or horror”. A training set for this task might have the
following positive examples and associated background information:
like(a). nation(a,aus). genre(a,scifi). year(a,90s). size(a,short).
like(b). nation(b,aus). genre(b,romance). year(b,90s). size(b,long).
like(c). nation(c,aus). genre(c,horror). year(c,80s). size(c,long).

When evaluating the rule like(B) :- genre(B, G), invent(P, G) the variable
G will be bound to the constants scifi, romance and horror when it is tested
against the first, second and third example respectively. These constants are
recorded by the lazy invent/2 predicate and used to create a new predicate
p1/1 with model {p1(scifi), p1(romance), p1(horror)}. When added as extra
background knowledge for some new learning task, this predicate allows the
target concept
like(B) :- size(B,short), genre(B,scifi).
like(B) :- size(B,short), genre(B,romance).
like(B) :- size(B,short), genre(B,horror).

to be expressed as a single rule: like(B) :- size(B,short), genre(B,G), p1(G).
Even if the training set for this new task is small and only mentions short ro-
mance and science-fiction books, the predicate p1/1 enables an inductive leap
to be made that includes short horror books. Whether this new inductive leap
is valid or not depends on the relatedness of the two learning tasks.
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In [Khan et al., 1998], the Repeat Learning approach to inductive transfer
is empirically tested on a chess movement domain similar to the one used for
M-Focl but restricted to Knight and King movement tasks only. These same
tasks are used to compare RL-Progol and Deft in experiments in Chapter 5
and so are only briefly discussed here. The King and Knight pieces both have
an eight-way symmetry in their movement requiring eight separate rules to
describe in terms of rank and file differences on the chess board. In addition,
the differences used only take on values from -2, -1, 0, 1 or 2 (e.g., the King
can move one rank forward and change its file by -1, 0 or 1). RL-Progol
invents predicates that express this disjunction allowing the number of rules
required to express the pieces’ movement to three for the King and five for the
Knight. This in turn improves the generalisation accuracy on small datasets
when compared to learning without the new predicates.

2.5.6. xFoil-Cluse (1999). In her Ph.D. thesis [Morin, 1999] and con-
ference paper [Morin and Matwin, 2000] Morin introduces the Cluse sys-
tem for inductive transfer which builds on ideas from the Learning Relational
Clichés system described in Section 2.5.3 above. In contrast to the LRC ap-
proach, which derives clichés from conjunctions in previously learnt concepts,
Cluse uses a modification of relative least general generalisation (RLGG)
[Plotkin, 1971] called contextual least general generalisation (CLGG) to gen-
eralise simple relational structures, called “chains”16 that are shared between
training examples. The resulting conjunction of predicates are called domain
dependent clichés (DDCs). The DDCs are further generalised into domain in-
dependent clichés (DICs) by replacing all predicate symbols in a DDC with
predicate variables. Like the clichés in LRC, DDCs and DICs could be tested
and pruned based on their utility. As their names suggest, domain dependent
clichés are shared between tasks that share the same domain language (pred-
icate symbols, functions, constants) whereas domain independent clichés can
be shared between tasks with completely different language elements. Both
DDCs and DICs are used for the same reason relational clichés are used in
LRC: to avoid local minima when searching.

The base learner that performs the rule search in Morin’s work is called
xFoil. This Foil [Quinlan, 1990] variant performs roughly the same greedy,
information gain guided, general-to-specific search as its predecessor but can
also make use of clichés discovered by Cluse. Clichés are used whenever the
16Example chains are conjunctions of literals containing exactly one literal with arity two,
the rest of the chain being property predicates describing the terms within that literal.
These are similar to, but less general than, the “simple clauses” used in Lime [McCreath
and Sharma, 1998]



50 2. RULE LEARNING FROM LIMITED DATA

search reaches a point where adding a single predicate will not increase the
rule’s gain. If DDCs are available and applicable to the current domain each
one is tried by adding all its predicates to the rule and computing the gain for
the result. Also tried are rule extensions by conjunctions of predicates derived
from DICs. These are done by substituting predicate symbols for predicate
variables in any available DICs. If any of these rule refinements improve the
information gain of the rule the refinement with the largest gain is applied and
the search continues. This ability of clichés constructed by Cluse to modify
the search actions performed by xFoil is an instance of transferring search
bias.

The xFoil-Cluse approach was tested on and across two domains: a
blocks domain where the learner must classify scenes similar to those found
in Bongard problems [Bongard, 1970], and a mesh domain, first investigated
in [Dolsak and Muggleton, 1992] where the learner must classify edges found
in finite element models for computer aided design. The experiments on the
blocks domain were primarily to test the hypothesis that DDCs and DICs pro-
vide an appropriate look-ahead to xFoil myopic search. The domain involved
three tasks: two primary blocks tasks B1 and B2, and a secondary task B3
that is used to generate clichés. All three tasks had different target concepts
that described scenes that contain structures like “a circle above a rectangle
above a black right-angled or isosceles triangle”. Without clichés xFoil was
unable to learn any rules for the tasks B1 and B2. In both cases this was be-
cause the relational predicate above was needed to express the target concepts
but did not alone discriminate between positive and negative examples. DDCs
constructed from examples in the task B3 included the cliché above(X,Y),

circle(X), rectangle(Y) which, when added to a rule body, correctly split
some positive and negative examples and allowed the target concepts in B1
and B2 to be learnt. Similarly, the DIC derived from the above DDC also
allowed xFoil to consider the addition of the above predicate and therefore
find discriminating rules.

The mesh domain was not originally conceived of as an environment of
related learning tasks. Normally, the target relation, mesh(Edge, Num), to be
learned is one that specifies how many elements an edge on a model should be
divided into given the structure of the model around the edge.17 The model
structure is described through background predicates which specify whether a
given edge is “fixed”, “loaded”, “short”, “free” or whether two edges in a model
17This is an important design problem when testing physical properties of models. Too
many elements in a model means computation can be slow while too few result in poor
approximations.
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are “neighbours” or “opposite” in relation to one another. In order to test
Cluse, Morin derived from the mesh dataset a collection of six distinct target
concepts, mesh1, . . . ,mesh6, where each meshi treated examples satisfying
mesh(Edge,i) as part of the concept and all other examples as negative. DDCs
were derived from training data for each concept and used when learning each
of the other concepts. The 3-fold cross-validation accuracy of xFoil on the
resulting 36 trials showed that the use of DDCs between the mesh concepts
improved its average accuracy on 17 of the trials when compared to xFoil
without DDCs. Although generalisation accuracy increased by up to 16%
when DDCs were used, the cost incurred by using them in this domain was a
doubling of CPU time required for learning. Through the use of pruning DDCs
this penalty was reduced to a 20% increase in CPU time with comparable
accuracy improvements.

Experiments were also carried out on the mesh concepts to test the utility
of cross-domain transfer using DICs constructed using examples from the B3
blocks task. Once again, considerable improvements in accuracy were noted
on half the mesh tasks but these came at a cost: a 14-fold increase in search
time. This was mainly due to the large number of possible instantiations of
DICs in the mesh domain that had to be tried.

2.5.7. Summary. All of the systems reviewed above perform inductive
transfer for systems that use a covering strategy for rule learning. The main
differences between them are the mechanisms they use to extract a bias from
a support task and how it is then applied to the target task. Using the char-
acterisation of rule search as in Section 2.3.4 above, these systems can be
categorised in terms of how they modify the language, search, and evaluation
bias of the base-level learner. The summary in Table 2.2 lists all six inductive
transfer systems along with a short description of the mechanisms each uses
to modify one or more of those three biases.

Table 2.2. Inductive transfer systems for relational rule learn-
ing and the bias each modifies.

Language Search Evaluation
Clint-CIA Pred. Inv. 2nd-order Schema

Mobal-MAT Rule Models
Focl-LRC Clichés

XFoil-Cluse Clichés
Progol-RL Pred. Inv.

M-Focl Pred. Inv. (CNR) Macros (CLR/CJR)
Deft DFTs
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The first two systems in the table are considered mainly for the techniques
they employ to transfer bias as they are not able to learn concepts without
human interaction. Both Clint-CIA and Mobal-MAT make use of second-
order expressions - schema and rule models - to modify the way in which their
base learning algorithms search for rules and the space they search within. In
Mobal-MAT, rule models are used to constrain the rule language, restricting
candidate rules to those which are instantiations of the learner’s current set of
rule models. The MAT component of Mobal can construct new rule models
when expert provided rules are provided for one task and then use the new
models as constraints on subsequent tasks.

While the second-order schema used by Clint-CIA are similar to rule
models in that they derived from first-order rules, however, they are used to
modify both the search and languages biases. If part of a starting clause
constructed from an example matches a schema, it is immediately proposed to
the expert as a candidate to add to the hypothesis. This short-cuts the usual
literal-by-literal removal of conditions from the starting clause. During such
a search, Clint-CIA can also invent new concepts for use in later tasks by
proposing rules to the user for naming. When added to the learner’s knowledge
base these invented predicates modify its language bias, potentially making it
easier to express complex concepts with simpler rules.

Predicate invention is also used by two of the systems that can learn con-
cepts and modify language bias without human intervention. Both Progol-
RL and M-Focl automatically define new predicates during or after learning
on a secondary task. The repeat learning approach used by Progol-RL is
more a “data-driven” form of constructive induction (models for new predi-
cates are drawn from tests against examples) when compared to M-Focl’s
“hypothesis-driven” approach (predicates are defined using part or all of a
learnt concept).18 Except when it is in CNR mode (where whole concepts are
reused), the predicates invented by M-Focl do not change the semantics of
concepts that can be expressed by single rules. When part or whole rules are
used to define new predicates in M-Focl’s CJR and CLR their addition dur-
ing a search acts like a “macro”, adding several literals at a time. Constructing
macro-refinements for better search is also the motivation for the inductive
transfer approaches used by Focl-LRC and XFoil-Cluse systems. The
transfer of relational clichés performed by both these systems modifies the re-
finement bias of the hill-climbing search used by their base learners. This can
18Kramer [1995] discusses data- and hypothesis-driven approaches to constructive induction
and predicate invention for concept learning.
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help the searches avoid local minima or plateaus when attempting to maximise
the evaluation function.

The last row and column of Table 2.2 show where the system proposed
in this dissertation fits into the existing research. Unlike any of the other
systems, Deft only modifies the base-level learner’s evaluation bias. This is
done through the construction and transfer of a data-structure called a DFT
which captures statistical properties of rule performance on a support task.
The details of the theory and implementation are provided in the next two
chapters.

2.6. Conclusions

The aim of this chapter was to introduce and explore the topic of rule
learning from limited data and investigate some of the existing solutions that
have been proposed in the literature. The above discussion has focused on this
problem for a class of rule learning algorithms that use a “separate and conquer”
strategy for building sets of rules. An analysis of the core of this strategy -
repeatedly finding a single, high quality rule - emphasised the importance of
evaluation. As argued in Section 2.3.3, evaluation is central to the view of rule
search as an estimate optimisation problem. When data is limited, much of the
poor performance of rule learning systems can be accounted for by unreliable
estimates of rule quality. Of the three aspects of rule search described in
Section 2.3.4, the review of inductive transfer systems for rule learning in
Section 2.5 shows that only language and search have been explored as biases
that can be modified and transferred in rule learning. This observation points
to the possibility of inductive transfer systems for rule learning which modify
evaluation bias. The next two chapters introduce an inductive transfer system
called Deft which is able to modify a base learner’s evaluation bias. The aim
of the system is to use information obtained from tasks within an environment
to improve evaluation estimates on other tasks where training examples are
scarce.



“[The] task is to define the relation of confirmation ... between
evidence and hypothesis in terms of anything that ... may
reasonably be supposed to be at hand when a question of
inductive validity arises. This will include, amongst other
things, some knowledge of past predictions and their successes
and failures”

- Nelson Goodman [1983, pg. 85]



CHAPTER 3

Similarity-Based Transfer of Evaluation Bias

All the approaches to inductive transfer reviewed in the last chapter modify
either the learner’s search bias or representation bias. Unlike those approaches,
the transfer system described in this chapter is designed to modify the base
learner’s evaluation bias to improve estimates of rule quality. By testing rules
on examples from the support task a learner can gain “some knowledge of past
predictions and their successes and failures” and use this to better assess rules
on the target task.

The remainder of this chapter defines what it means for rules and tasks
to be similar to one another and describes a general method for taking them
into account during evaluation. It is organised as follows. Similarity-based
inductive transfer is motivated through the use of an example and a discussion
presented in Section 3.1. Section 3.2 then reviews some Bayesian estimation
techniques used in machine learning. These techniques are extended to modify
rule classification probability estimates through the use of priors. Section 3.3
introduces the notion of rule similarity as a general equivalence relation and
describes how classification priors can be defined for a rule by averaging the
performance of similar rules on a support task. Section 3.4 uses rule similar-
ity to define what it means for two learning tasks to be similar and goes on
to state and prove the main theorem of the chapter: priors calculated from
support tasks can guarantee better classification estimates on a target task
provided some natural conditions regarding the similarity of the two tasks are
satisfied. Section 3.5 addresses some difficulties with defining general rule sim-
ilarity relation and computing priors using them. This is done by defining
a special type of rule similarity called description similarity which opens the
way for a computationally efficient way to create classification priors. Finally,
in Section 3.6, properties of the new transfer technique are discussed in light
of related research from neural network research and computational learning
theory.

3.1. A Motivating Example

The purpose of this section is to introduce a set of learning tasks in a very
simple domain to highlight the problem of learning from limited data and to

55



56 3. SIMILARITY-BASED TRANSFER OF EVALUATION BIAS

size
genre small large

scifi ? +
horror - ?

romance - ?
Tina

size
genre small large

scifi + -
horror + -

romance + -

size
genre small large

scifi - -
horror + +

romance - -
Scott Harry

Figure 3.1. The reading preferences of Tina, Scott and Harry
in the Book World. Each of the six books lie at the intersection
of genre and a size. A ’+’, ’-’ and ’?’ indicate that the reader
enjoyed, disliked or has not read the book, respectively.

show how this problem can be solved through the modification of a learner’s
evaluation bias. This example will be reused throughout this chapter to clarify
some of the details of the various definitions and theorems.

3.1.1. The Book World. Three friends, Tina, Scott and Harry, all reside
in a very contrived world in which only six books exist. Each book can be
uniquely described by its genre, either science-fiction, horror or romance, and
its size, either small or large. Both Scott and Harry are avid readers, each
having read all six books. The somewhat morbid Harry enjoyed both the small
and large horror novels and disliked the four others while Scott’s diminished
attention span meant he liked reading all three short books but none of the
long ones. Tina has only read half the available books. She enjoyed the large
science-fiction book but disliked the small horror and small romance novels.
The reading preferences of all three friends are summarised in Figure 3.1.

Both Scott and Harry’s favourite books can each be summarised with a
single rule: Harry will enjoy a book if it is the horror genre whereas Scott will
enjoy a book if it is small. However, proposing a single rule which captures
Tina’s preferences is difficult given the data that is available as there are three
rules involving genre and size that are consistent with Tina’s tastes, namely:

GS: Enjoy if book’s Genre is Science-fiction
SL: Enjoy if book’s Size is Large
SLGS: Enjoy if book’s Size is Large and its Genre is Science-fiction

Tina’s mother wants to infer a rule about Tina’s taste in books to buy her a
birthday present she will like. An appropriate evaluation function for this task
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will therefore measure a rule’s quality by its ability to predict correctly. There
is no purely evidential way of deciding which of these rules is best as all three
have a classification probability matrix[

1
3

0

0 2
3

]
.

Any evaluation function which only uses CPMs to score a rule will assign the
same value to GS, SL and SLGS. If Tina’s likes and dislikes for all six books
were known this situation would not occur as only one of these rules would
have zero misclassifications. However, the estimates of the true classification
probabilities from only three examples are too rough to confidently decide on
a single rule.

How would the method for inductive transfer proposed in this chapter help
in the above situation? In a nutshell, it would modify the estimated CPMs
for rules regarding Tina’s taste in books by letting Tina’s mother express a
bias in relation to the preferences of Harry or Scott. For example, she may
believe that the best rule to describe Tina’s tastes will be similar to the best
rule for describing Harry’s. In this case, the inductive transfer system needs to
interpret what is meant by the term “similar”. In what sense is the rule “enjoy
if genre is science-fiction” similar to the rule “enjoy if genre is horror”? One
might argue that there are elements in common between the two genres in that
they both explore the human condition in unusual circumstances. However,
there is a simpler and purely syntactic relationship and that is both rules
consider a book’s genre unlike the rule “enjoy if size is large”. This notion of
similarity carves up the set of rules for the Book World domain into classes
containing the rules that mention genre or the rules that mention size. When
it comes to estimating the classification performance of a rule for Tina’s tastes
the performance on Harry’s examples of the rules from the same class can
be taken into account. For example, the inductive transfer system might use
this information to increase the true positive rate of the GS rule since it is
in the same similarity class as “enjoy if genre is horror” which performs well
on Harry’s examples. Also, the false negative rate for the SL rule might be
increased as rules like it are poor predictors on the examples of Harry’s taste in
books. These modifications would be reversed if Tina’s mother believed that
Scott’s tastes formed a better support task. With better CPM estimates the
evaluation function used to score the rules will have a better chance of picking
the one that best describes Tina’s tastes.
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CPM Partitions Similarity Partitions

Combined Partitions

a

a1

a3

a2

a4

1 2

3 4

Figure 3.2. The rule space is partitioned according to CPM
and similarity. The intersection of these results in a more refined
partition.

3.1.2. Estimation, Similarity and Transfer. The above example illus-
trates a couple of key ideas about the inductive transfer of evaluation bias that
are explored in detail in the remainder of this chapter. The first is that the
mechanism for implementing an evaluation bias is through the modification of
classification probabilities. The estimates of these probabilities that are made
using examples of the target task are pushed up or down depending on the
performance of rules on the support task. This manipulation of classification
estimates is given a stronger theoretical background in Section 3.2 below. The
second key idea is that similarity between two learning tasks can be interpreted
in terms of the performance of similar rules on the two tasks. Statements such
as “the books Tina and Harry enjoy are similar” can be interpreted as saying
something about the predictive power of classes of rules on both tasks. These
classes are defined in terms of properties of the rules such as “the rule tests
for genre” and “the rule tests for size”. This notion of similarity classes is for-
malised in Section 3.3. Inductive transfer from a support task to a target task
is implemented by joining together these two ideas. The estimates of a rule’s
classification probabilities for the target task can be modified by values derived
from the classification probabilities of similar rules on the support task.

Figure 3.2 gives some idea of why this approach might be of value in general.
The CPM partitions are sets of rules which have identical CPMs on the training
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data. In the context of the earlier example the set denoted a could contain the
three rules SL, GS and SLGS. As argued in the last chapter, when training
data is limited there are generally many rules per CPM class. The similarity
classes shown on the right of the figure partition the same rule space in a
different way to the CPM partitions. In terms of the example once again, the
similarity class labelled ‘1’ might contain rules that test for a book’s genre
whereas the class labelled ‘2’ might be for all the rules that do not. Overlaying
the CPM and similarity classes results in a more refined partition of the rule
space. If the CPM estimates for rules in similarity class 1 are modified in a
different manner to those in similarity class 2 then rules in the new class a1

will have different evaluation scores than the rules in class a2.
One way in which CPM estimates for rules in different similarity classes

can be modified independently is by assuming different prior values for the
estimates in each class. These priors can then be updated using the information
in the real CPM estimates. This approach is the topic of the next section.

3.2. Classification Priors

As argued in the previous chapter, one of the fundamental difficulties with
learning from small training sets is the poor estimation of the classification
probabilities used to assess rule quality. Evaluation functions that use poorly
estimated classification probabilities or contingency matrices will rank candi-
dates badly, assigning higher scores to candidates that might receive low true
scores when assessed over the entire instance space.

When an appropriate bias for a learning task is selected the problems as-
sociated with limited training data can be lessened. The inductive transfer
techniques reviewed in the last chapter show that language and search biases
can be learnt and transferred between tasks. However, none of these meth-
ods directly address the problem of improving the classification probability
estimates. Instead, rules with low true evaluation scores are avoided by re-
stricting or expanding the allowable candidate rules, or changing the order
in which they are searched. In contrast, directly improving the classification
probability estimates is the starting point for the similarity-based approach
which draws on well-known Bayesian techniques for estimation of probabilities
from small samples.

In the earlier example, the classification probability estimates for a rule
were modified by nudging estimates up or down based on the performance of
similar rules. This tweaking of estimates can be framed as Bayesian estima-
tion which advocates the use of prior distributions over the possible values an
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estimate can take before any data is examined. These methods are reviewed
and are used to encode evaluation bias when learning from limited data.

3.2.1. Bayesian Estimation. Estimating probabilities from samples is
an important and well-studied area of statistics [Bishop et al., 1975, Walpole
and Myers, 1978]. The methods used for this type of estimation fall into one
of two camps: frequentist, where estimates are calculated directly from the
sample; and Bayesian, where the sample is used to update an a priori value
for the quantity being estimated [Good, 1965, Jaynes, 2003, Jeffrey, 2004].
Their differences are best grasped through the following simple example.

If a biased coin is flipped N times and comes up heads n of those, the
frequentist (or maximum likelihood) estimate for the chance of a head when
the same coin is flipped in the future would be n

N
. When N is large the central

limit theorem ensures that this estimate approaches its true value. When the
sample is small, however, the estimate can be unreliable. For instance, imagine
a coin which is flipped once and comes up tails. A frequentist would estimate
the probability of heads in the future to be zero, that is that there is no chance
of observing a head. Arguably, a more palatable estimate could be obtained
by assuming that there is an even chance of heads and tails before any throw
is made and updating this initial guess depending on the result of the coin
toss. In the case of a single tail being thrown, the updated estimate might
assign odds of 2:1 (or at least something non-zero) against the next throw
landing heads. Even assuming that the probability the coin will land heads is
uniformly distributed over the interval [0, 1] results in a non-zero estimate for
heads after a single tail is observed.

This second estimate epitomises the Bayesian approach in which the “essen-
tial defining property” is, according to Good [1965, §2.1], that it is “meaningful
to talk about the probability Pr(H|E) of a hypothesis H, given evidence E”.
In the case of the coin tossing example, the hypotheses are values for the true
probability of the coin landing heads. If such a distribution can be computed,
the value to which it assigns the maximum likelihood can be used as an es-
timate that is informed by the prior assumptions. There is no question that
the posterior probability Pr(H|E) can be computed as it is consequence of the
definition of conditional probability known as Bayes’ identity:

Pr(H|E) =
Pr(H) Pr(E|H)

Pr(E)
.

This states it is proportional to the product of Pr(E|H), the probability of the
evidence if H is true, and Pr(H), the prior probability for H.
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The only slightly controversial aspect of this type of estimation (and one
best left to philosophers of knowledge) is the assumption that the distribution
Pr(H) can be known in advance of any evidence. In practice, priors are used
to encode any extra knowledge one may have about a random variable that
we arrive at analytically (e.g., the coin is symmetric) or from past experience
(e.g., past coins have been fair). A choice of a prior distribution determines
a preference for certain hypotheses over others. When such a preference can-
not be justified, we can encode our lack of knowledge by assuming a uniform
distribution over the hypotheses.

In this sense, as Jaynes [2003] puts it, “Bayesian methods are - or at least
may be - speculative. If the extra hypotheses are true, then we expect that
Bayesian results will improve on maximum entropy; if they are false Bayesian
inferences will likely be worse”. These beliefs may turn out to be wrong, but
when they are correct they can substantially improve the quality of an estimate.

When evaluating a rule, the classification probabilities for that rule are
quantities that require careful estimation. Many evaluation functions use one
or more of the values found in a rule’s classification probability matrix to
assign it a score. When training data is limited these probability estimates
can be poor resulting in inaccurate rule evaluation. One way, therefore, of
achieving better rule evaluation is to improve the estimates they are based
upon. As discussed above, prior distributions over estimates appears to be
a natural place to add any extra available knowledge about the predictive
quality of rules. The application of the Bayesian approach to the problem of
classification probability estimation is one of the key theoretical steps towards
the inductive transfer of evaluation bias presented in this chapter.

3.2.2. Priors for Classification Probability Matrices. In the intro-
ductory example for this chapter, the idea of modifying the true positive and
false positive rates for a rule was proposed as a way of breaking ties between
them, possibly by encoding extra information about the expected performance
of each rule. This fiddling of classification rates can be seen as a special case of
modifying the values in a rule’s classification probability matrix. The Bayesian
approach of using prior distributions for the classification probabilities provides
a principled way of doing this and the result can be seen as an attempt to im-
prove the probability estimates that are derived from the training examples.

To recap part of Section 2.1.2 of the preceding chapter, a rule’s classifica-
tion probability matrix (CPM) is defined to be the relative frequencies of the
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classification counts appearing in its contingency table. That is, if

n =

[
n++ n+−

n−+ n−−

]
is a contingency table for the evaluation of rules against N =

∑
i,j nij examples

then its corresponding CPM is

p =

[
p++ p+−

p−+ p−−

]
where each pij =

nij

N
is a frequentist estimate of the probability that the rule

will classify an example with label j as having label i. In what follows, this
CPM estimate will be known as the raw CPM estimate. Like all frequentist
estimates the raw CPM estimate can be unreliable when the total number of
examples N is small and the purpose of this section is to examine how they
might be improved.

The classification counts in the matrix n can be thought of as frequency
counts for what is known as a multinomial sample. Each time an example is
tested against the rule the resulting predicted and actual classification of the
example must fall into exactly one of the four classification categories: true
positive, false positive, false negative, true negative. A natural family of prior
distributions for the frequencies p = (pij) for a multinomial sample is the
Dirichlet distribution which has a density function

D(p;m) = Γ(M)
∏
i,j

p
mij−1
ij

Γ(M)

where the m = (mij) are the distribution’s parameters, M =
∑

i,j mij and Γ

is the gamma function that is commonly found in these sorts of distributions.
Although this is a complicated prior distribution to define, the maximum like-
lihood value of its posterior distribution fortunately has a simple form [Good,
1965, Bishop et al., 1975]. If the testing of a rule on N examples results in the
classification counts n = (nij) then the most probable values p∗ = (p∗ij) for the
classification probabilities assuming a Dirichlet prior with parameter m is

p∗ =
n + m

N + M
.

This posterior estimate of classification probabilities is intuitively appeal-
ing. The parameters m of the Dirichlet distribution can be seen as M extra
sample counts which are added to the original N . Denoting the combination
of these counts by n∗ = n + m and the new total number of examples by
N∗ = N + M , the posterior classification probabilities are just the frequen-
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tist estimates n∗

N∗ of the combined counts. Viewing the Dirichlet parameters
m as counts for M extra samples, they can be assumed to have been drawn
independently with probabilities

q =

[
q++ q+−

q−+ q−−

]
=

1

M

[
m++ m+−

m−+ m−−

]
.

Collectively, these probabilities will be called a CPM prior and the parameter
M the number of virtual examples.1 In this case, the posterior probabilities are
just a linear combination of the raw CPM p and the CPM prior q. Specifically,
each posterior probability

p∗ij =
N

N + M
pij +

M

N + M
qij.

The total number of virtual examples M can be thought of here as a pa-
rameter that determines the relative importance of priors qij compared to the
estimates pij. As M becomes much larger than the number of actual examples
N the posterior estimates will be dragged towards the priors. Conversely, when
M = 0 the posterior estimates have exactly the same value as their frequentist
counterparts.

3.2.3. Class Skew. The left and right column totals in any CPM give
the proportions of positive and negative class labels in the training examples
from which the CPM was derived. When a raw CPM is combined with a
CPM prior the column totals of the raw and posterior CPMs can differ. This
difference in class distributions is known as skew and has been known to cause
problems when it occurs between training and test sets in traditional, single-
task learning [Weiss and Provost, 2001, §2.3]. A similar problem is faced in
Section 3.3 below when CPM priors are constructed from support tasks which
may have very different class distributions to the target task from which the
raw CPM estimates are derived. This may or may not be a problem for
inductive transfer depending on whether the target task’s or support task’s
class distribution is believed to be more appropriate. In either case, it is
worthwhile briefly outlining how skew can be corrected for here before delving
into the details of how priors are constructed.

For a given CPM p = (pij), the positive column total π+(p) = p++ + p−+

and the negative column total π−(p) = p+− +p−− can be used to define a skew
correction between two CPMs as follows.

1In the remainder of this thesis the distinction between a prior probability distribution
D(p;m) and its parameters m = Mq will be deliberately blurred by calling q “priors” when
there is an implied or irrelevant value for M .
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Definition 3.1. If p1 and p2 are two classification probability matrices,
a skew correction matrix for a source p2 with respect to a destination p1 is
defined to be

σp1(p2) =

[
π+(p1)
π+(p2)

0

0 π−(p1)
π−(p2)

]
.

The subscript will often be dropped when the destination CPM is implied by
context.

Skew correction matrices are defined so that the matrix multiplication of
the source CPM by the skew correction will result in a new CPM that has
the same column totals as the destination CPM. This is easily verified by
carrying out the multiplication p2σp1(p2). Using a raw CPM estimate p as
the destination and a CPM prior q as a source, a skew corrected posterior
CPM can be defined as follows so as to have the same column totals as p.

Definition 3.2. Given a raw CPM p and a CPM prior q, the skew cor-
rected posterior CPM estimate is defined to be

p∗ =
N

N + M
p +

M

N + M
qσp(q).

Unless stated otherwise, all classification prior matrices in the remainder
of this chapter will be assumed to be skew corrected for the target task.

3.2.4. An Example Application. Blending guessed values with esti-
mates derived from observed data using the methods described above is pre-
cisely the type of tweaking mechanism required to modify classification proba-
bilities in light of extra knowledge that might be available during an inference
task. In the opening example, one way of breaking the three-way tie for best
rule was to assume that rules for Tina’s tastes were most like Harry’s and so
those with tests for genre would be better predictors than those without. This
assumption could be implemented using the prior CPMs shown in the second
column of Table 3.1. The first column shows each rule’s raw CPM estimates
and the third column shows the CPMs resulting from the combination of the
priors with the raw values when using three virtual examples, that is when
M = N = 3. The priors, shown in the second column, are chosen to reflect
the assumption that rules testing genre are more likely to be better predictors
than those that do not test for genre. In each case, skew correction matrix is
given by [

1/3
2/3

0

0 2/3
1/3

]
=

[
1
2

0

0 2

]
.
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Table 3.1. Example posterior CPM estimates for the rules GS,
SL and SLGS from the introductory example. The parameter
M used here was set to the number of examples M = N = 3
and the prior CPMs were skew corrected for the raw estimates.

p q p∗

GS
[

1
3 0
0 2

3

] [
2
3 0
0 1

3

] [
1
3 0
0 2

3

]

SL
[

1
3 0
0 2

3

] [
2
3

1
3

0 0

] [
1
3

1
3

0 1
3

]

SLGS
[

1
3 0
0 2

3

] [
1
3 0
1
3

1
3

] [
1
4 0
1
12

2
3

]

Using this process the prior for the rule GS increases the estimated value
of its true positive rate while the the priors for SL and SLGS respectively
increase their false positive and false negative rates. It is important to note
the reason that these three rules which have the same raw CPM estimates have
different posterior CPMs. This difference only comes about because each rule
was assigned a different prior. Were all the priors the same, all the posteriors
would be the same. In order to effectively improve evaluation estimates a
function is required that assigns possibly different prior CPMs to each rule
being evaluated.

3.2.5. Prior CPM Functions. A CPM function is a name given to any
procedure that when given a rule returns a two-by-two matrix with entries
that sum to one. The evaluation of a rule’s CPM on a set of training examples
is one such procedure that fits this definition. So too is any procedure that
returns a prior CPM when given a rule. The results of these functions can be
combined for each rule using the method described for creating posterior CPM
as follows.

Definition 3.3. Let r ∈ R be a rule and pE(r) be the CPM for r evaluated
on examples E. If q(r) is a prior for r, then the posterior CPM for the rule r

is given by

p∗
E(r) =

N

N + M
pE(r) +

M

N + M
q(r)

where N is the total number of examples in E and M is the transfer parameter.

The question now is how to choose a classification prior function. One
possibility is that the function q(r) be defined by an expert to best reflect
any extra information regarding the candidate rules and the learning task at
hand. For example, the prior CPM function below encodes an evaluation bias
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that will prefer short rules over longer ones. Letting n denote the number of
conditions in a rule, this function is

q(r) =
1

2(n + 1)

[
1 n

n 1

]
.

Using this function, longer rules will receive priors resulting in larger false
positive and false negative rates.

Although hand-crafting evaluation biases through the use of prior CPM
function is possible, this approach places an extra burden on anyone wishing
to use a rule learning algorithm that uses adaptive classification priors. An
alternative is to take a lead from Goodman’s suggestion at the head of this
chapter. By assuming that learning takes place in an environment of tasks,
“past predictions and their successes and failures” can be used to learn the
function which is to assign priors to rules. In terms of the motivating example,
the question to be answered in the next section is: how can knowledge of
Harry’s tastes in books and the statement “Tina’s tastes are similar to Harry’s”
be turned into a prior CPM function?

3.3. Rule Similarity and Inductive Transfer

The previous section described a mechanism with which classification prob-
ability estimates from limited training examples could be modified in order to
implement an evaluation bias. This is done by using a function that assigns a
CPM prior to each rule to be evaluated. A prior CPM can be updated using
the available training examples to obtain posterior estimates of classification
probabilities for that rule. Although prior functions can be constructed by
hand, requiring this to be done for each learning task would place the same
burden on an expert as selecting a language bias or search strategy. As argued
earlier, this may not be easy for a domain expert who is not a machine learning
expert.

The purpose of this section is to describe a method for creating CPM prior
functions using examples from a support task and a definition of what it means
for rules to be similar. If an domain expert believes that the rules similar to
those that perform well on one task will also perform well on another then
this extra information can be used to encode a CPM prior function that will
express that belief.

3.3.1. Rule Similarity. Similarity is a relation that asserts that two ob-
jects are in some sense the same. In common usage the term usually implies
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some sliding scale. Stringed instruments are all similar in a sense, but an elec-
tric guitar and an acoustic guitar would be regarded as more similar than an
acoustic guitar and a harp for example. In mathematics similarity often does
not have these shades. For example, two triangles are said to be similar if they
have the same internal angles. In this case, two triangles are either similar or
they are not.

For theoretical discussion it is easier to conceive of rule similarity as this
second, discrete form of similarity. As a general notion, this kind of similarity
can be formalised as an equivalence relation, that is a binary relation ∼ that
is reflexive, symmetric and transitive. Hereafter, when two rules are said to
be similar it will be with respect to some relation that satisfies the following
definition.

Definition 3.4. A similarity relation ∼⊆ R×R over the set of rules R is
a binary relation satisfying the following three conditions: reflexivity - every
rule must be similar to itself (r ∼ r ) ; symmetry - if one rule is similar to
another, the other must be similar to the first (r1 ∼ r2 implies r2 ∼ r1) ;
transitivity - if a first rule is similar to a second, and the second is similar to
a third then the first must be similar to the third (r1 ∼ r2 and r2 ∼ r3 implies
r1 ∼ r3).

One property of equivalence relations that will be used extensively is that
they partition the set of objects they are defined over into equivalence classes.
A similarity relation over rules therefore partitions a rule space into sets of
similar rules.

Definition 3.5. Given a set of rules R and a similarity relation ∼, each
rule r ∈ R is a member of exactly one similarity class [r], which is defined to
be

[r] = {r′ ∈ R : r′ ∼ r},

that is, all the rules that are similar to r. This notation for similarity classes
can also be used to denote the function [·] : R→ 2R that maps rules to subsets
of the rule space.

Thinking of a similarity relation as inducing both a partition of classes and
as a mapping is useful when the the idea is extended to take into account
target and support tasks that may use incompatible sets of candidate rules.
This possibility is discussed below after an example of a similarity relation is
defined for the Book World tasks.

3.3.2. An Example Similarity Relation. In the Book World example,
there are 12 possible rules each uniquely determined by the book features they
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test. These can be partitioned into four similarity classes C0, Cs, Cg and Csg

based on whether a rule performs no test, a size test only, a genre test only
or both tests respectively. While any other partition of the rules would have
also served as similarity classes these four are arguably quite natural. The
similarity relation corresponding to these classes define two rules to be similar
if and only if they test the same book features.

Table 3.2 lists all 12 rules along with the similarity class each belongs to
and their CPM estimates on the examples for Tina, Scott and Harry’s reading
preferences. The rules SL, GS and SLGS are highlighted in bold as the only
three rules with no misclassifications on Tina’s examples. Notice that each of
these fall into a different similarity class, namely Cs = [SL], Cg = [GS] and
Csg = [SLGS].

3.3.3. Similarity between Tasks with Different Representations.
The representation language used to describe instances and rules in the Book
World domain is the same across all three learning tasks. This means that
a rule used to test whether Harry likes a book can be applied to examples
of Scott’s reading preferences and, importantly, the sets of similar rules on
one task are identical to the similarity classes on another. This is not always
the case in general as support and target tasks may be created at different
times by different researchers. Extra instance features may be available on a
target task that were not available on a support task, features that are deemed
irrelevant might be removed from a task or feature names may change. For a
theory of similarity-based transfer to be useful it must be applicable in cases
such as these provided some similarity relation still exists between the tasks.
Even if tasks share no common features, more abstract similarity relations can
still be defined in terms of the number of conditions in a rule or the number
of repeated conditions. In first-order rules, a similarity relation might test for
whether constants or functions are present or check the number of distinct
variables. This section briefly introduces some concepts relating to this more
general take on similarity which are necessary to define how transfer can take
place in these situations.

If the sets of rules used for support and target tasks are different, a sim-
ilarity relation can still be defined over the union of the rules for both tasks.
Figure 3.3 illustrates this situation between two tasks, one with rule space R1

and the other with rules R2. In this case, a similarity relation would need to
be defined over R = R1 ∪R2 for any transfer to be possible. If there are rules
in both spaces which are deemed similar by such a relation, a similarity map
can be defined which, given a rule in R1 will state which rules are similar to
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Table 3.2. The rule space for the Book World tasks. Each
row contains an identifying name for a rule, the test that rule
performs, the similarity class it belongs to and its CPM on each
of the three Book World tasks. The three rules highlighted in
bold are those that best discriminate positive from negative
examples of Tina’s preferences.

Tests CPM Estimates

ID Size Genre Class
Tina Scott Harry

T - - C0

»
.33 .67
0 0

– »
.50 .50
0 0

– »
.33 .67
0 0

–

SS small - Cs

»
0 .67

.33 0

– »
.50 0
0 .50

– »
.17 .33
.17 .33

–

SL large - Cs

»
.33 0
0 .67

– »
0 .50

.50 0

– »
.17 .33
.17 .33

–

GS - scifi Cg

»
.33 0
0 .67

– »
.17 .17
.33 .33

– »
0 .33

.33 .33

–

GH - horror Cg

»
0 .33

.33 .33

– »
.17 .17
.33 .33

– »
.33 0
0 .67

–

GR - romance Cg

»
0 .33

.33 .33

– »
.17 .17
.33 .33

– »
0 .33

.33 .33

–

SSGS small scifi Csg

»
0 0

.33 .67

– »
.17 0
.33 .50

– »
0 .17

.33 .50

–

SSGH small horror Csg

»
0 .33

.33 .33

– »
.17 0
.33 .50

– »
.17 0
.17 .67

–

SSGR small romance Csg

»
0 .33

.33 .33

– »
.17 0
.33 .50

– »
0 .17

.33 .50

–

SLGS large scifi Csg

»
.33 0
0 .67

– »
0 .17

.33 .50

– »
0 .17

.33 .50

–

SLGH large horror Csg

»
0 0

.33 .67

– »
0 .17

.33 .50

– »
.17 0
.17 .67

–

SLGR large romance Csg

»
0 0

.33 .67

– »
0 .17

.33 .50

– »
0 .17

.33 .50

–
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Rule Space R1

Similarity Classes

A1

B1 B2

Rule Space R2

similarity
mapping

Ar

Br

Ar
Br

[    ]
[    ]

Figure 3.3. A mapping between two rule spaces via similarity
classes. The rules in sets B1 and B2 are all in similarity class
[rB]. The rules in set A1 are in the similarity class [rA] which
has no corresponding rules in R2.

it in R2. For example, the rule rB ∈ B1 is similar to all of the rules in B2

as they all share the similarity class [rB]. In the case of rA ∈ A1 however, a
corresponding set of rules in R2 does not exist.

The two cases discussed in the above example are important for a general
definition of similarity-based transfer and so will be made explicit through the
following definition.

Definition 3.6. Let R1 and R2 be sets of rules and R = R1 ∪ R2. If∼
is a similarity relation over R then the kernel ker(R1, R2) and the domain
dom(R1, R2) for the relation are defined by

ker(R1, R2) = {r ∈ R1 : [r] ∩R2 = ∅}

dom(R1, R2) = {r ∈ R1 : [r] ∩R2 6= ∅}.

The names ‘kernel’ and ‘domain’ were chosen deliberately to emphasise
the idea of a similarity relation inducing a mapping from one set of rules to
another. If the mapping is seen to be from R1 to R2 then the kernel contains
those rules which do not have any corresponding rules in the image of the map
whereas the domain contains all the rules which do. Since every rule must
either have an image under this map or not, it should be clear that the rule
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space being mapped from is completely covered by the union of the kernel and
the domain.

3.3.4. Similarity-based Transfer. When a rule for a target task is in
the domain of a similarity mapping there will exist similar rules to it in the
support task. By examining the performance of these similar rules on the
support task a CPM prior can be constructed that says something about the
performance of rules like them. If an expert believes that similar rules perform
similarly on related tasks this information may improve the original rule’s
estimate on the target task.

The key to doing this is to formalise what is meant by “similar rules per-
forming similarly” and the method used here is defined probabilistically. Given
a set of rules for a support task, it is possible to ask “what is the probability
that a rule chosen at random from this set will correctly classify or misclas-
sify a positive or negative example of the support task?”. If similar rules on
the target task do indeed perform similarly, these probabilities will make good
choices for values in prior CPMs. Rules for the target task that belong to
different similarity classes will have different prior CPMs and so the similarity
relation can be used to define a prior CPM function for the target task. This
approach is formalised in the following definition.

Definition 3.7. Let T and S be a target and support task respectively and
let RS and RT be the sets of candidate rules for the respective tasks. If R =

RS∪RT has a similarity relation ∼⊆ R×R defined over it then the similarity-
based prior CPM function q = (qij) is defined for each r ∈ dom(RT , RS) by
its entries

qij(r) = Pr
(x,y)∈S

r′∈RS

(r′(x) = i, y = j|r′ ∼ r).

It is important to note that the above definition assumes that there is some
distribution over examples and rules in RS. The distribution over examples
is not problematic as the examples can be assumed to be drawn identically
and independently in both the target and support task. Also, any skew in
the distribution of class values between the two tasks can be corrected for
using the method described in Section 3.2.3 above. The interpretation of the
distribution over rules in RS is slightly more subtle and its discussion is left
for Section 3.3.5 below.

Although the above definition is in terms of the probabilities of drawing
and classifying examples according to a set of rules, each value in a prior CPM
can also be expressed as an average. In particular, the value a prior CPM
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function takes on a given rule can be written as the average CPM over all
similar rules on the support task.

Proposition 3.8. For any given example set E, rule space R and simi-
larity relation ∼, the prior CPM function qE for E satisfies

qE(r) = E
r′∈R

[pE(r′) | r′ ∼ r]

where pE is the raw CPM function for E.

Proof. The proof follows from the definition of conditional probability
and conditional expectation:

Pr(r′(x) = i, y = j|r′ ∼ r) =
Pr(r′(x) = i, y = j, r′ ∼ r)

Pr(r′ ∼ r)

=
1

Pr(r′ ∼ r)

∫
r′∼r

Pr(r′(x) = i, y = j)

= E
r′∈R

[pij(r
′) | r′ ∼ r] .

�

In the case where R is finite and there is an assumed uniform distribution
over rules, each rule will have probability 1

|R| and so each similarity class [r]

will have probability Pr(r′ ∼ [r]) = |[r]|
|R| since r′ ∼ r is equivalent to r′ ∈ [r].

The expectation for this distribution is therefore a familiar looking average:

qE(r) =
1

|[r]|
∑
r′∈[r]

pE(r′).

For this expected CPM to be used as a prior for CPM computed from
training examples it is necessary that the matrices qE(r) computed in the
above manner themselves be CPMs. The following proposition ensures this.

Proposition 3.9. Each qE(r) is a classification probability matrix for each
r. That is, then entries qij(r) in qE(r) satisfy

∑
ij qij(r) = 1.

Proof. From Proposition 3.8 each qij(r) = ER [pij(r
′)|r′ ∼ r]. Summing

these over the indices i and j gives∑
i,j

qij(r) =
∑
i,j

1

Pr(r′ ∈ [r])

∫
r′∈[r]

pij(r
′)

=
1

Pr(r′ ∈ [r])

∫
r′∈[r]

∑
i,j

pij(r
′)

=
1

Pr(r′ ∈ [r])

∫
r′∈[r]

1

= 1.
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Thus, qE(r) is a CPM. �

Since the function defined above is guaranteed to return a CPM for every
rule it is given that is in the domain of the similarity relation between a support
and a target task, each CPM returned by this function can be combined with
a raw CPM estimate and result in a valid posterior CPM. For those rules not
in the similarity relation’s domain, the posterior estimate for a rule’s CPM can
be taken to be the original raw CPM estimate.

Definition 3.10. Let RT be a set of rules for a target task T and RS be a
set of rules for a support concept S. If qS is the similarity-based prior function
for S then the similarity-based posterior function for task A using task B as
support is defined to be

p∗
A,B(r) =

pA(r) if r ∈ ker(RA, RB)

N
N+M

pA(r) + M
N+M

qB(r) otherwise.

3.3.5. Rule Probability and Admissibility. A similarity-based prior
CPM requires that some distribution be defined over the set of candidate rules
in order to give meaning to the Pr(r′ ∈ [r]) term in the definition. There are
two extreme approaches to doing this. The first way is to assume as little as
possible about the rule distribution. For example, if the candidate space is
finite, assume that all rules are equally probable. Alternatively, Occam’s razor
could be invoked and distribution that exponentially decays with the rule size
could be used for infinite rule spaces. As will be shown in an example below,
these sort of uninformative distributions are not ideal.

The other extreme is to let the rule distribution represent a posteriori prob-
abilities. That is, the probability of each rule is the chance it will appear in the
induced theory given all the examples for the task. This is also not satisfactory
as it requires too much extra knowledge about the learning algorithm being
used and its search and restriction biases. When the priors created from this
bias are transferred to a new problem there is no guarantee the same algorithm
or biases will be in use.

The compromise used here and in the implementation described in the next
chapter is to choose a rule distribution that makes a very weak assumption
about the learning process and also takes into account the available examples.
The assumption is that the distribution should only assign non-zero probabil-
ity to those rules that cover at least one positive example. Rules which do
not satisfy what will be called the admissibility condition are rarely, if ever,
considered for inclusion in induced theories regardless of evaluation function
or search procedure. This is because of the asymmetry between the covering
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of positive and negative examples by sets of rules. An instance is classified
positive if any rule in a theory covers it while instances are only classified neg-
ative if no rule covers it. Admissibility takes this asymmetry into account by
discounting rules that only cover negative examples during the construction of
a classification prior.

Definition 3.11. A rule r is said to be admissible for the examples E if it
covers at least one positive example in E. That is, there must exist an example
(x, +) ∈ E such that r(x) = +. Given a set of rules R, the notation RE will
be used for the set of all rules in R which are admissible for E.

Why is a distribution that supports only admissible rules better than a
completely uniform one? When a domain expert claims that the performance
of rules on a target task will be related to the performance of similar rules on
a support task it is unlikely he or she has in mind rules that are irrelevant for
the tasks. Not taking this into account can have counter-intuitive effects as
the following example shows.

Consider constructing a prior CPM function using the similarity classes for
the Book World and the examples for Scott’s reading preferences. Using the
CPMs shown in Scott’s column in Table 3.3 the prior CPM for rules in the
similarity class Cs is given by

qS(SL) = qS(SS) =
1

|Cs|
∑
r′∈Cs

pS(r′)

=
1

2

([
.50 0

0 .50

]
+

[
0 .50

.50 0

])

=

[
.25 .25

.25 .25

]
.

Notably, each entry qij in this matrix is the product of its column’s total
qi· =

∑
j qij and its row’s total q·j =

∑
i qij. This means, for rules within the

class Cs, the predicted and actual class labels of instances are independent.
That is, the prior values impart no information regarding the true and pre-
dicted class labels. When a uniform distribution is assumed this independence
will occur whenever a similarity class contains rules and their complements.
Not allowing this type of similarity class is a strong restriction and one that
can be avoided by using the admissibility condition.

The effects of using the admissibility condition is tested empirically in
Chapter 5 and found to have a large impact on positive transfer effects when
compared to inductive transfer that does not use it. For this reason and those
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given above, the admissibility condition will be a default assumption when
discussing transfer.

3.3.6. An Example of Transfer. All of the concepts introduced in this
section can be applied to the Book World example to show how inductive
transfer can be used to construct a prior CPM function. This is then used
to compute the posterior CPM estimates for Tina’s reading preferences when
using Scott and Harry’s examples as support.

The top row of Table 3.3 shows the raw CPM estimates for the three rules
SL, GS and SLGS on the examples of Tina’s preferences. The next two rows
show the prior CPMs for each rule constructed from the admissible rules for
Scott’s examples and the posterior CPM estimate from the combination of
the raw CPMs with these priors. Similarly, the forth and fifth row show the
prior and posterior CPMs for each rule when Harry’s examples are used as the
support task.

When Scott’s examples are used as support, the SL rule receives a posterior
CPM with no misclassifications while the other rules are assigned CPMs with
increased false positive or false negative scores. In contrast, it is rule GS that
is assigned a perfect CPM when Harry’s examples are used as support while
the others have an increased proportion of misclassifications.

The bottom two rows of Table 3.3 show the true CPMs of each of the four
rules in the case when Tina’s reading preferences are described by the SL rule
and in the case that they are described by the GS rule. In the latter case, it
can be seen that the true CPMs for rules T and GS are estimated perfectly
by the posterior CPM function p∗

T,H constructed using Harry’s examples as
a support task. While the posterior CPMs for the other two rules, SL and
SLGS, are different from the true CPMs for those rules the posterior estimates
are much closer to the true CPMs than the raw estimates.

If the rule GS best describes Tina’s reading preferences then the use of
Harry’s examples as support improves the estimates of all four of the rules
admissible for Tina’s examples. In this situation, assuming that Harry and
Tina’s preferences are similar was able to be turned into a useful evaluation
bias using the similarity-based method described above. Can this type of
estimate improvement be formalised? If so, when can estimate improvements
like this be guaranteed? That is, what relationships are required between the
support and target task for this type of positive transfer to occur? Answering
these questions is the focus of the next section.
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Table 3.3. Raw, prior and posterior CPMs for rules that are
admissible for Tina’s reading preferences (T). Priors are created
from the examples and admissible rules for the tasks for Scott (S)
and Harry (H). Support task priors are combined with the raw
estimates using M = 3 and skewed to match the target task’s
class distribution. The bottom two rows show the performance
of each of the rules when the target concept for Tina is described
by SL and GS.

Rule ∈ Similarity Class

T∈C0 SL∈Cs GS∈ Cg
SLGS∈
Csg

pT

[
.33 .67
0 0

] [
.33 0
0 .67

] [
.33 0
0 .67

] [
.33 0
0 .67

]

qS

[
.33 .67
0 0

] [
.33 0
0 .67

] [
.11 .22
.22 .44

] [
.11 0
.22 .67

]

p∗
T,S

[
.33 .67
0 0

] [
.33 .0
0 .67

] [
.22 .11
.11 .56

] [
.22 0
.11 .67

]

qH

[
.33 .67
0 0

] [
.17 .33
.17 .33

] [
.33 0
0 .67

] [
.17 0
.17 .67

]

p∗
T,H

[
.33 .67
0 0

] [
.25 .17
.08 .50

] [
.33 0
0 .67

] [
.25 0
.08 .67

]

SL
[

.50 .50
0 0

] [
.50 0
0 .50

] [
.17 .17
.33 .33

] [
.17 0
.33 .50

]

GS
[

.33 .67
0 0

] [
.17 .33
.17 .33

] [
.33 0
0 .67

] [
.17 0
.17 .67

]

3.4. Sufficient Conditions for Successful Transfer

The purpose of this section is to formalise and answer the following question
about similarity-based transfer. When will the use of similarity-based priors
improve the quality of the classification probability estimates? To do this
three new concepts are required. The first, CPM function distance, allows
the term “improve” to be defined in terms of how much two CPM functions
differ, on average, over a particular set of rules. The second concept, task
similarity, uses this distance to formalise what it means to say that two tasks
have similar rules. Finally, the third concept, regularity, defines how well the
similarity relation partitions the rule space and captures features of rules that
correlate well with good prediction.

With these concepts in place the transfer theorem states that using prior
CPMs derived from a support task will reduce the distance between the raw
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CPM estimates and their true values on a target task whenever the support
and target tasks are similar and the similarity relation captures salient features
about the rules. The actual proof of the transfer theorem does not rely on very
sophisticated mathematics. It is a result of the definition of posterior CPMs,
some simple properties of expectations and the triangle inequality. What is
important here is that it lends some credence to the definitions of similarity
and regularity of tasks that are introduced to define the sufficient conditions
of the theorem.

3.4.1. CPM Function Distance and Error. It is difficult to make
broad generalisations about the large variety of evaluation functions that can
be used by a learner. Evaluation functions can include misclassification costs,
penalties for complex rules or prefer precise rules over general ones. To prove
anything about whether the use of prior CPMs improves the rankings of rules
on training data would require a case by case analysis of classes of evaluation
functions.

Another approach is to show that CPMs which take into account priors
based on a support task will, on average, be better estimates of the true CPM
than evaluations on the training data alone. In the best case, the augmented
CPMs will match the true CPMs exactly, in which case the ranking on the
training data will match the true ranking of the rules. In general, it can be
expected that if the average CPM improves there may be a corresponding
improvement in rule rankings for a large number of evaluation functions.

To answer the above question a measure of how close one CPM is to another
is required. Keeping with the general approach taken so far, we will assume
that there is some norm ‖·‖ defined over the set of possible CPMs. One
simple choice would be to treat the CPM as a 4-dimensional vector and use
the Euclidean distance as the norm. That is, let ‖p‖ =

√∑
ij p2

ij.

Definition 3.12. The distance ∆R(f ,g) between two CPM functions f

and g over the set of rules R is defined to be

∆R(f ,g) = E
r∈R
‖f(r)σh(f)− g(r)σh(g)‖

where h is a CPM with column totals both equal to 1
2
. The σh function is used

to skew the original CPM functions f and g so that they both have column
totals of 1

2
.

The reason the CPM values for each rule are skew corrected is to ensure
that CPMs for different tasks can be compared. For example, the CPMs for
the rule T on the tasks SL and GS shown in Table 3.3 both have zero entries
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in their bottom rows as the rule T predicts all instances to be positive. The
only reason the values in the top row are different is because of the different
class distributions for SL and GS.

There are several properties of this distance measure that are needed for
the proof of the transfer theorem. The first of these is that the CPM distance
function is what is known as a pseudo-metric. The CPM distance is clearly
non-negative and symmetric as a consequence of the properties of the norm it
is based upon. The triangle inequality also holds due to the same property of
the norm. The CPM distance is not quite a metric however since ∆R(f ,g) = 0

only implies that f and g are equal up to a skew correction. Two further
properties of the CPM distance are required and are established in the following
proposition.

Proposition 3.13. Let R be a set of rules and let ρ be a probability measure
over R. Then for any CPM functions f and g and any R1, R2 ⊆ R such that
R = R1 ∪R2, the following properties of the average CPM distance will hold:

(1) ∆R(f ,g) = Pr(R1)
Pr(R)

∆R1(f ,g)+ Pr(R2)
Pr(R)

∆R2(f ,g)− Pr(I)
Pr(R)

∆I(f ,g) where I =

R1 ∩R2.
(2) ∆R(αf1 + βf2, αg1 + βg2) ≤ α∆R(f1,g1) + β∆R(f2g2) where α and β

be are any non-negative numbers.

Proof. Using the definition of ∆ the right hand side of the first property
can be expanded to

Pr(R1)

Pr(R)
E
R1

‖f − g‖+
Pr(R2)

Pr(R)
E
R2

‖f − g‖ − Pr(I)

Pr(R)
‖f − g‖

=
1

Pr(R)

∫
R1

‖f − g‖+
1

Pr(R)

∫
R2

‖f − g‖ − 1

Pr(R)

∫
I

‖f − g‖

=
1

Pr(R)

∫
R

‖f − g‖

= E
R
‖f − g‖

= ∆R(f ,g)

since R1 and R2 cover R. The second property can be seen to hold by writing

∆R(αf1 + βf2, αg1 + βg2) = E
R
‖(αf1 + βf2)− (αg1 + βg2)‖

= E
R
‖(αf1 − αg1) + (βf2 − βg2)‖

≤ E
R
‖(αf1 − αg1)‖+ E

R
‖(βf2 − βg2)‖

= α∆R(f1,g1) + β∆R(f2,g2)

by the triangle inequality and the linearity of ‖·‖. �
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A corollary of the above proposition is that for disjoint R1 and R2 the distance
∆R(f ,g) is just the sum of the R1 and R2 weighted distances since the term
involving their intersection is zero.

The distance between a true CPM and its estimates is a natural basis for
the error of a CPM estimate function over a task. It measures by how much,
on average, the classification probability estimates differ from their true values
over the rule space for the task in question.

Definition 3.14. The CPM error errT (p) of a CPM estimate p for the
concept T is the average error over all admissible rules for T of p and the true
CPM pT . That is,

errT (p) = ∆RT
(p,pT ).

3.4.2. CPM Error on the Book World Example. The above defini-
tion can be used to compute the CPM distance between the example estimates
from the Book World example. To make the computation concrete, the Eu-
clidean norm

‖p‖ =

√∑
i,j

p2
ij

will be used. Assuming that Tina’s preferences are described by the rule GS in
Table 3.3 the true CPM estimates can be denoted pGS(r) and compared to the
raw CPM estimates pT (r). In this case the CPM function distance over the six
admissible rules for the concept GS, namely R = {T, SL, SS, GS, SSGS, SLGS}
for the target task is given by

∆R(pGS,pT ) =
1

6
(2

∥∥∥∥∥ −.25 .25

.25 −.25

∥∥∥∥∥+ 2

∥∥∥∥∥ −.25 0

.25 0

∥∥∥∥∥)
=

1

6
(1.0 + 0.708)

= 0.285.

Note that the CPMs are skewed to have column totals of a half before their
difference is taken. In comparison, the distance between the posterior estimates
and the true estimates is given by

∆R(pGS,p∗
T,H) =

1

6
(2

∥∥∥∥∥ −.125 .125

.125 −.125

∥∥∥∥∥+ 2

∥∥∥∥∥ −.125 0

.125 0

∥∥∥∥∥)
=

1

6
(0.5 + 0.354)

= 0.142

which is half the error of the raw estimate.
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The question of when this estimate improvement occurs in general can be
framed in terms of CPM error. Suppose that A and B are a target concept
and a support concept respectively. A rule learning algorithm is given access
to some limited subset of examples Ā ⊆ A as the target task and all the
examples for B as the support task. Under what conditions will the posterior
CPM estimate p∗

Ā,B
be better, on average, than the raw CPM estimate pĀ?

That is, when will
errA(p∗

Ā,B) ≤ errA(pĀ)?

Two new measurements, similarity and regularity, are required to answer this
question.

3.4.3. Similarity and Regularity. The conditions required to guaran-
tee an improvement of posterior CPM estimates over raw CPM estimates are
stated in terms of the similarity of the support and target tasks and the reg-
ularity of the target task. To be more precise, a bound is required on the
dissimilarity of the two tasks and the irregularity of rules within each similar-
ity class when evaluated on the active task.

The dissimilarity of two tasks is defined with respect to a similarity relation
between rules for the tasks. It is essentially a measure of how much the tasks’
CPM priors vary across all of the similarity classes.

Definition 3.15. Given a similarity relation ∼ defining similarity classes
[r] over a rule set R ⊆ dom(RA, RB)∪ dom(RB, RA) the dissimilarity of tasks
A and B is defined to be

δR(A, B) = ∆R(qA,qB)

where RA and RB are the rule spaces for task A and B respectively. This quan-
tity is just the average difference between the similarity-based prior functions
qA and qB taken over all the similarity classes for R.

The reason the rule set R must be in the domain of either the mapping
from RA to RB or vice versa is to ensure that both prior CPM functions are
defined for every rule in R.

In terms of the Book World example, the dissimilarity between two tasks is
computed by comparing the prior CPMs for each task over the four similarity
classes C0, Cs, Cg and Cgs. Using Table 3.3 as reference again, the dissimilarity
between the learning tasks for Scott and Harry’s preferences can be determined
by noticing that of the four rules used to form the columns of the table each
fall in a different similarity class. Averaging the differences of these CPMs
over all the admissible rules for Harry’s examples yields a value of 0.294. This
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is also the average CPM difference between Tina and Scott’s tasks assuming
that the best rule to describe Tina’s preferences is GS whereas the dissimilarity
between Tina and Harry’s tasks under this assumption is zero. These values
sit well with the fact that GS and GH (the rule describing Harry’s examples)
are both in the same similarity class but GS and SS (the rule describing Scott’s
examples) are not.

Dissimilarity describes how different the the average CPM values in each
similarity class are between two tasks. However, knowing that the dissimilarity
between two tasks is low is not enough to ensure that incorporating these values
as priors will reduce CPM error. It is possible that rules within a similarity
class could have wildly different true CPM values on a support and target task
but exactly the same mean. What is needed is some measure of the variance
of CPM values for a task. This variance will be called the irregularity of a task
and is defined as follows.

Definition 3.16. The irregularity γR(A) of a similarity relation ∼ with
respect to the task A over the rules in R is a measure of how much rules
within each similarity class differ from the similarity-based average for that
class. Specifically,

γR(A) = ∆R(pA,qA).

The irregularity of all three tasks in the Book World domain is zero which
means that within each similarity class true rule CPMs are all identical. This
can be better understood by considering the CPM for the admissible rules for
Harry’s task. For this task, the class C0 only contains the rule T and so trivially
has zero variance. The class Cs has two admissible rules, each of which cover
one positive and two negative examples. Similarly, the class Csg contains three
admissible rules, each covering a single positive example. The only admissible
rule in the class Cg is GH and so this class also has zero variance.

Dissimilarity and irregularity together can be used to compare the CPM
priors for one task with the actual CPMs of another task. This comparison is
needed to prove the central theorem of this chapter and so it is stated below
in full.

Lemma 3.17. Given a target task A and a support task B, if R ⊆ RA is a
subset of the admissible rules for A then the CPM function distance between
qB and pA satisfies

∆R(qB,pA) ≤ δR(A, B) + γR(A).
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Proof. The triangle inequality for ∆ implies that

∆R(qB,pA) ≤ ∆R(qB,qA) + ∆R(qA,pA) = δR(A, B) + γR(A)

by the definitions of the dissimilarity and irregularity. �

3.4.4. The Transfer Theorem. Enough conceptual machinery is avail-
able to state and prove the main theorem of this chapter. In simple terms, this
theorem states the conditions which guarantee when using similarity-based
classification probability estimates will be closer to the true probabilities than
raw estimates. These conditions require that the dissimilarity between the
support and target task and irregularity of the target task be less than the
error of the raw estimates. This is stated more formally below.

Theorem 3.18. Let A be a target concept and B be a support concept with
sets of rules RA and RB respectively with some similarity relation defined over
their union. Suppose that Ā is some subset of the examples of A and let pĀ be
the raw CPM estimate function for concept A based on the examples in Ā. Let
p∗ = pĀ,B be the posterior CPM function for concept A using examples Ā and
the set of examples B as a support task. The average CPM errors on concept
A for these two CPM functions satisfy

(3.1) errA(p∗) ≤ errA(pĀ)− M

N + M

Pr(D)

Pr(RA)
ε

where ε ≥ 0 is the difference between the raw CPM error over the rules in
D = dom(RA, RB) and the sum of the dissimilarity between A and B and
irregularity of A. That is,

ε = ∆D(pĀ,pA)− (δD(A, B) + γD(A)).

Proof. Let K = ker(RA, RB) be the kernel of the prior CPM function
qB. By definition, the intersection of the kernel and domain D is empty and
the rule space RA for the target task satisfies RA = K ∪D. The average CPM
error of p∗ is the average CPM distance between that estimate and the true
CPM function pA over the admissible rules for A. Since the posterior CPM
function is defined to be pĀ on the kernel of the prior function the application
of Proposition 3.13 implies that

(3.2) errA(p∗) =
Pr(D)

Pr(RA)
∆D(p∗,pA) +

Pr(K)

Pr(RA)
∆K(pĀ,pA).
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For the rules in the domain D of the prior CPM function the definition of p∗

means that the first term in the above equation can be expanded to

∆D(p∗,pA) = ∆D

(
N

N + M
pĀ +

M

N + M
qB,pA

)
= ∆D

(
N

N + M
pĀ +

M

N + M
qB,

N

N + M
pA +

M

N + M
pA

)
≤ N

N + M
∆D(pĀ,pA) +

M

N + M
∆D(qB,pA)

with this final inequality due to the linearity property of Lemma 3.13. Substi-
tuting this back into equation 3.2 and using the fact that

(
N

N + M
+

M

N + M
)∆K(pĀ,pA) = ∆K(pĀ,pA)

some rearrangement of the terms yields

errA(p∗) ≤ Pr(D)

Pr(RA)

[
N

N + M
∆D(pĀ,pA) +

M

N + M
∆D(qB,pA)

]
+

Pr(K)

Pr(RA)

[
N

N + M
∆K(pĀ,pA) +

M

N + M
∆K(pĀ,pA)

]
=

N

N + M

[
Pr(D)

Pr(RA)
∆D(pĀ,pA) +

Pr(K)

Pr(RA)
∆K(pĀ,pA)

]
+

M

N + M

[
Pr(D)

Pr(RA)
∆D(qB,pA) +

Pr(K)

Pr(RA)
∆K(pĀ,pA)

]
.(3.3)

The term multiplied by N
N+M

in the final sum is equal to ∆R(pĀ,pA) by the
application of Lemma 3.13 again, which, by definition, is errA(pĀ). Inside the
term multiplied by M

N+M
the value of∆D(qB,pA) cannot be greater than the

sum of the dissimilarity of A and B and irregularity of B over I by Lemma 3.17.
The conditions of this theorem require that this same sum be bounded by
∆D(pĀ,pA), which together implies

∆D(qB,pA) ≤ δD(A, B) + γD(A) = ∆D(pĀ,pA)− ε.

Substituting these two results back into the terms in 3.3 gives

errA(p∗) ≤ N

N + M
errA(pĀ)

+
M

N + M

[
Pr(D)

Pr(RA)
(∆D(pĀ,pA)− ε) +

Pr(K)

Pr(RA)
∆K(pĀ,pA)

]
=

N

N + M
errA(pĀ) +

M

N + M
errA(pĀ)− M

N + M

Pr(D)

Pr(RA)
ε

= errA(pĀ)− M

N + M

Pr(D)

Pr(RA)
ε
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where the second to last step is once again due to Lemma 3.13. Since ε ≥ 0

this proves that the posterior CPM estimate has a lower average CPM error
than the raw estimate. �

The amount that the posterior estimate will reduce the CPM error com-
pared to the raw CPM estimates is given the term

M

N + M

Pr(D)

Pr(RA)
ε.

The maximum value this difference can take is ε. This occurs when M is very
large relative to N and the domain of the similarity map from RA to RB is
the whole of RA. Conversely, if M is chosen to be small relative to N or there
are a small proportion of rules in RA that are similar to rules in RB then the
guaranteed reduction in average CPM error will be limited.

It is trivial to check that conditions and implications of the theorem hold
for the calculations on the Book World example. As determined above, the
dissimilarity between Harry’s reading preferences and Tina’s preferences, as-
suming they are actually described by the rule GS, is zero. So too is the
irregularity of the rules on Tina’s learning task. The CPM error of the raw
estimates based on the three examples of Tina’s preferences is approximately
0.285. This is greater than zero and therefore greater than the sum of the
dissimilarity and irregularity just described. The implication of the theorem
guarantees that the posterior CPM estimates using Harry’s example as sup-
port must be less than the raw CPM estimates regardless of the choice of M

parameter. This can be checked explicitly for the case when M = 3 as the
posterior error is 0.142 compared to the raw error of 0.285.

3.4.5. Discussion. The main purpose of the transfer theorem is to show
that the dissimilarity and irregularity measures for tasks are meaningful when
using those tasks for similarity-based transfer. The theorem shows that low
values for these quantities will ensure that the posterior estimates will outper-
form a raw estimate in terms of reducing average CPM error. It is important
to note that average CPM error is a fairly rough measure of improvement. A
posterior CPM error that is lower than a raw CPM error does not necessar-
ily mean that the CPM error for any particular rule is better. This makes it
difficult to say anything concrete about whether using such an estimate in a
learning system will result in a theory containing rules with higher accuracies.
To properly analyse when more accurate rules will be induced by a system
much more information is required about the evaluation function used and the
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other types of bias in the system. The analysis of CPM error in the above the-
orem was a way to say something weaker about CPM estimates that applies
to a broader range of learning algorithms.

There are several other practical short-comings to the theory developed
in this chapter. The first and most important is that the key measurements,
dissimilarity and irregularity, are defined in relation to the true CPM values
for the target and support tasks. In practice these are not known ahead of
time so it is not possible to use these measurements to select support tasks
that will guarantee estimation improvements. It may be possible however
to estimate these measurements from available training data and use these
quantities to guide support task selection. As the focus of this dissertation
is on the inductive transfer and not automatic bias selection this avenue of
investigation is left as future work.

The other practical hurdle to using posterior CPM estimates is that they
can potentially be very expensive to compute. In the Book World example
there are only 12 possible rules spanning four similarity classes which means
that prior CPMs can be computed with little computational expense. On more
practical problems the rule spaces under consideration may contain hundreds of
thousands of rules. To compute a single prior CPM for a rule every rule similar
to it must be determined and tested on the support task. Task irregularity
is also an issue since, as the transfer theorem shows, this is part of what
determines whether a posterior estimate is of any value. For task irregularity
to be low when rule spaces are large and complex a similarity relation will
need to define many classes. This potentially places the burden of defining a
complex similarity relation on the user of this system. To rectify some of these
practical problems, a refinement of posterior CPM estimation is proposed in
the next section.

3.5. Description-based Transfer

The previous section described a mechanism based on rule similarity that
can be used to transfer an evaluation bias, in the form of a CPM prior function,
from a support task to a target task. The earlier discussion used a very general
definition of similarity as an equivalence relation over rules. In philosophy and
psychology, it has been argued that “for similarity to be a useful construct, one
must be able to specify the ways or respects in which two things are similar”
[Medin et al., 1993] and that similarity without reference to these respects is
“invidious, insidious, a pretender, an impostor, a quack” [Goodman, 1972].

This section attempts to turn the theory developed above into a more useful
construct through the use of a less abstract type of similarity relation which
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compares descriptions of rules. A rule description is a vector of attribute values
which capture syntactic features of a rule. The rule features, or descriptors,
are the respects by which rules are compared. Assuming that descriptors are
independent this decomposition of the similarity relation allows for a much
more tractable approach to computing prior CPM functions. It also paves the
way for the descriptor templating system described in the next chapter. This
allows a user of such a system to quickly and easily define a similarity relation.

3.5.1. Rule Descriptions. A descriptor is an attribute that provides
some information about properties of a rule such as its length, the tests it
performs or the constants it contains. The features used to define similarity
classes for the Book World example are instances of descriptors. One of these
features determines whether or not a rule has a condition that tests the genre
of a book. The other feature checks for whether the size of a book is tested by
a rule. Both of these fit the following definition of a descriptor, as does any
function that maps a rule to a unique value.

Definition 3.19. If R is a set of rules a descriptor is any function d : R→
Vd. The set Vd are called descriptor values for d. A collection of descriptors
D = {d1, . . . , dK} with the same domain R is called a descriptor set and can
be used to construct a description function d : R → Vd1 × · · · × VdK

which
maps each rule r ∈ R to its description d(r) = (d1(r), . . . , dK(r)) which is,
essentially, an attribute-value vector for rules.

When two or more rules share a common set of features we can say they
are similar with respect to those features. Given a set of descriptors D and
its associated description function d we can define a description similarity
relation r1 ∼d r2 that holds for rules r1, r2 ∈ R if and only if d(r1) = d(r2).
This relation is a similarity relation since reflexivity, symmetry and transitivity
are all inherited from the equality relation used to compare descriptions. The
equivalence classes that arise from this definition of description similarity can
be identified by the description shared by its members.

The use of rule features is not a new idea. The evaluation functions dis-
cussed in Section 2.3.5 of the previous chapter take features of rules, such as
their length and number of free variables, into account when making an assess-
ment of rule quality2. The term “descriptors” for rule features was borrowed
from Bensusan [1999, §4.5] who uses it to denote features of decision trees such
as the “number of nodes per attribute”, “maximum tree depth”, “tree shape”,
“homogeneity” and “imbalance”. The definition of descriptors proposed here is
2For more examples see the discussion of complexity estimates in [Fürnkranz, 1999, §4.3.2]



3.5. DESCRIPTION-BASED TRANSFER 87

Table 3.4. The description classes defined by the Book World
example description function given in the text, their correspond-
ing similarity task and the rules they contain.

Description Similarity Class Rules
[n, n] C0 T
[y, n] Cs SS, SL
[n, y] Cg GS, GH, GR
[y, y] Csg SSGS, SSGH, SSGR, SLGS, SLGH, SLGR

intended to capture the general idea of extracting pertinent features from the
rule or model under consideration.

3.5.2. Description Examples. The similarity classes used in the Book
World example can be viewed as descriptions by defining two boolean descrip-
tors which map rules onto the values y or n. The first descriptor ds will return
the value y if the rule it is applied to contains a condition which tests the size
of a book and will return n otherwise. Similarly, the second descriptor dg will
return y or n depending on whether or not a rule tests the genre attribute
of a book. The rule description function in this case can be defined to be
d(r) = [ds(r), dg(r)]. Each of the four possible descriptions returned by this
function correspond to one of the similarity classes described in Section 3.3.2
above. Table 3.4 lists all four descriptions along with their corresponding sim-
ilarity class and the rules contained within them.

Defining similarity classes in this way has several advantages. Firstly, cre-
ating tests for two conditions separately is easier than attempting to define a
function that classifies a rule into one of the four possible description classes.
Each time a new binary descriptor is added the number of possible similarity
classes is doubled. This means a fine-grained collection of similarity classes
can be defined with a relatively small number of descriptors. Secondly, simi-
larity classes are easier to understand as an attribute vector than as abstract
equivalence classes. Finally, and most importantly from an implementation
perspective, descriptions (unlike general similarity classes) can be decomposed
into their constituent descriptors which allows for an efficient method of com-
puting CPM priors.

3.5.3. Decomposing Description Similarity. The following derivation
underlies an efficient approach to computing CPM priors. It begins by applying
Definition 3.7 to the description-based similarity relation just described:

qij(r) = Pr
(x,y)∈E

r′∈R

(r(x) = i, y = j|r′ ∈ d(r)).
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Using Pr(i, j|d(r)) as shorthand for this probability, Bayes’ identity allows
each classification prior to be expressed as

qij(r) = Pr(i, j|d(r)) =
Pr(i, j)

Pr(d(r))
Pr(d(r)|i, j).

The description d(r) = (d1(r), . . . , dn(r)) in the above equation is a vector of
descriptor values. By naïvely assuming that these values are all independent,
the final term on the right hand side can be expanded as the product of the
probabilities Pr(dk(r)|i, j) resulting in what will be called the naïve CPM prior.

Definition 3.20. The naïve classification probability matrix for the rule r

given a descriptor set D = {dk}nk=1 is the classification probability matrix q(r)

with entries

(3.4) qij(r) =
Pr(i, j)

Pr(d(r))

n∏
k=1

Pr(dk(r)|i, j).

All the probabilities in this equation can be derived from the probabilities
Pr(i, j, dk(r)) which will be called the ij descriptor frequency of dk for the
value v = dk(r) and will be denoted φij[dk, v]. The values for Pr(i, j) will be
called the class priors. The efficient estimation of these probabilities is the
topic of the next chapter.

Simplifications like this one are not uncommon in machine learning. Even
when such a naïve Bayes assumption is known not to hold techniques like this
can still lead to reasonable results [Domingos and Pazzani, 1997]. Decompos-
ing a description function into n descriptor functions in this way can be seen as
creating n different similarity partitions of the rule space. Information regard-
ing CPM priors is computed for each of these partitions and then combined by
overlaying the partitions. The CPM prior at each intersection of these overlaid
classes is then calculated as the product of the descriptor frequencies for the
separate layers.

In terms of the theory developed earlier in this chapter this decomposi-
tion has some consequences. The transfer theorem will hold for each of the
descriptors considered alone as a similarity relation. If the descriptors really
are independent the naïve prior will be identical to the original one and so
the theorem will hold for their combination. However, it is less clear whether
any guarantees about reduction in CPM error can be given for the naïve CPM
priors when the independence assumption does not hold. The impact of this
assumption and decomposition is examined empirically in Chapter 5. Mod-
ifying the theory developed in this chapter to take into account description
decomposition is left as an avenue for future research.
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3.6. Discussion and Related Work

The transfer of evaluation bias based presented in this chapter is, to the
author’s knowledge, a previously unexamined form of inductive transfer. In
its general form this new approach allows for the explicit inclusion of expert
knowledge at the level of hypothesis evaluation. This is achieved through a
Bayesian method of combining raw classification probability estimates with
prior values based on extra-evidential properties of the hypothesis being eval-
uated. Constructing these priors by hand would be difficult in general so the
method proposed here includes a method for defining these based on exam-
ples from a support task and a relation that defines the respects in which
hypotheses are thought to be similar.

As a whole, this approach is novel but its development has been strongly
influenced by other work which falls under the overlapping banners of “learning
to learn”, “meta-learning”, “bias learning”, “multitask learning”, “transfer learn-
ing” and “empirical Bayes”. It has also drawn upon research that advocates the
use of Bayesian methods for single-task learning. This final section compares
similarity-based transfer of evaluation bias to the relevant parts of the existing
work before closing with a discussion of its parameters.

3.6.1. Classification Priors. The use of Bayesian priors when estimat-
ing classification probabilities is not without precedent. The definitions and
nomenclature used here were deliberately chosen to reflect those used by Ces-
tnik [1990] in his paper proposing the use of the m-estimate for avoiding zero
estimates of probabilities in classifiers. In that paper, m−estimates of precision
are given by p∗ =

n+++mq

n+++n+−+m
where the prior q is taken to be the proportion of

positive examples in the training set and the value m is a parameter analogous
to the M used here. This now commonly used technique has been recently
generalised by Fürnkranz and Flach [2003] as part of their study of evaluation
metrics. The prior used in the generalised estimate is set by an expert to
reflect knowledge about class distribution or misclassification costs.

The main difference between the m-estimate and the CPM estimates intro-
duced in this chapter is that the original and generalised m-estimates are used
as substitute evaluation metrics for the precision metric. In contrast, CPM
estimates can be used as input to any standard evaluation. With an appropri-
ate choice of priors qij for a CPM estimate the m-estimate can be derived by
using the posterior estimates p∗

++
and p∗

+− to compute a classifier’s precision.
It is also important to note that, unlike the priors for CPM estimation which
can vary from rule to rule in order to break ties, the m-estimate prior is kept
fixed when it is used for evaluation.
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Other Bayesian approaches to rule learning, such as Lime [McCreath and
Sharma, 1998, McCreath, 1999] and the positive-only learning used in the
ILP system Progol [Muggleton, 1996], use priors that vary from rule to
rule. These systems randomly generate unclassified instances to obtain better
estimates of the cover or generality of a rule. These estimates are then used
as part of the system’s evaluation heuristics to penalise over-general rules,
forcing specialisation in the absence of negative examples. These differ from
the present work in that they focus on learning from single tasks and therefore
do not make use of support tasks. An interesting avenue for future research
would be to investigate whether CPM priors learnt on a support task with
both positive and negative example would allow for positive-only learning on a
target task with no negative examples. Small general rules for these tasks will
inadvertently have large priors for their false positive rate while more specific
ones will have smaller prior false positive rates thereby biasing a learner to
specialise.

Although not directly related, Cussens [1998] has investigated the use of
rule priors in a first-order context with applications to part-of-speech tagging.
In his approach the rule priors are explicitly provided by an expert through
a Prolog program. The training examples are then used to determine the
posterior probabilities and clauses are selected using a MAP algorithm. Priors
for rule classification probabilities are not the same as priors over rules although
the links between the two deserve further investigation.

At first glance, modifying CPM estimates with a prior may bear a resem-
blance to techniques such as boosting [Freund and Schapire, 1995] or example
weighting for cost-sensitive learning [Zadrozny et al., 2003]. Although these
methods and the use of CPM priors modify the way a learner evaluates models
against training instances the approaches are not equivalent. To see this it is
enough to notice that a CPM prior may introduce a non-zero estimate for p+−

for some rule even though that rule does not falsely predict a positive label
for any of the negative training instances. Therefore, the effect of that prior
on the rule’s evaluation cannot be achieved by a reweighting of the training
examples.

3.6.2. Empirical Bayes. In statistics, choosing values for model priors
based on data is known as “empirical Bayes” [Carlin and Louis, 2000, Robbins,
1956]. In standard Bayesian inference the probability Pr(θ|x) for a model θ

given some observations x is dependant on the prior probability Pr(θ). In
empirical Bayes it is assumed that this prior over θ is controlled by some
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hyper-parameter η and that an approximation for the distribution over η can
be estimated from the observations or any other available data.

In the method proposed in this chapter, observations of a rule r’s clas-
sifications on a training set are used to infer the mean p∗(r) of most likely
multinomial distribution over classifications. This distribution is controlled by
the hyper-parameters q(r) and M where values for the former have been esti-
mated using the performance of rules similar to r on other classification tasks.
What makes the method proposed here more than a straight-forward appli-
cation of empirical Bayes is the use of descriptors to aggregate and transfer
estimates between similar rules.

The application of empirical Bayes to the estimation of classification prob-
abilities has also been explored by Latinne et al. [2001]. In their work an
iterative EM algorithm is used to estimate classification priors from a set of
unclassified instances. These priors are then used to compute the posterior
probabilities for the class labels over the same set of instances. The efficacy of
this approach is demonstrated on a remote sensing task using logistic regres-
sion. While this approach does not do inductive transfer two recently proposed
algorithms by Marx et al. [2007] use a similar technique but with priors learnt
from related support tasks rather than the test instances. In the same vein,
Raina et al. [2006] have described an algorithm for text classification that
estimates covariance parameters between words based on data from similar
classification tasks. These estimates can be used to relax a commonly used in-
dependence assumption regarding word appearances used in text classification
problems.

Several other approaches to inductive transfer and multitask learning can
be viewed as a type of empirical Bayes. For example, the bias learning methods
of Baxter [2000], Heskes [2000], Pfahringer et al. [2000], Oblinger et al. [2002]
all use training data from support tasks to determine which part of a large
hypothesis space is most likely to contain useful hypotheses for a target task.
All of these approaches enforce a language bias on the hypothesis space when
learning a novel new task in contrast to the evaluation bias imposed by the
similarity-based transfer approach presented here.

3.6.3. Multitask Learning. The approach to inductive transfer pro-
posed here can be seen as a symbolic analogue of the neural network-based
multitask learning systems of Silver and Mercer [1998, 1995], Silver [2000],
Caruana [1997] and Baxter [1995]. In particular, the use of transfer and con-
solidation phases closely resembles those of the Task Rehearsal Method (TRM)
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[Silver, 2000]. This also uses the idea of “virtual examples” to modify the be-
haviour of learning on the target task. The main difference between his method
and the one proposed here is that the neural network models learnt from earlier
tasks are kept by the TRM. Randomly chosen input values are fed through the
stored networks to create extra examples that can be learned from in parallel
to those for the target task. In contrast, earlier task solutions are not remem-
bered in similarity-based transfer and the virtual examples are actually just
changes to the contingency table.

In the symbolic realm, Caruana [1997] suggests how his multitask learning
(MTL) approach can be applied to the top-down induction of decision trees.
Both that approach and the one described here change how the base learner
searches the hypothesis space by modifying the way it assesses the quality
of its decisions. Caruana’s proposal modifies the gain heuristic that decides
which split to add to a decision tree by making the decision based on exam-
ples from target and support tasks. This is more akin to direct transfer than
the similarity-based approach advocated here. At present, description-based
transfer is not applicable to gain heuristics so a straight-forward implementa-
tion for decision tree learning would try all possible splits, construct new trees
for each and decide which is best based on features of the resulting trees in
their entirety.

Zhang and Zhang [2002, Chapter 7] describe a method for improving eval-
uation for association rule mining from small databases by making use of sec-
ondary databases. When computing the support, recall and precision of a rule
for the small database these assessments are also made relative to the larger,
secondary database. Unlike similarity-based transfer, no attempt is made to
consider the evaluation of rules other than the one under consideration making
their approach a form of direct transfer.

3.6.4. Task Similarity. “What does similar mean?” is a central question
in all forms of inductive transfer. In the theory proposed here, similarity
between tasks is defined relative to a similarity relation over the candidate
hypotheses for the tasks. In this work, two tasks are similar if the average
CPMs for each similarity class do not differ too greatly. The transfer theorem
shows that if two tasks are similar and regular enough then the estimates
using classification priors derived from the support task will improve on the
estimates made on the target task without those priors.

The use of similarity classes to partition a hypothesis space is also the
basis of recent work by Ben-David and Schuller [2003]. In their framework, a
family of instance transforming functions F is assumed. It is further assumed
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that this collection of transformations is a group under composition and that
the hypothesis space is closed under actions of the group. That is, if for every
hypothesis h in some hypothesis space H and for every transformation function
fi ∈ F the hypothesis h ◦ fi ∈ H. This notion captures the idea of concept
invariants such as rotations and scaling when learning from sets of images. The
group of instance transformations induce an equivalence relation (and therefore
a partition) over the set of hypotheses. Namely, two hypotheses h′ and h are
equivalent whenever h′ = h ◦ f . This use of equivalence classes is analogous
to the one used in similarity-based transfer. The primary difference between
the two approaches is how these similarity classes are used. Given a set of
tasks {Ti}, Ben-David and Schuller’s meta learner finds a single equivalence
class that contains hypotheses for each task which, together, have the lowest
average classification error. Then, when a new task is presented, it is assumed
that its concept must also come from the best class found in the previous
step. This approach therefore transfers a language bias between related tasks
in contrast to the evaluation bias that is transferred by the approach presented
here.

As part of his Ph.D. thesis, Silver [2000] investigated a number of measures
of “relatedness” for multitask learning with his ηMTL system - an extension of
the original multitask learning (MTL) [Caruana, 1997]. Whereas normal MTL
has a single learning rate η for all output nodes for a shared neural network,
Silver’s version uses a different ηk for each output node corresponding to a
support task Tk. This learning rate determines the amount of influence the
task will have during the training of the network. Silver proposes that the
learning rate for each task be ηRk where η is some base learning rate and Rk

is some measure of relatedness between the support task Tk and primary task
T0. The suggested Rk measures take into the account of the training errors
of the support tasks learnt in parallel, their structural similarity to the target
task such as the Euclidean distance or cosine of the angle between the weights
from the common feature layer to the output nodes taken as a vector vk for
the target task and support task. All these measures are defined to address
multitask learning using artificial neural networks and it is difficult to see how
they might be generalised to measure relatedness in other learning contexts.

More recently, Juba [2006] has suggested a general and intuitively appealing
definition of task similarity based on Kolmogorov complexity [Li and Vitanyi,
1997]. His work provides PAC sample complexity bounds of O(K(h)/n) for
fixed ε and δ where K(h) is the joint Kolmogorov complexity of the n hypothe-
ses h = (h1, . . . , hn). This refinement of Baxter’s O(1/n) sample complexity
bound [Baxter, 2000] indicates that the number of examples required for good
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generalisation decreases with the number of tasks being learnt simultaneously
and the combined compressibility of the tasks when taken together. Ties be-
tween complexity-based similarity and description-based similarity would be
an interesting avenue for future research.

3.6.5. Transfer parameters. In the definition of inductive transfer pre-
sented above, the prior function q depends on three parameters: the support
task examples, the set of rules evaluated on those examples, and the choice
of similarity relation. The appropriateness of a prior built in this manner will
depend entirely on those choices. As discussed briefly in the introduction, Tur-
ney [2000] would call the cost of setting these parameters and choosing support
tasks the “HCI (human-computer interaction) cost of Parameter Setting” and
the “HCI cost of Incorporating Domain Knowledge” respectively. Ideally, these
should have a lower HCI cost than explicitly creating a prior function by hand
or selecting another kind of bias manually. To achieve this, it will be useful
to determine some good default settings for the transfer parameters wherever
possible.

The M parameter sets the importance of the prior CPM q relative to
the CPM p based on a training set of size N . The ratio M : N determines
the strength of the prior’s influence on the evaluation of a candidate rule or
hypothesis. If M and N increase proportionately the influence of the prior
will remain constant. This suggests that a default choice of M should be an
increasing function of the training set size N . One such function is M =

√
N .

Some theoretical justification can be given for this choice with reference to
Section 3.2. The values in the virtual contingency table m of size M are all
parameters for the Dirichlet distribution of prior values in p. When there are
N training examples used to estimate p the maximum likelihood estimate for
M is given by

√
N . The details of this derivation are beyond the scope of this

thesis and the interested reader is referred to [Bishop et al., 1975, pg. 407].
The use of

√
N as a default setting for the parameter M is tested empirically

in Chapter 5.



In our theories, we rightly search for unification, but real life
is both complicated and short, and we make no mockery of
honest ad hockery

- I. J. Good [1965, pg. 56]





CHAPTER 4

Deft: An Implementation of Description-Based Transfer

As described in the last chapter description-based inductive transfer is a
bias learning technique which modifies a rule learning algorithm’s evaluation
function. Examples from support tasks are used to calculate the expected clas-
sification probability matrix for a rule based on the classification matrices of
similar rules evaluated on the support task. This expected CPM is then com-
bined with the standard evaluation process used by the base learner to improve
the quality of the evaluation estimates and, in turn, improve the generalisa-
tion performance of the base learner when applied to a target task. To test
this claim empirically, as done in the next chapter, an implementation of this
approach is required. The aim of this chapter is to describe how this approach
can be realised for tasks which use a first-order clausal representation for rules.
To implement the description-based transfer technique as a system that can be
applied to real learning tasks several complications and inefficiencies must be
overcome through the application of some “honest ad hockery”. The resulting
system is called Deft, Description-based Evaluation Function Transfer.

Section 4.1 provides a high-level view of all of the components and algo-
rithms used in Deft and how the final system is to be used in practice. Critical
to all of the components is the efficient computation of rule descriptions. To
this end, Section 4.2 introduces the concept of descriptor templates. As the
name suggests, these are a kind of “meta-descriptor” from which specific in-
stances of descriptors can be derived. These not only make it easier to specify
descriptor sets but allow for rule descriptions to be computed efficiently. The
next two sections describe the two central algorithms within Deft. Section 4.3
presents the BuildDFT algorithm which collects estimates of descriptor fre-
quencies by sampling and evaluating clauses on a support task. The resulting
Descriptor Frequency Table (DFT) is used by the CalcPrior algorithm when
Deft is required to compute classification priors for rules on a target task.
The details of this second algorithm are given in Section 4.4. Borrowing terms
from Silver [2000], the first algorithm is a method for consolidating support
task knowledge while the second is for the transfer of that consolidated knowl-
edge. An example of consolidation and transfer using Deft is provided in
Section 4.5. It makes use of five artificial learning tasks similar to the reading
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preferences examples used in earlier chapters. These tasks are also reused in
the experimental evaluation of Deft in the next chapter.

4.1. System Overview

As with all the systems reviewed in Section 2.5, the one described here
consists of a base-level learning component - a slight modification of Aleph
- and a meta-level learning component, Deft. An overview of how these
components interact is shown in Figure 4.1. The base-level learning algorithm
Aleph takes as input a set of target examples and outputs a set of rules. The
specific rules chosen for inclusion in the output are a result of the language,
search and evaluation biases of the SeqCover algorithm. The language and
search biases are set, as usual, through the choice of background predicates and
the selection of the various search parameters as described in Section 2.3.2. The
evaluation bias, however, is a combination of the choice of evaluation function
for the given task and the bias imparted by Deft. When a rule is evaluated by
the FindRule procedure within SeqCover the resulting contingency table
is augmented with a classification prior for the rule that is determined by the
CalcPrior procedure described in Section 4.4 below. The prior used depends
on what is called a Description Frequency Table or DFT and the descriptors
that were used to construct it. Both of these terms are defined in Section 4.3
along with the BuildDFT algorithm. As shown in the figure, the DFT output
by BuildDFT depends on the choice of support task that is given as input
to Deft. This, in turn, is what affects the evaluation bias of the base-level
learner.

This combination of Deft and Aleph is intended to be used as follows. A
domain expert wishes to induce a set of rules for a target task with a limited
number of training examples. Examples of other, related tasks are available
and the domain expert selects one of these as the support task. The support
examples are passed in to the BuildDFT procedure along with a set of de-
scriptors defining the rule features believed to capture the similarities between
the target and support tasks. The BuildDFT procedure then constructs a
DFT from these inputs which can be saved to file. To induce rules for the
target task its examples and background knowledge are given to Aleph and
a previously constructed DFT is passed to Deft. The induction of rules by
Aleph proceeds as normal with the evaluation function used to assess each
rule modified using the CalcPrior procedure. An example use of Deft in
this manner is provided in Section 4.5 below.
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Figure 4.1. The base level learner with detail of the Deft learner.

4.1.1. Requirements. There are two main design requirements for the
implementation of Deft: speed and ease of use. The first requirement is to
ensure that using description-based transfer does not add too much compu-
tational overhead while the aim of the second is to make using Deft more
appealing than constructing a declarative or preferential bias by hand.

Using a direct implementation of description-based transfer, as described in
the previous chapter, would be cumbersome. Defining a similarity relation for
rules requires a descriptor set to be specified in advance. To define descriptors
similar to those used in the examples of the previous chapter requires prior
knowledge of the predicates and constants that are used in the legal clauses
for a task. Descriptor templates, introduced in Section 4.2 below, provide a
way for descriptors to be generated dynamically during transfer, removing the
burden of descriptor definition from the user.

Making description-based transfer efficient is the more difficult requirement
to meet. In general, the set of similar rules to average over may be very large
or infinite, making the computation of an exact prior costly or impossible.
As this procedure needs to be carried out every time a rule is evaluated it is
crucial that its implementation be efficient. To achieve this, the computation
of exact priors are given up for their estimates. The main concession made
in the name of efficiency is to assume that all descriptors used for transfer
are independent of one another as discussed in the previous chapter. That is,
when two descriptors are applied to a rule, the value of one has no bearing on
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the value of the other. While this is not true in general, this assumption allows
the computation of classification priors to be reduced to the estimation of how
frequently particular descriptor values and class labels co-occur. As described
in Section 4.3.2, this can be achieved by repeatedly sampling and evaluating
clauses from the support task.

4.1.2. The Meta Learner: Deft. The computation of classification
priors for use by the base learner is carried out by the meta learning compo-
nent Deft. This computation is split into two phases. In the consolidation
phase the BuildDFT procedure is run over the support examples to collect
statistics about rule descriptions and performance which is stored in a de-
scriptor frequency table or DFT. In the transfer phase the base learner within
Deft is run on the target examples. Whenever the base learner evaluates a
rule on the target examples, the CalcPrior procedure is called to compute
a classification prior for that rule based on the information stored in the DFT
built from the support task.

The two main algorithms in the Deft system are BuildDFT and Cal-
cPrior. First, a support task is used to estimate the frequencies φij[d, v]

for all the appropriate descriptor and value pairs [d, v]. This is performed by
the BuildDFT algorithm. Once these are collected and stored in a DFT the
second algorithm CalcPrior uses them to estimate the probabilities Pr(i, j)

and Pr(d(r)|i, j) whenever a prior q(r) is required for the rule r.
There are several advantages to the use of support task summaries such as

DFTs. Firstly, a summary generally requires less storage space than the exam-
ples used to generate it. Secondly, the summary allows for the fast computation
of CPM priors. Thirdly, the summaries can be used to modify the evaluation
bias on different target tasks, removing the need to consult the original sup-
port task examples. Finally, the DFTs provide an insight into how tasks are
related through the comparison of their descriptors and relative frequencies.

The efficient computation of rule descriptions is crucial to both the building
of DFTs and their use. Each time a rule needs to be evaluated by the base
learner, Deft is required to compute that rule’s description and use it to
construct a prior. When a DFT is built, Deft repeatedly tests rules on the
support task and counts the coincidence of each descriptor-value pair and
classification type. To do this, a descriptor must be computed for each rule
that is tested. Because this procedure is such a central one, Section 4.2 is
dedicated to computing descriptions efficiently.

4.1.3. The Base Learner: A Modification of Aleph. The base-
level component used in the implementation is a slight modification of the
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Algorithm 4 The description-based Score procedure.
1: procedure DbScore(r, E, Φ, M)
2: Compute nE(r) the contingency matrix for r on E
3: Let q = CalcPrior(r, Φ, E), the prior for r
4: Let n∗ = nE(r) + Mq
5: return f(n∗; r)
6: end procedure

Algorithm 5 The description-based Bound procedure.
1: procedure DbBound(r, E, M)
2: n = Evaluate(r, E), the contingency table for r on E

3: nmax =

[
n++ 0
n−+ n−− + n+−

]
4: mmax =

[
M 0
0 0

]
5: n∗

max = nmax + mmax
6: return f(n∗

max; r)
7: end procedure

Aleph system (see Section 2.3.2). These are modifications to the evaluation
routines Score and Bound which are called from its FindRule procedure
(Algorithm 2). The changes to the evaluation and pruning of rules carried
out during a search are to allow the combination of description-based prior
CPMs with those obtained from the target task’s training examples. These
modifications are shown in Algorithms 4 and 5.

The DbScore procedure1 differs from the original through the addition of
lines 3 and 4. These two extra steps first compute the CPM prior for the given
rule using the CalcPrior algorithm introduced below. The result is then used
to compute the contingency table Mq of M virtual examples which is then
added to the normal rule evaluation nE(r) of the rule r on the target training
examples E. This combined contingency table is passed into the evaluation
function used by Aleph to assess rule quality.

The DbBound procedure does not need to use the CalcPrior procedure
to compute a virtual contingency table as all that is required from the returned
bound is that it be larger than every value returned by DbScore for any rule
that is a refinement of the current one. The original Bound procedure achieves
this by computing the contingency table shown in line 3 and passing it to the
evaluation function. A justification for this is given in Section 2.3.2 above. The
only difference here is that the virtual contingency tables of the refinements
of the input rule r must also be taken into account. This is done by assuming
1The “Db” stands for Description-Based and is used as a prefix to distinguish these modifi-
cations from the original Score and Bound procedure.
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that the evaluation function f will only increase (or at least not decrease) by
adding extra covered positive examples to the contingency table it is passed
as input. As only M virtual examples are added to the actual contingency
table by DbScore an upper bound on the quality of refinements of r can be
found by assuming the best virtual contingency table is the one shown in line
4. While this is extremely unlikely in practice this procedure does provide a
valid, albeit weak, upper bound on the evaluation of r’s refinements.

4.1.4. Other Details. The actual implementation of Deft was written
as an extension to a modified version of Aleph 4 [Srinivasan, 2001] in Yap
Prolog 4.4.4 [Costa et al., 2005]. The extensions and modifications come to
a total of around 1000 lines of Prolog code and are freely available at http:
//threewordslong.com/research/deft/. Even though the code for Deft is
written in Prolog most of the algorithms described in this chapter are presented
in procedural pseudo-code for the sake of exposition. The exception to this is
with the code for implementing descriptors as this makes use of backtracking
and is therefore better explained using declarative code.

4.2. Computing Clause Descriptions

As described in the overview above, rule descriptions are required in both
the consolidation and transfer phases of the Deft system. Since both of these
phases require hundreds or thousands of descriptions to be computed it is
necessary that this be done efficiently. A second requirement is that it must
be easy to specify the descriptors that are to be used for a transfer between
two tasks. If too much time and thought must be spent on carefully selecting
descriptors, most of the advantage of inductive transfer will be lost and the
user may as well hand-craft a bias. Descriptor templates are introduced and
implemented in this section to address both of these requirements.

4.2.1. Descriptor Types and Sparse Descriptions. Descriptors are
used for the comparison of rules to determine whether or not they are similar.
If two rules share the same values for all of the descriptors under consideration
they are deemed to be similar with respect to those descriptors. The choice of
descriptors therefore plays an important role in this form of inductive transfer
and the scope for this choice is very large. For example, rules represented
as clauses can be compared based on the number of free variables they have,
the length of the longest variable chain, the number of unique constants used,
whether two particular literals share a variable, and so on. To begin with,
however, only three types of descriptors - called the standard descriptors - will
be considered:

http://threewordslong.com/research/deft/
http://threewordslong.com/research/deft/
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(1) The num_lits descriptor. Determines the length of a clause, i.e. the
total number of literals in the head and body of the clause. The values
returned by such a descriptor can be any non-negative integer.

(2) The has_pred descriptor. Tests whether a certain predicate is present
or absent as a literal in the clause. This type of descriptor returns
either true or false.

(3) The has_arg descriptor. Test whether a particular argument in a
certain predicate is equal to a given value. This type of descriptor
also returns true or false.

These three types of descriptor were chosen primarily for their simplicity and
ease of implementation but also because the tests they perform capture a shal-
low but natural sense of clause similarity. Arguably, a human expert comparing
two clauses would look first at their length, literals and constants to determine
if they are the same or similar. All of the experiments carried out in the next
chapter use at least one of the above descriptor types.

A useful observation can be made regarding the standard descriptors and
all of the other examples mentioned above: for any short clause most of the
descriptors being used to build a description will take on some default value.
As an example consider an instance has_pred(p/1) of the has_pred descriptor
which tests for the presence of the predicate p/1 in a clause. If there are nine
other predicates that can be used to construct clauses for a particular task the
descriptor has_pred(p/1) might only take the value true on roughly one-tenth
of the clauses it is tested on. In this sense the value false can be seen as the
default value for this descriptor and, by a similar argument, all of the others
of the same type.

Two important optimisations can be derived from the observation that
descriptors will, more often than not, take on a default value. The first is that
the size of description vectors can be reduced by storing them sparsely. This
is done by only recording the descriptor-value pairs for descriptors which take
on their non-default values.

Definition 4.1. A sparse description d is a set of descriptor-value pairs
[d, v] consisting of a descriptor d and a value v ∈ Vd.

A sparse description can be interpreted as a description vector for a de-
scriptor set D as defined in Definition 3.19 of the previous chapter. This is
done by associating a default value v0 ∈ Vd with each descriptor d ∈ D. The
value for d ∈ D in d as a description vector is then v if there exists a pair
[d, v] ∈ d or the default value v0 for d otherwise.
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The other main advantage to using default values is that descriptions can be
computed lazily since only those descriptor-value pairs with non-default values
actually need to be computed. Any descriptor not appearing in a description
can be assumed to take on its default value.

4.2.2. Descriptor Templates. Sparse descriptions for clauses can be
computed lazily using descriptor templates : functions of clauses that return
sets of non-default descriptor-value pairs. Each of the three types of descriptors
described above - has_pred, has_arg and num_lits - can be implemented using
templates. For example, when given a clause an implementation of a template
for has_pred descriptors can scan it creating the pair [has_ pred(p/n), true]

for every predicate p/n that appears in the clause. Any other has_pred de-
scriptor is assumed to return the value false on the given clause.

Definition 4.2. A descriptor template τ is a function which maps rules
to sparse descriptions. When applied to a rule r a template τ returns a sparse
description d = τ(r). Each element [d, v] ∈ d is a descriptor-value pair where
v = d(r) is a non-default value for d. The descriptor d is said to be an instance
of the template τ .

As well as having efficient implementations, the use of templates means
only the descriptor types need to be specified in advance rather than an entire
set of descriptors. This reduces the amount of effort an expert needs to expend
when setting up an environment for inductive transfer.

Given a collection of descriptor templates, a description of a rule can be
constructed by applying all the templates to the rule and taking the union
of the resulting sets of descriptor-value pairs. This procedure is detailed in
Algorithm 6 and shows how descriptions are computed within Deft. There is
an implicit assumption that the templates in T are disjoint in the sense that
every descriptor which can be constructed from a template in T is an instance
of exactly one of those templates. This requirement is very easy to ensure in
practice and holds for all of the standard descriptor types listed above.

4.2.3. Implementation. Descriptor templates for the standard descrip-
tors are, like the rest of Deft, implemented in Prolog. Each template is
defined through the predicate value/3 which asserts a relationship between
a clause, a descriptor, and a value. The relation holds if and only if the de-
scriptor would return the specified value when applied to the clause. Due to
Prolog’s backtracking behaviour, the value/3 relation can be used to create
a sparse description by finding all descriptors which return non-default val-
ues for a clause. When required, the default value for a descriptor can be
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Algorithm 6 The Describe procedure. Given a clause r and a set of de-
scriptor templates T , this procedure returns a sparse description vector for r
using descriptors belonging to T .
1: procedure Describe(r, T )
2: Let d be an empty set
3: for all descriptor templates τ ∈ T do
4: Let d = d ∪ τ(r)
5: end for
6: return the sparse description d
7: end procedure

determined with a call to default/2 which associates each descriptor with its
corresponding default value.

The Prolog code in Appendix A is the complete, working code which defines
the value/3 and default/2 predicates for the standard descriptors and the
Describe procedure of Algorithm 6. Apart from the predicates body_lits/2

and between/3 all of the code used is standard Prolog. As the name suggests,
the body_lits/2 predicate takes a clause as input and returns a list containing
its body literals. The between/3 predicate asserts that its first argument is an
integer that is greater than its second argument and less than or equal to its
third.

The descriptor templates given in the Appendix are general enough to apply
to new inductive transfer tasks. However, if more is known about a specific
pair of support and target tasks new descriptor templates can be written to
define similarities between their rules in terms of task-specific predicates. It is
relatively straight-forward to write new descriptor templates as they are similar
in complexity to writing custom search constraints in Aleph. One caveat when
writing custom descriptors is that all clauses for the value/3 predicate must be
written without cuts so that a call to value(Desc, Clause, Val) for a bound
value of Clause will return all possible bindings for Desc and Val. Taken as
pairs, the collection of all these bindings forms a sparse description of the
clause bound to Clause. The implementation of Describe as the predicate
describe/2 in the code does exactly this. Examples of template expansion are
given in Section 4.5 below.

4.2.4. Analysis and Discussion. The above discussion demonstrates
the value in using sparse descriptions and templates to represent and com-
pute descriptions respectively. However, since the Describe procedure may
be called thousands of times during the consolidation and transfer phases of
Deft, it is worth looking at the time and space complexity of the templates
more closely.
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When applied to a clause with n literals the implementation of the num_lits
template iterates through the literals to construct a list and then takes its
length. Its time complexity is therefore Θ(n), although if the data structure
used to represent clauses were modified to cache its length this could be reduced
to a constant-time lookup. As each clause only has one length, this template
will always return a sparse description with exactly one descriptor-value pair
making its space complexity constant.

As the has_pred descriptor template also converts the n body literals in
a clause to a list, it also has time complexity Θ(n). Unlike the num_lits
template, however, this cannot be reduced to constant time since all n literals
may be instances of n different predicates, requiring a has_pred descriptor to
be created for each. In this worst case, the sparse description created using
the has_pred template will contain n distinct descriptor-value pairs implying
that its space complexity is O(n).

Finally, the has_arg template has a time and space complexity of O(kn)

where n is the number of literals in the clause being described and k the
maximum arity over all of those literals. The case that forces this upper bound
is when all n literals are for different predicates and all k arguments of each
are bound to non-variable terms. In this situation, kn has_arg descriptors
will be created. Even when the predicates are not all different, a large number
of descriptors can be created when the literals’ arguments contain different
terms. As this is the most expensive of the three templates it dominates the
cost of constructing descriptions using the Describe procedure.

Compared to the cost of testing a clause against the all the training exam-
ples for a task constructing a description is relatively cheap. If necessary, the
running time could be further reduced by caching descriptions with clauses.
Each time a clause is refined during a search the description could be updated
using incremental templates which analyse the literal added or substitution
used to specialise the corresponding clause. This optimisation is left as future
work.

Describing clauses plays an integral part of Deft and the use of descrip-
tor templates ensures that these can be represented and computed efficiently.
Computing clause descriptions using descriptor templates is both time and
space efficient, not using more than linear space and time with respect to
clause length. It is also a convenient way of specifying a descriptor set for
performing inductive transfer between two tasks.
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4.3. Consolidation: Descriptor Frequency Tables

The aim of the consolidation phase in Deft is to estimate the descriptor
frequencies introduced in Definition 3.20 using examples from a support task.
As described in the previous chapter, these estimates are of the probability that
a randomly selected rule and example will result in a particular classification
and have a particular descriptor value.

Ideally, these probabilities would be computed by testing every candidate
rule against every example available for the support task and simply counting
the co-occurrence of descriptor-value pairs and classifications. While example
sets are usually of a manageable size, sets of clauses for relational learning tasks
are generally huge, ruling out an exhaustive computation. The alternative is
to sample an appropriate number of rules from the rule space and use their
evaluation on the support task to estimate the required probabilities.

A similar problem is encountered when searching [Srinivasan, 1999] and
the observation made there is that the best clauses are often not required,
merely “good” ones - that is, clauses that fall in the top 1% of all clauses when
ranked by evaluation score. This form of goal softening is known as “ordinal
optimisation” Ho et al. [1992] and is a form of “satisficing” [Simon, 1999] or
goal softening which has been advocated by other ILP researchers [Sebag and
Rouveirol, 2000].

4.3.1. The BuildDFT algorithm. As described in the overview, all
that is required by the CalcPrior algorithm is that the DFT given to it
have reasonable estimates of the descriptor frequencies φij[d, v]. Provided the
number of rules sampled by BuildDFT is large enough and representative of
the entire set, the central limit theorem implies that the descriptor frequencies
will tend towards the values they would have taken had the entire set been
used. The sampling and evaluation steps are combined in the BuildDFT
procedure shown in Algorithm 7.

The outer two loops of the algorithm control the sampling by selecting an
example, constructing a bottom from it and then repeatedly sampling from the
bottom clause. The details of the Sample procedure which is called in line 8
are discussed below. Once a clause is selected it is evaluated and the resulting
contingency table is added to entries in the hash-table s for each descriptor-
value pair in its description. The contingency table is also added to a total t

which, together with the values in s, can be used to compute the frequencies for
any descriptor-value pair. The details of the frequency extraction are described
below.
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Algorithm 7 The BuildDFT procedure. Given descriptor templates T and
examples E = E+ ∪E− sample Sexs examples and Scls clauses per example to
construct a DFT from E.
1: procedure BuildDFT(T , E, Sexs, Scls)
2: Initialise s as an empty hashtable
3: Initialise t as 2× 2 zero matrix
4: repeat Sexs times
5: Choose an e ∈ E+ randomly and replace
6: Construct ⊥ the bottom clause for e
7: repeat Scls times
8: Sample a clause r using Sample(⊥)
9: Evaluate the contingency table nE(r) for r

10: Compute the sparse description d(r) using Describe(r, T )
11: for all descriptor-value pairs [dk, vk] ∈ d(r) do
12: Initialise s[dk, vk] to a 2× 2 zero matrix if it does not exist
13: Add nE(r) to s[dk, vk]
14: end for
15: Add nE(r) to t
16: end
17: end
18: return Φ = (s, t) as the resulting DFT
19: end procedure

4.3.2. Clause Sampling. The random clause selection procedure Sam-
ple uses the same ideas and code developed by Srinivasan [1999] for the sto-
chastic search methods available in Aleph. As this procedure is central to the
construction of DFTs it is given a brief exposition here.

The first step is to estimate for each l = 1, . . . , L the number nl of clauses
of length l that are legal clauses and subsume ⊥. This is done by randomly
selecting, without replacement, l−1 literals from the body of ⊥ and forming a
clause c using these and the head literal from ⊥. Clause c can then be tested
against the mode and type restrictions for legal clauses. By repeating this
process and counting the number of legal and illegal clauses that arise, a Monte
Carlo estimate pl of the proportion of legal clauses of length l which subsume
⊥ can be derived. The number of repetitions of this process is set to 100
by default within Aleph. This proportion is then multiplied by (|⊥|−1)!

(l−1)!
(the

number of subsets of body literals in ⊥ with size l− 1) to obtain the estimate
nl. The values for n1, . . . , nL imply there are approximately N =

∑L
1 nL legal

clauses of size L or less. To draw one of these at random an integer n is first
chosen uniformly from 0, . . . , N . The aim now is to generate the nth legal clause
subsuming ⊥. One way to do this is to let l and k be the smallest integers such
that n = k +

∑l
0 ni and then deterministically generate legal clauses of length

l using, for instance, the standard refinement actions and a depth-first search.
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The kth clause generated in this way which has not already been sampled is
the one returned. Further details regarding this algorithm including ways to
improve its efficiency can be found in [Srinivasan, 1999, §3.1.1] or the Aleph
source code [Srinivasan, 2001].

4.3.3. Estimating Descriptor Frequencies. Provided enough samples
are taken, the counts and totals recorded in a DFT contain enough information
to obtain a good estimate of the descriptor frequencies φij[d, v] for the support
task. These estimates will be computed and cached once a DFT is built and
later used to construct priors during the transfer phase.

The sum of the entries in the matrix t will be exactly |E|.|R|, the number
of examples and rules that were tested against each other. This total will be
denoted t =

∑
ij tij and is used to compute the estimates φij =

tij
t

of the
classification probabilities Pr(i, j) on the support task.

As discussed in the overview, the probabilities Pr(i, j, d = v) are required
to compute a CPM prior for a clause. For the descriptor-value pairs recorded
in Φ, these probabilities are estimated by the descriptor frequencies φij[d, v] =
sij [d,v]+φij

tij+1
. The additional pseudo-Bayes terms φij in the numerator and 1 in

the denominator are to ensure these estimates are non-zero2.
The descriptor-value pairs for default values do not have their counts

recorded in Φ directly but these can be derived from the counts in s and the
totals t as follows. Because descriptors partition any rule space, the counts for
the default value v0 of a descriptor d must be the remainder after all the other
counts are subtracted from the totals table. That is s[d, v0] = t −

∑
v s[d, v].

These counts are then used in the same way as the others to compute φij[d, v0].
The procedure that uses these descriptor frequencies to compute priors is given
in the Section 4.4.

4.3.4. Analysis. The running time of the BuildDFT procedure is con-
trolled by the total number of rules that are generated, described, and tested
against the support task examples E. As the main loop of the procedure
samples Scls clauses for each of the Sexs examples that are selected, a total of
Sexs × Scls rules are generated. If D is an upper bound on the time it takes
to describe a single rule and V an upper bound on the time to evaluate a
single rule on a single example then the time complexity of building a DFT is
O(SexsScls(D + |E|V )).

As shown above, rules can be described quickly when using descriptor tem-
plates. In this case the upper bound on the description time becomes a function
2This is a standard trick when estimating probabilities. Cestnik [1990] provides a discussion
of this technique.
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of the number of descriptor templates and the arity and length of the most
complex rule in the search space. This will also control V since the time it
takes to evaluate a clause is a function of its complexity [Giordana and Saitta,
2000, Sebag and Rouveirol, 2000]. This maximum clause complexity can be
assumed to be fixed for a large variety of tasks and, as the number of support
examples will be much larger than the number of descriptor templates, the
complexity of the BuildDFT procedure can be reduced to O(SexsScls|E|).

Since the running time for BuildDFT is controlled by the number of clause
samples performed, an important question is how many samples are required
to get good estimates for the descriptor frequencies? Treating each frequency
as an estimate of a random variable we can use estimation theory [Walpole
and Myers, 1978, §6.5] to derive a bound on the number of samples required.
Specifically, at least

t =
z2

α/2

4ε2

samples if we want the frequency to be within ε of its true value with confi-
dence 1− α. Here, z is the standard normal distribution. For values ε = 0.01

and α = 0.01 this equation suggests we need more than t = 16590 samples.
The number of examples for a support task is fixed and so the total number of
samples made of the frequencies in the columns of each φ[d, v] will be controlled
entirely by the Sexs and Scls parameters. That is, if there are |E+| positive
examples, estimating the frequencies φi+[d, v] will require SexsScls = t

|E+| sam-
ples. The product SexsScls should therefore be chosen so that it is greater than

t
min(|E+|,|E−|) to ensure the frequencies φi+[d, v] and φi−[d, v] are all estimated
well.

4.4. Transfer: Calculating Classification Priors

Once a DFT is built during a consolidation phase, it can be later used to
generate rule classification priors using the simplifying assumption described in
the overview. This redefines a rule classification prior as a product of descriptor
frequencies estimated on a support task.

In this section an efficient method for constructing rule classification priors
is presented which, like the algorithm for building DFTs, takes advantage of
the sparse descriptions for rules that can be quickly generated using descriptor
templates.

4.4.1. Using Descriptor Frequencies. In Section 3.5 of the previous
chapter a formula for the expected CPM priors was given in Definition 3.20.
This used a naïve Bayes assumption regarding the independence of descriptors
which allows classification priors qij(r) for a rule r to be written as the product
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of the probabilities Pr(d(r)|i, j). These probabilities can be estimated from a
DFT Φ as

Pr(d(r)|i, j) =
Pr(i, j, d(r))

Pr(i, j)
≈ φij[d, d(r)]

φij

.

The values for qij(r) can therefore be written as

(4.5) qij(r) ≈
φij

K(r)

∏
d∈Φ

φij[d, d(r)]

φij

where K(r) is a normalising constant, dependent on the description of r, and
equal to

∑
ij qij(r). The product is taken over all the descriptors d that are

present in the DFT Φ. The number of multiplications required to compute the
above product depends on the number of descriptors in the DFT. However,
since many of the descriptors will take on their default values for any given
rule, much of the product can be pre-computed once and modified using only
those values present in a sparse description of a rule. This is the motivation
for the following optimisation.

4.4.2. Default and Update Tables. Suppose d(r) is a sparse rule de-
scription computed from the same descriptor templates used to construct the
DFT Φ. In this case, the product in equation 4.5 can be split into two parts: ∏

[d,v]∈d(r)

φij[d, v]

φij

 ∏
d/∈d(r)

φij[d, v0]

φij


where d /∈ d(r) are the descriptors which are not present in the sparse descrip-
tion for r and are therefore assumed to take on their default values v0.

This itself does not reduce the total number of multiplications however the
multiplicands in the second product above only depend on the default values of
the DFT and not the rule under consideration. If the product of all these values
are pre-computed they can be updated according the the descriptor-values in
the rule. These pre-computed products and updating terms are known as
default and update tables respectively.

Definition 4.3. The default table z for the DFT Φ is a 2× 2 matrix with
values

zij = φij

∏
d∈Φ

φij[d, v0]

φij

where each [d, v0] is the default descriptor-value pair for d. The product is
taken over all the descriptors present in the DFT.

The values in default tables can be computed and stored in a DFT. Once
there they can be transformed into rule priors by multiplication with an update
table for a rule.
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Definition 4.4. An update table u(r) for the rule r and the DFT Φ con-
tains the values

uij(r) =
∏

[d,v]∈d(r)

uij[d, v]

where each of the uij[d, v] =
φij [d,v]

φij [d,v0]
is called an update term for the descriptor-

value pair [d, v].

Update terms, like default tables, can be pre-computed and cached within
a DFT. This is done once a DFT is constructed by iterating through all of
its descriptor-values pairs and computing the update term for each using the
relevant descriptor frequencies.

The following proposition states that the expected CPM prior can be de-
rived from the default and update tables for a DFT.

Proposition 4.5. For a given rule r and DFT Φ, the normalised product
of the values in the default table z and the values in the update table u(r) for
r is equal to the prior q(r).

Proof. The product in question is

zijuij(r) =

φij

∏
[d,v0]∈Φ

φij[d, v0]

φij

 ∏
[d,v]∈d(r)

φij[d, v]

φij[d, v0]


=

φij

∏
[d,v0]/∈d(r)

φij[d, v0]

φij

 ∏
[d,v]∈d(r)

φij[d, v]

φij


= φij

∏
d∈Φ

φij[d, d(r)]

φij

= K(r)−1qij(r)

where K(r) is the normalising constant
∑

ij qij(r). �

This equivalence is used to implement an efficient method for computing
rule priors.

4.4.3. The CalcPrior Algorithm. The procedure presented in Algo-
rithm 8 implements the use of update tables to modify a pre-computed default
table for a DFT. The CalcPrior procedure does this by first looking up the
default table for the DFT it is passed. The sparse description of the rule is then
computed and each of its descriptor-value pairs is iterated over. The original
default table values are progressively modified through multiplication with the
update term for each descriptor-value pair. Finally, the resulting classification
prior is skewed using the procedure described in Section 3.2.3 of the previous
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chapter so as to have the same class distribution as the input examples and is
then returned.

Algorithm 8 Compute the classification prior with the same class distribution
as E for a rule r based on a DFT Φ.
1: procedure CalcPrior(r,Φ,E)
2: Let z be the default table for Φ
3: Let T be the templates used to construct Φ
4: Let d be the description returned by Describe(r, T )
5: for all prediction labels i ∈ {+,−} do
6: for all actual labels j ∈ {+,−} do
7: Initialise qij = zij

8: for all descriptor-value pairs [d, v] ∈ d(r) do
9: Multiply qij by the update value uij[d, v]

10: end for
11: end for
12: end for
13: Normalise the qij so

∑
ij qij = 1

14: Correct the skew of q so it is compatible with E
15: return prior matrix q
16: end procedure

4.4.4. Analysis. The two outer loops for the CalcPrior procedure it-
erate through the four classification pairs that index the entries in a CPM. For
each classification pair the innermost loop is called to update the default table
using the update terms for the descriptor-value pairs present in the sparse de-
scription of the rule it is passed. The running time of the procedure is therefore
dependent on the size of these sparse descriptions. As argued earlier, the size
of these descriptions depends only on the complexity of the rule in question
and the number of descriptor templates used to construct it. If C is some
measure of the complexity of the clause that is passed to CalcPrior then
the running time of this procedure is O(C). When the standard descriptors
are used this measure could be C = kn where k is the maximum arity of the
n literals in the clause.

The steps before and after the main loop do not have any great effect on
the running time of the algorithm. The default table is computed once for the
DFT being used and can afterwards be cached and looked up. This means
its construction time is amortized over the thousands of calls to CalcPrior
during a typical search. The normalisation and skew procedures used after the
main loop run in constant time.
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4.4.5. Descriptor Power. The decomposition of the naïve classification
prior into a product of descriptor frequencies allows the default table and up-
date terms to be pre-computed for a DFT. These can then be used to efficiently
calculate classification priors from a rule description using the CalcPrior al-
gorithm. Since two DFTs with the same default table and update terms must,
by Proposition 4.5, compute the same priors for any given rule, these pre-
computed values therefore also characterise DFTs. In the experimental work
reported in the next chapter, it was necessary to compare DFTs that were
constructed from different sets of examples. For this reason, a quantity called
descriptor power is introduced here that summarises each of the update terms
for descriptor-value pairs within a DFT. This power measures the influence
each non-default descriptor value has on classification priors when it appears
in the description of a rule.

Definition 4.6. Given the update terms uij[d, v] for the descriptor value
pair [d, v], the power β for that pair is

β[d, v] = log2(u++ [d, v])− log2(u+− [d, v])

where log2(x) is the base-2 logarithm of x.

By definition of the update terms uij, all default descriptor values neces-
sarily have a power of zero. In essence, the power of a descriptor-value pair
measures how much more likely it is for a positive example to be correctly
classified when the descriptor d takes on the value v instead of its default
value. This can be made more precise by expanding and manipulating the
above definition as follows.

β[d, v] = log2

(
Pr(+, +, d = v)

Pr(+, +, d = v0)

)
− log2

(
Pr(+,−, d = v)

Pr(+,−, d = v0)

)
= log2

(
Pr(+, +, d = v)

Pr(+,−, d = v)

)
− log2

(
Pr(+, +, d = v0)

Pr(+,−, d = v0)

)
= log2

(
Pr(j = +, i = +|d = v)

Pr(j = −, i = +|d = v)

)
− log2

(
Pr(j = +, i = +|d = v0)

Pr(j = −, i = +|d = v0)

)
= w(TP:FP|v)− w(TP:FP|v0)

where the term w(A : B|C) = log2(Pr(A|C)/ Pr(B|C)) is the weight of evi-
dence [Good, 1965, Jaynes, 2003, §4.8.1] for the event A over the event B given
C.3 An increase of one unit of evidence represents a doubling of the odds of
A over B. Here, TP and FP are the events corresponding to a correct and
3This is also known as the log-odds of A against B given C.
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incorrect classification of a positive example respectively. This means that
the power is measuring how much the evidence for true positives over false
positives changes when the non-default value v is present in a description.

A descriptor-value pair with a high power indicates that rules for which
the descriptor takes on that value will, on average, be more likely to classify
positive examples correctly. By tabulating all the descriptor powers for a
DFT those rule features that correlate with the correct prediction of positive
examples can be quickly assessed. These tabulations are used throughout the
next chapter to empirically compare tasks. An example tabulation is provided
in the next section.

4.5. An Example Application of Deft

In this section, the consolidation and transfer algorithms described above
are applied to tasks drawn from an environment of five concepts. Following the
theme used throughout this thesis, the concepts all express reading preferences
for books which are described using attributes such as size and genre. These
concepts, described in Section 4.5.1 below, are also used in several of the
experiments described in the next chapter.

4.5.1. Example Tasks. The five example concepts are shown in Fig-
ure 4.2 as Horn clause theories, each consisting of two clauses. A total of four
predicates - genre/2, nation/2, size/2 and year/2 - are used to express book
properties. The first argument of each predicate is used to refer to a book while
the second argument holds the value of the property for that book. Each pred-
icate can take one of three distinct values in its second argument. The genre/2

predicate can take the values horror, romance or scifi; the nation/2 predicate
uses the values aus (Australian), uk (United Kingdom) and us (U.S.A.); the
size/2 predicate takes values small, medium and large; and the year/2 predi-
cate has values corresponding to the decades 80s, 90s, and 00s. Each book in
this domain takes on exactly one value for each predicate. The concepts in this
environment specify the properties a book must have for it to be enjoyed by a
particular person. For example, the first two rules in the Figure 4.2 state that
Person A will like reading book X if one of two conditions are met. Namely,
that the book’s genre is science-fiction and its author resides in the UK or
that the author’s nationality is Australian and the book was published in the
1990s.

Intuitively, these concepts fall into two groups of mutually related theories.
The first group contains concepts A, D and E. These all express preferences in
terms of genre, nationality and year. All of the concepts in this group mention
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Person A like(X) :- genre(X,scifi), nation(X,uk).
like(X) :- nation(X,aus), year(X,90s).

Person B like(X) :- size(X,small), genre(X,romance).
like(X) :- size(X,medium), genre(X,romance).

Person C like(X) :- size(X,large), genre(X,romance).
like(X) :- size(X,medium), genre(X,horror).

Person D like(X) :- genre(X,scifi), nation(X,aus).
like(X) :- nation(X,uk) ,year(X,90s).

Person E like(X) :- genre(X,scifi), nation(X,usa).
like(X) :- nation(X,aus), year(X,00s).

Figure 4.2. The five example concepts for the Reading Prefer-
ences environment.

science-fiction as a genre and the UK or Australia as the author’s nationality.
The second group contains concepts B and C. These concepts in this group
state reading preferences solely in terms of a book’s size and genre and both
use the constants ‘medium’ and ‘romance’ in one of their two rules. Notably,
the concepts B and C, while similar, do not share any positive examples since
there is no book which is simultaneously a small or medium romance novel
(concept B) and a large romance novel or a medium horror novel (concept C).4

4.5.2. Descriptions and Consolidation. As described at the beginning
of this chapter, the use of Deft is broken into a consolidation phase and
a transfer phase. During the consolidation phase Deft repeatedly samples
clauses and evaluates them on the examples from a support task. In this
example run of Deft the support tasks for concepts A, B, C, D and E each had
50 positive and 50 negative random examples generated using the procedure
described in Section 5.2 of the next chapter. A DFT was constructed for each
of these support tasks using the BuildDFT procedure described above. The
descriptor templates T passed to the procedure was the set containing the
has_pred/1 and has_arg/3 templates. The sampling parameters Sexs and Scls

were both set to 20, meaning that a total of 400 clauses were sampled and
evaluated during DFT construction. These clauses were restricted to having
a maximum of 4 literals and a maximum variable depth of 2. As an example
of Deft’s use, the following list of commands were those used to construct a
DFT using the parameters just described for the support task E.
4The assumption that each book takes on one value per property ensures that there are no
novels that are simultaneously romance and horror.
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?- set(i,2).
?- set(clauselength,4).
?- set(deft_cls_sampled,20).
?- set(deft_exs_sampled,20).
?- set(deft_templates,[has_pred/1,has_arg/3]).
?- set(deft_table,‘e.dft’).
?- read_all(‘support_e’).
?- deft:sample_clauses.
?- deft:save_table.

The settings i and clauselength are the standard Aleph parameters which
control the maximum variable depth and maximum clause length respectively.
The settings deft_cls_sampled and deft_exs_sampled correspond respectively
to the Scls and Sexs parameters in the BuildDFT procedure. The deft_table

setting specifies the filename used to store the constructed DFT, in this case
‘e.dft’. The final three lines of the above example are commands.

The first command, read_all(‘e’), is a standard Aleph command used to
read in data from the positive, negative and background files for the given file-
stem. In this case, the positive examples are stored in the file ‘support_e.f’,
the negative examples in the file ‘support_e.n’ and the background predicates
and mode and type information in the file ’support_e.b’. The mode and type
information used in this example is given in Section B.1 of Appendix B.

The command deft:sample_clauses is a call to the implementation of the
BuildDFT procedure within Deft using the parameters specified through
the set/2 predicate. Once completed, the call to deft:save_table writes the
collected descriptor frequencies out to the file ‘e.dft’. Section B.2 in the
appendices shows the contents of this file. The term total/1 stores the table
of counts t described in Algorithm 7 while the counts/3 terms store the sample
counts s[dk, vk] for each of the non-default descriptor-value pairs [dk, vk].

To compute clause descriptions the Describe procedure applies both de-
scriptor templates to the clause. This results in descriptor-value pairs for
each non-default value returned. For example, calling Describe with the
clause like(B) :- size(B, large), genre(B, scifi) as input will first apply
the has_pred template. This will return an instantiation of the has_pred/2
template for each of the predicates within the rule, namely size/2 and genre/2.
For these predicates the descriptor will take on the value “true”. The has_arg/3
template is also applied to the rule resulting in one instantiation of the has_arg/3
descriptor for each of the size/2 and genre/2 predicates. The final sparse de-
scription is represented using the following Prolog list of lists:
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[[has_pred(size/2),true],
[has_pred(genre/2),true],
[has_arg(size,2,large),true],
[has_arg(genre,2,scifi),true]]

Each of the four lists above hold two entries. The first is a descriptor dk and
the second is its non-default value vk. This representation is much smaller
than what would be required if all 16 descriptor-value pairs for the rule were
computed in full.

4.5.3. Priors and Descriptor Power. Table 4.1 shows the default ta-
ble z and the update tables u[dk, vk] for the has_pred/1 descriptors that are
derived from the DFT constructed for all five concepts in the example environ-
ment. The values in these tables are used to compute classification priors using
the CalcPrior algorithm described above. Using the example description
above, the prior for the clause like(B) :- size(B, large), genre(B, scifi)

derived from the support task E can be computed as the product of the base
table zE and the update tables for the four descriptors in the aforementioned
description. For example, if only the has_pred/1 descriptors were being used
then the product would be

zE ⊗ uE[size/2, true]⊗ uE[genre/2, true]

=

[
.16 .73

.04 .07

]
⊗

[
.12 .06

.45 .37

]
⊗

[
.14 .07

.43 .36

]

=

[
.0027 .0031

.0077 .0093

]
where the symbol ⊗ denotes a point-wise multiplication of the tables. The
prior classification probabilities

q =

[
.12 .13

.34 .41

]
for this rule using concept E as support are obtained by normalising the result
of this product.

The values in the base and update tables can also be used to compute
descriptor powers, as described in Section 4.4.5 above. Table 4.2 shows these
powers for each of the four has_pred/1 descriptors based on the DFTs con-
structed for each of the five example concepts. The apparent similarity between
concepts B and C and between concepts A, D, and E mentioned at the be-
ginning of this section is reflected in the table. The has_pred/1 descriptors
for the predicates size/2 and genre/2 have large descriptor power on concepts
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Table 4.1. The default tables and has_pred(P/N) update ta-
bles derived from DFTs for concepts A, B, C, D and E. The
update tables have been normalised for easier comparison. The
notation u[p, v] in this table is shorthand for u[has_pred(p), v].

A B C D E

z .17 .71
.05 .07

.05 .91

.02 .02
.08 .87
.02 .03

.15 .79

.03 .04
.16 .73
.04 .07

u[size/2, true] .11 .09
.44 .37

.22 .02

.37 .39
.22 .02
.35 .41

.09 .05

.47 .38
.12 .06
.45 .37

u[genre/2, true] .16 .07
.40 .37

.25 .02

.35 .38
.24 .04
.35 .37

.16 .06

.40 .38
.14 .07
.43 .36

u[nation/2, true] .20 .07
.38 .36

.13 .07

.43 .37
.16 .05
.40 .39

.20 .04

.38 .38
.21 .07
.36 .35

u[year/2, true] .25 .09
.33 .33

.14 .17

.37 .32
.14 .23
.36 .27

.27 .12

.30 .31
.34 .10
.27 .29

Table 4.2. The descriptor power of the four has_pred/1 de-
scriptors for each of the five example reading preference concepts.

Concept
Power A B C D E
β[size/2, true] 0.28 3.46 3.46 0.84 1.00
β[genre/2, true] 1.42 3.64 2.58 1.41 1.00
β[nation/2, true] 1.51 0.89 1.67 2.32 1.58
β[year/2, true] 1.47 -0.28 -0.72 1.17 1.77

B and C relative to those obtained for concepts A, D and E. Conversely, the
has_pred/1 descriptor for the predicate year/2 has a larger value on A, D and
E than on B and C.

4.5.4. Transfer. During the transfer phase of Deft, priors for each clause
are combined with classification probabilities derived from the training set of
the target task. In this example, the target task will consist of 2 positive and
2 negative examples from concept A. DFTs for each of the four other concepts
(B, C, D and E) will be separately used to construct priors during four separate
attempts at learning the target concept from the 4 training examples. As an
example, the settings and commands used to run Deft on the task for A using
the DFT constructed for concept E are given below.
?- set(i,2).
?- set(clauselength,4).
?- set(evalfn,deft_m).
?- set(deft_m, 4).
?- set(deft_evalfn, coverage).
?- read_all(’target_a’).
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Table 4.3. Comparison of scores given to acceptable rules for
task A. The bold entries show the highest score in each column.

Coverage Deft Coverage
ID Rule Body Train Test B C D E
a size(A,medium) 1.0 0.0 1.3 1.4 1.0 0.8
b nation(A,uk) 1.0 22.0 0.6 0.8 1.4 1.0
c size(A,medium),genre(A,scifi) 1.0 6.0 1.4 1.5 1.1 1.0
d size(A,medium),nation(A,uk) 1.0 2.0 1.2 1.2 1.2 1.0
e genre(A,scifi),nation(A,uk) 1.0 47.0 1.1 1.2 1.3 1.2
f size(A,medium),genre(A,scifi),

nation(A,uk)
1.0 11.0 1.2 1.2 1.1 1.0

?- deft:read_table(’e.dft’).
?- induce.

The first two settings here were the same as those used to construct the DFT in
the example above. They are standard Aleph settings to limit the set of legal
clauses during its search. The evalfn setting is also a standard Aleph setting
which specifies the evaluation function used to assess the quality of clauses. In
this case, it is set to ‘deft_m’ meaning that Deft should be used to modify the
evaluation function specified in the deft_evalfn setting using M = 4 as given
by the deft_m setting. The evaluation function that is modified by Deft is
the “coverage” function that is used by Aleph by default. The assessment of
the quality of a clause r using this function is simply n++(r)− n+−(r), that is,
the number of positive examples covered less the number of negative examples
covered.

Table 4.3 lists acceptable rules for concept A, in the order in which they
were tested during a search using Aleph. The test set used for this concept
consisted 50 positive and 50 negative examples drawn at random. The columns
in the table titled “Train” and “Test” show the coverage score of rules on the
corresponding set. Unsurprisingly, rule e has the highest score of 47.0 on the
test data as it is one of the clauses used to define concept A. On the training
set however, all of the rules have a coverage score of 1.0. This means each
rule covered either two positive training examples and one negative or one
positive and no negative examples. The search policy employed by Aleph
only replaces its current best rule if another one has a strictly greater score.
This results in the first rule, rule a, being returned, a sub-optimal choice since
its test set score is 0.0, indicating that it covers an equal number of positive
and negative test examples.

The last four columns in the table show the quality score given to the
clauses by coverage function modified using priors derived from DFTs for tasks
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B, C, D, and E. When B and C are used as secondary tasks, the rule returned
by the search is c. In terms of test set score this is slightly better than rule
a. When D is used as a support task, rule b, with a test set score of 22.0 is
returned. The rule with the highest test set score, rule e, is returned when E
is used as a support task.

Once again, this result is in line with the intuition given at the beginning
of this example. The use of concept D and concept E as support tasks resulted
in a ranking of clauses by quality scores that was more in line with the “true”
quality, as estimated on the test set. In the next chapter further experiments
are carried out with these artificial concepts in order to better understand how
Deft’s various settings affect the quality of the clauses it induces.



In theory, there is no difference between theory and practice.
But, in practice, there is.

- Jan L. A. Snepscheut (1953-1994)



CHAPTER 5

Empirical Evaluation

This chapter aims to identify and reconcile the several differences between
the theory of description-based transfer described in Chapter 3 and its imple-
mentation as Deft in Chapter 4. Although the theory provides conditions
for when description-based transfer will reduce evaluation error it is not clear
that, due to the simplifying assumption of independent descriptors, the same
will be true for Deft. Also, the theoretical effect of transfer on evaluation
was studied independently of the other aspects of a learning system including
its search and evaluation biases. The evaluation function, pruning heuristics,
representation and constraints used by a learner all determine whether the
final theory induced is a good generalisation of the examples. How much of
an improvement to accuracy a reduced evaluation error can make with all the
other parts in play is a question best answered empirically. Further questions
which are glossed over in theory but crucial in practice involve how to best
select tasks and settings when using Deft in practice. Answers to all of these
depend, to some extent, on the environment of tasks to which Deft is applied.

To investigate these questions Deft was applied to four different sets of
learning tasks. The first is based on the five artificial concepts regarding read-
ing preferences that were introduced in the previous chapter. The results of
these experiments, reported in Section 5.2 below, show how Deft compares
with a standard, single-task learner under a range of training set sizes and
learning parameters. Section 5.3 reports Deft’s performance on an envi-
ronment of chess tasks that has been used previously to test other inductive
transfer approaches to rule learning. The experiments on this domain com-
pare Deft to the “Repeat Learning” system described in [Khan et al., 1998]
as well as a combination of Deft and Repeat Learning. In Section 5.4, re-
sults of experiments with Deft on a medical domain are reported. In this
domain learners are required to predict whether a patient has heart disease
based on a handful of their symptoms and features. The tasks in this domain
have also been used previously by Silver [2000] to investigate inductive trans-
fer in artificial neural networks. Finally, experiments reported in Section 5.5
describe attempts to transfer inductive bias between the ILP benchmark prob-
lems mutagenesis [Srinivasan et al., 1994] and carcinogenesis [Srinivasan et al.,
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1997].

5.1. Overview

The goal of description-based transfer is to be a general and practical
method for a domain expert to modify the evaluation bias of a learner through
the selection of a support task. When done appropriately, the modified evalu-
ation bias should allow the learner to induce theories with good generalisation
performance from a limited number of training examples. For this to be a
practical way to improve performance it is important that it be inexpensive,
both computationally and in terms of the decision-making required of the ex-
pert using it. Running times during the consolidation and transfer phases
should not be prohibitive, choosing good support tasks should be intuitive and
successful transfer should be robust with respect to small changes to Deft’s
settings. It would also be advantageous for Deft to be able to be used in
conjunction with other bias modifications and inductive transfer techniques.

5.1.1. Questions. The main aims of the experimental evaluation of Deft
are driven by the following sets of questions:

Does it work? Given a target task with only a small number of training
examples does transfer from a related support task actually improve general-
isation performance? Is this a result of a reduction in CPM error? Does this
occur between tasks which are intuitively similar in some respect?

Is it practical? Are the overheads incurred by Deft (such as DFT construc-
tion time and computing descriptions) acceptable? How do they compare to
the analysis of the previous chapter? Is positive transfer robust with respect
to small changes in sampling settings or the examples used in a support task?

How does it compare to other methods? Does Deft perform any better
or worse than other types of inductive transfer for rule learning, including
direct transfer? Can Deft be used in conjunction with other systems? What
are the relative strengths and weaknesses of Deft compared to other modes
of transfer?

The remainder of this chapter seeks to answer these questions empirically
by running Deft on tasks drawn from the four environments described above.
All the experiments were all run on a Mac PowerBook (1.33GHz G4, 768Mb
RAM running OS 10.3.9). The implementation of Aleph used as a baseline
learner and as the base-level learner for Deft was a modified version of Aleph
4.0 [Srinivasan, 2001]. It was run on top of Yap Prolog version 4.5.7 [Costa
et al., 2005]. Much of the statistical analysis reported in this chapter was done
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using the statistical software R [R Development Core Team, 2005] with the
extension package Hmisc [Harrell, 2005].

5.2. The Reading Preferences Environment

The artificial reading preferences environment introduced in Section 4.5.1
of the previous chapter is a simple set of concepts which can be used to test
various aspects of the Deft algorithms. Each concept is described using two
rules and each of these rules uses two of the four available predicates: genre/2,
nation/2, size/2 and year/2. These predicates can be instantiated with one of
three different constants. These five concepts (summarised in Table 5.1) were
chosen so as to have two subsets of intuitively similar tasks: concepts A, D,
and E are all defined in terms of a book’s genre, nation and year whereas the
rules for concepts B and C test only the genre and size of a book.

The main hypothesis tested in this section is whether transfer between
these intuitively similar tasks has a positive effect on learning when examples
are scarce. This is established in Experiments RP-1 and RP-2. The first mea-
sures the performance of the baseline learner Aleph on tasks of various sizes
while the second applies Deft to the same set of tasks when using a variety
of support tasks. The remainder of the experiments investigate how stable the
transfer effects are when the parameters used by Deft and the intrinsic fea-
tures of the support tasks are varied. In particular, Experiment RP-3 examines
how transfer is affected by the size of a support task, Experiment RP-4 varies
the sampling parameters used in DFT construction, Experiment RP-5 looks at
the importance of the admissibility condition, Experiment RP-6 tries different
combinations of descriptor templates and Experiment RP-7 investigates the
influence of the M parameter on transfer.

5.2.1. Materials. The experiments in this section measure the effects of
inductive transfer using Deft on learning performance and efficiency. To do
this, target and support datasets are required for each of the five concepts
shown in Table 5.1. For each concept T ∈ {A, B, C,D, E}, the following
method was used to generate the datasets:

(1) First, 10,000 book instances were created by assigning a random value
to each of the four attributes: size (small, medium or large), genre
(scifi, romance, horror), nation (aus, uk, usa) and year (00s, 90s,
80s). The values were drawn uniformly and independently for each
attribute.

(2) The 10,000 instances were then classified according to the concept
T and split into positive examples T+ and negative examples T−.
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Table 5.1. A tabular representation of the rules describing the
five reading preference concepts. The columns show the four
predicates used in the domain while each row shows the con-
stants used in those predicates for each rule. A blank entry in a
row indicates the predicate was not used in the corresponding
rule.

genre nation size year

A
scifi uk

aus 90s

B
romance
romance

small
medium

C
romance
horror

large
medium

D
scifi aus

uk 90s

E
scifi usa

aus 00s

Table 5.2. Distribution of class labels over the randomly gen-
erated instances for each of the five Reading Preference concepts

#. of Pos. # of Neg. Total
A 2240 7760 10000
B 2201 7799 10000
C 2196 7804 10000
D 2334 7666 10000
E 2248 7752 10000

Table 5.2 shows the distribution of positive and negative instances for
each of the concepts.

(3) The first 1500 positive and first 1500 negative examples were taken
from T+ and T− respectively and split into 30 pairs of sets T+

t and
T−

t for t = 1, . . . , 30. These pairs were used to create 30 tasks Tt =

T+
t ∪ T−

t each with 100 examples.
(4) The next 100 positive examples from T+ and the next 100 negative

examples from T− were designated as test examples and placed into
the sets T+

test and T−
test. Each pair was combined to create a single, 200

example test set Ttest = T+
test ∪ T−

test for each concept.
(5) Each of the 30 sets Tt were then used to create 240 tasks Tt,N with sizes

N ∈ {4, 6, 10, 20, 30, 40, 60, 100}. Each Tt,N consists of N
2

examples
which were drawn randomly and without replacement from T+

t and
another N

2
were drawn in the same manner from T−

t .
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The end result of this process is the construction of 5 × 8 × 30 = 1200

learning tasks. Each task is uniquely identified by its target concept, the
number of instances it has and the index used to select them. As an example,
the 12th task for concept B with 40 training examples is denoted B12,40. These
tasks and nomenclature are used throughout the experiments in this section.

It is important to note that the test sets for each concept were constructed
to have 100 positive and 100 negative examples even though a randomly created
instance is three to four times more likely to be classed negative than positive.
This is to ensure the accuracy reported for a theory on one of these test sets is
equivalent to its AUC, that is, the average of its true positive and true negative
rates. As discussed in Section 2.1.3 above, this measurement of classification
performance is invariant under changes in class distributions and so is better
suited for comparison across learning tasks. The terms “accuracy” and “AUC”
are therefore used interchangeably for the rest of this section.

5.2.2. Algorithms and Settings. Several learning parameters for Aleph
remain constant throughout all of the experiments in this section. These are
shown in Table 5.3 and are used when Aleph is used by itself and as a base-
level learner for Deft. The settings and their values are discussed in Sec-
tion 2.3.2.

Since the aim of these experiments is to look at the relative performance of
Aleph and Deft these settings were chosen somewhat arbitrarily but used
consistently across both algorithms. They were, however, checked to ensure
that each of the target concepts could be induced by Aleph with high confi-
dence from a training set of 30 positive and 30 negative examples.

Table 5.3. Settings used by Aleph and Deft for experiments
within the Reading Preferences domain

Learner Setting Value
Aleph clauselength 4

i 2
minacc 1.0
nodes 200

BuildDFT admissibility true
exs_sampled 20
cls_sampled 20
templates {has_pred, has_arg}

DbScore M
√

N
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The settings used in Deft’s consolidation and transfer algorithms are also
factors which can influence the results of a learning trial. Several of the exper-
iments in this section are constructed to empirically determine the sensitivity
of learning performance and complexity to these factors. The design of these
sensitivity experiments is to vary one of these settings while keeping all the
others fixed at their default values. The default values for the Deft algorithms
are also shown in Table 5.3 and are explained in the previous chapter. The
choices for these default values are now briefly discussed.

The default templates setting used in this domain was set to has_pred/1
and has_arg/3 as these generate simple, binary descriptors which appear to
capture relevant features of the rules describing the concepts. As descriptors
generated from the has_pred/1 template are unbiased the theory from Chap-
ter 3 suggests a default value for the admissibility setting be “true” meaning
only positive examples are sampled when constructing a DFT. Default val-
ues of 20 were chosen for the other two sampling settings exs_sampled and
cls_sampled. The default value of 20 for exs_sampled was chosen so that Deft
samples about half of the 50 positive examples in each support task. The de-
fault setting of 20 for cls_sampled was chosen to make the total number of
samples t > 16590 as per the analysis in Section 4.3 of the previous chapter.
As there are 50 positive and 50 negative examples, choosing exs_sampled and
cls_sampled both equal to 20 gives t = 20000.

5.2.3. Experiment RP-1: Baseline Learning Performance. The pur-
pose of inductive transfer algorithms is to modify a learner’s bias so as to im-
prove learning performance when data is limited. Any empirical study of these
algorithms must therefore compare the learner with a modified bias against the
same learner with its original bias. The data gathered in this experiment cre-
ates a baseline for against which any changes due to Deft can be compared.

5.2.3.1. Method. Aleph was run using the above settings shown in Ta-
ble 5.3 on the target tasks generated with the procedure described in Sec-
tion 5.2.1 above. For each target concept T ∈ {A, B, C,D,E}, training size
N ∈ {4, 6, 10, 20, 30} and task index t = 1, . . . , 30 Aleph was run on the task
Tt,N . The theory induced by Aleph on task Tt,N was then tested on the target
concept’s test set Ttest to obtain an estimate of its accuracy.

As well as accuracy, the training time, number of clauses evaluated, theory
size and other measurements were recorded for each of the runs. All of these
values can be viewed as random variables which are dependent on the param-
eters T , N and t. By averaging over task index t in each case, statistics such
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Accuracy vs Training Size for the Base Learner
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Figure 5.1. Base learner test accuracy on each of the five read-
ing preferences concepts. Error bars show 95% confidence inter-
vals for the mean test accuracies.

as means and confidence intervals were computed for these variables for each
target concept and training size.

5.2.3.2. Results. Figure 5.1 shows the mean test accuracies and their 95%
confidence intervals for hypotheses induced by Aleph for each of the five target
concepts at a range of training set sizes. Unsurprisingly, the graph for each
concept shows roughly the same trend: as the number of examples increase
from 4 to 30 the accuracy increases from around 0.5 (random guessing) to 1
(perfect classification). The only exception is Concept B where the accuracy
at a training size of 4 is around 0.75 indicating it is much easier to learn from
small datasets than the other four concepts. This is to be expected since it is
the only one of the five concepts whose positive instances can all be covered
with a single rule, namely like(B) :- genre(B, romance).

The results show that generalisation accuracy is generally poor when tasks
for these concepts have ten or fewer examples. These are therefore the “limited
data” tasks on which Deft is expected to help improve learning performance
when appropriate support tasks are chosen. The next experiment tests this
theory by using Deft with each of the 25 possible support/target task pairs
from this environment.

5.2.4. Experiment RP-2: Inductive Transfer with Deft. The aim
of this experiment is to determine whether the use of support tasks with Deft
has any appreciable influence on learning when compared to the standard
Aleph algorithm. The five concepts in this environment differ substantially,
so it was expected that the use of Deft would improve the accuracy when
used to transfer bias between some pairs of tasks and have a negative effect
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on accuracy when used for transfer between other pairs. As discussed in the
beginning of this section concepts A, D and E appear to be intuitively similar,
in that they can be described using similar predicates and constants however
they appear quite different to the concepts B and C. It is therefore expected
that Deft will improve generalisation accuracy when transferring evaluation
bias from a task for D to a task for A which has limited data. It is also
likely that transfer from a task for B to a task for A will harm generalisation
performance.

5.2.4.1. Method. The following method was used to test the effects of trans-
fer using Deft by applying it to the 25 possible pairs of support and target
concepts for a range of training set sizes for the target tasks. The basic idea
is to first create DFTs from tasks for each of the concepts A through E. Five
tasks, each with 100 examples, were chosen for each concept. The large number
of examples ensures conditions are favourable for producing reliable DFTs and
five DFTs are created per concept to estimate the variability in the transfer
results due to the randomised aspects of their construction. Once the DFTs
are created Deft is applied to each of the variously sized tasks for each con-
cept while using each of the DFTs. The inferred theories in each case are then
tested on the test dataset for each concept and their accuracy recorded. The
exact details of the entire process are as follows.

(1) For each support concept S ∈ {A, B, C,D, E}, five DFTs Φ[S, s] were
created by applying Deft’s BuildDFT algorithm to each support
dataset Ss,100 for s = 1, . . . , 5. The settings used during this phase are
given in Table 5.3 above.

(2) For each of the target concepts T ∈ {A, B, C,D,E}, training sizes
N ∈ {4, 6, 10, 20, 30} and task indices t = 1, . . . , 6 Deft was run on
Tt,N using each of the 25 DFTs created in the previous step. Deft’s
M parameter was set equal to the square root of the target task size
in each case, that is M =

√
N .

(3) Each theory induced by Deft on task Tt,N was then evaluated on the
concept’s test set Ttest to estimate its accuracy.

As well as test set accuracy, measurements such as the number of nodes ex-
plored, search time, and theory size were recorded for each run. Each of these
measurements was treated as a random variable dependent on the parameters
N , T , S, t and s. Their sample means and standard deviations were com-
puted for each support concept S, target concept T and training size N by
averaging over the 30 pairs of target and support task indices t = 1, . . . , 6 and
s = 1, . . . , 5.
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5.2.4.2. Results. There are four main sets of results to report for this ex-
periment. The first of these concerns the running time and output of the
BuildDFT algorithm. The second set compares the generalisation perfor-
mance using Deft to the baseline learner Aleph. The final two sets of results
report the search and theory complexity.

DFT Construction: As per the method described above, the BuildDFT
algorithm was applied to 25 support tasks resulting in five DFTs for each
concept. On average, each DFT took 1.4 seconds to construct with a sample
standard deviation of 0.06 seconds across the 25 runs. This lack of variability
is to be expected since on each support task BuildDFT is simply sampling
and testing 400 clauses against 100 examples.

Of more interest is how the descriptor frequencies vary across the five dif-
ferent support concepts. Rather than tabulate the descriptor frequencies for
all 25 tables, more insight can be gained by examining the average descriptor
probability and descriptor “power” across each of the five concepts. The former
is the frequency with which a descriptor takes on its non-default value during
the sampling process while the latter, introduced in Section 4.4.5 above, is a
measure of the influence a descriptor has on the final CPM for a rule. An in-
crease by one of the power of a descriptor-value pair corresponds to a doubling
in the odds factor of a positive prediction being correct when compared to the
odds factor when the descriptor takes on its default value.

Table 5.4 shows the average values of both these statistics for all five con-
cepts. Notably, some descriptors are not recorded for all concepts. For exam-
ple, the has_arg(genre,2,horror) and has_arg(genre,2,scifi) descrip-
tors do not appear in the DFTs constructed for concept B. The reason for this
is that the admissibility constraint used when constructing these DFTs means
only positive examples of concept B are sampled and all of these have romance
as their genre. When DFTs for concept B are used as biases for learning, these
missing descriptors will have no effect on the CPM priors generated for any
rule and can be thought of as having power β = 0.

Comparing the relative powers and probabilities of descriptors across the
concepts reveals that the DFTs are capturing some of the intuitively similar
features of the concepts. For example, for concepts B and C a rule that tests
whether a book’s genre is romance is an indication of a correct positive class
prediction (β = 4.4 and 2.4 respectively) whereas this descriptor is not useful
for concepts A, D and E (β = -0.6, -0.7, and -0.5 respectively). The DFTs for
A, D, and E all assign high descriptor power (β = 2.5, 2.0 and 2.1 respectively)
to the descriptor which tests whether a book’s genre is science fiction while
the DFTs for B and C do not record entries for that descriptor at all. Similar
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Table 5.4. Average DFT statistics for the five reading prefer-
ence tasks. The first row in each group (genre, nation, size, and
year) gives the power β and probability π for the corresponding
has_pred descriptor. The remaining rows in each group show
the same statistics for the has_arg descriptor that tests the value
of the predicate’s second argument. All values are averages over
the five DFTs constructed for each concept.

Task
A B C D E

has_pred has_arg β π β π β π β π β π

genre - 2.1 0.74 4.3 0.74 3.3 0.72 1.5 0.73 1.8 0.73
horror -0.8 0.09 - 0 2.5 0.44 0.2 0.14 0 0.07
romance -0.6 0.08 4.4 0.74 2.4 0.28 -0.7 0.11 -0.5 0.12
scifi 2.5 0.59 - 0 - 0 2.0 0.48 2.1 0.54

nation - 2.2 0.65 1.1 0.66 1.2 0.65 2.1 0.66 2.2 0.66
aus 0.3 0.25 0.8 0.22 0.4 0.23 2.2 0.37 0.9 0.33
uk 2.7 0.40 0.2 0.21 1.1 0.22 1.0 0.29 - 0
usa - 0 1.6 0.23 0.8 0.20 - 0 2.4 0.32

size - 1.1 0.80 2.8 0.81 3.3 0.80 0.9 0.80 1.1 0.78
small 0.6 0.31 1.9 0.36 - 0 0.7 0.27 0.4 0.25
medium 0.4 0.25 2.0 0.45 2.7 0.48 0.3 0.32 0.9 0.30
large 0.7 0.24 - 0 1.8 0.32 0.5 0.21 0.4 0.22

year - 0.0 0.42 -0.1 0.42 -0.2 0.43 0.4 0.41 0.7 0.43
80s -0.7 0.10 -0.5 0.12 0 0.16 -0.8 0.08 -0.9 0.11
90s 0.8 0.20 0 0.18 -0.5 0.14 1.0 0.32 -1.1 0.04
00s -0.6 0.15 -0.3 0.12 -0.5 0.13 -0.3 0.21 1.2 0.28

differences occur between these two groups for descriptors which test for the
presence of a nation/2 predicate (β ≈ 2 for A, D and E, β ≈ 1 for B and C)
and the size/2 predicate (β ≈ 3 for B and C, β ≈ 1 for A, D and E).

The probability π of a descriptor in a DFT indicates how frequently a de-
scriptor took on its non-default value. That is, the proportion of times that
descriptor was applied to a rule that was sampled during the DFT construc-
tion and the result of that application was its non-default value. A powerful
descriptor will not influence the results of a search if the rules it pertains to are
very rare. This observation suggests that the product of the descriptor power
and its probability, that is its “weighted power” βπ, is a reasonable measure
of both a descriptor’s influence and relevance. As an example, the descriptor
that tests whether a book’s year is in the 1990s has a moderate negative power
(β = −1.1) for concept E but occurs very infrequently (π = 0.04) giving it
a weighted power of -0.04, implying this test is of limited use when deciding
whether a rule will correctly predict a positive example of this concept.

Figures 5.2 and 5.3 are a visual comparison of the weighted power for each
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Figure 5.2. Average weighted power of has_pred descriptors
for the five target concepts. The average is taken over the five
tasks constructed for each of the five concepts.

of the descriptors across all of the concepts in the reading preference domain.
The first shows the weighted power for the has_pred descriptors while the
second is for the has_arg descriptors. The title above each subgraph denotes
the descriptor in question while each bar in a graph shows a concept’s average
of βπ taken over the five DFTs generated for it.

Several of these bar graphs make clear the similarities between the concept
groups {A, D, E} and {B, C}. In particular the graph labelled “genre = scifi”,
corresponding to the descriptor has_arg(genre, 2, scifi), has a weighted power
of β ≈ 1 for all concepts in the first group and a weighted power of zero for
concepts B and C. The other graphs that characterise these differences are “size
= medium” and “genre = romance”. Within the {A, D, E} concept group the
descriptors testing a specific value of nation can be seen differentiating between
the concepts: A has a high “nation = uk” power, D a high “nation = aus” power,
and E a high “nation = usa” power. This is unsurprising given the rules each of
the concepts were generated from and suggests that the BuildDFT algorithm
is correctly discovering salient features of good quality rules for each concept.
While this is encouraging, the real aim of this experiment was to determine
whether using the DFTs constructed for these concepts as input to Deft can
improve learning performance.

Generalisation Performance: As described in the method above, Deft
was used to learn theories on each of the five reading preference concepts at
a variety of training set sizes and with each of the 25 DFTs just analysed. A
total of 5× 5× 5 = 125 support, target, and training size configurations were
run, each repeated 30 times (six different example sets per size and five DFTs
per support concept) and the resulting generalisation accuracy was recorded.
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The 125 accuracy measurements are difficult to present in a meaningful way in
a tabular form so the 25 graphs shown in Figure 5.4 are given as an overview.
Each of the 25 labelled subgraphs show the accuracies for a particular sup-
port/target concept pair at each of the eight training set sizes.1 The column
specifies which support task is used while the row specifies the target concept.
Two plots - one solid, the other dashed - are shown for each of the 25 sup-
port/target pairs. The solid lines plot accuracy against training set size for
Deft when transferring bias between the support and target tasks while the
dashed lines are for reference and are identical to the Aleph accuracy results
from Figure 5.1. As Aleph is not affected by the choice of support task these
reference plots are the same within each row. The error bars shown at each
point on the plots are the 95% confidence intervals for the mean accuracy.

Some qualitative statements above the relative performance of Deft and
Aleph can be drawn from Figure 5.4. Firstly and broadly, it is clear that on
the smaller example sets the use of Deft has a significant effect on accuracy
when compared to single-task learning and the direction and magnitude of
the effect are dependent on which concepts are used as support. The most
dramatic improvements occur for transfer from concept D to concept A when
the target task has 6 examples and from concept B to a 10 example task for
concept C. In the former case accuracy increased from 0.63 to 0.90 (significant
at p < 0.001 using a two-sided t-test), while in the latter case the increase is
from around 0.77 to 1.0 (p < 0.001) meaning a perfect theory is being induced
from only 10 examples - a third of what is normally required to induce high
quality theories for concept C. The largest decreases in accuracy due to the
use of Deft can be seen when DFTs from concepts B and C are used to
bias learning on tasks of size 20 for concept A. In these cases the decrease
in accuracy is from 0.96 to 0.86 (p < 0.001) using B as support and to 0.84
(p < 0.001) using C as support. A further analysis of these results and a
comparison to the theoretical guarantees regarding CPM error are reported in
Section 5.2.10 below.

In general, it can be said that the effects on generalisation performance
due to Deft are compatible with the intuitive grouping of concepts into the
sets of similar concepts {A, D, E} and {B, C}. Transfer between two concepts
within one of these sets typically results in an increase in accuracy or at worst
no change. Transfer between concepts in different sets never resulted in an
increase in accuracy and when the support task was B or C transfer was slightly
1The graphs along the main diagonal are for when the support and target task are the same
concept. While this is not a realistic case in practice it does provide a best case scenario for
inductive transfer.
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and Deft (solid line) as a function of training set size for all
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vironment. Error bars show 95% confidence intervals for the
means.
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detrimental to learning. Transfer from A, D or E to B or C had no significant
effect in either direction.

Search Complexity: The number of clauses evaluated and the total time
taken to induce each hypothesis were recorded on each run of Deft and
Aleph. The following set of reported results are only concerned with tar-
get tasks drawn from concept A with support tasks drawn from concepts B,
C, D, and E. These were chosen as they are representative of the results ob-
tained on the other runs. The graphs in Figure 5.5 provide a summary of the
theory and search complexity for target tasks drawn from concept A. The left
graph plots the average number of clauses that were evaluated during searches
by Aleph and Deft using support tasks B, C, D, and E at a range of training
set sizes. The graph on the right is organised in the same manner and shows
the average CPU time spent evaluating each clause. This evaluation time per
clause for each run was calculated by dividing the total running time required
to induce a theory by the total number of clauses evaluated during the induc-
tion. This time per clause value was then treated like the other trial statistics
and averaged over all the tasks attempted for a given support concept, target
concept and training size.

It is clear from Figure 5.5 (a) that using Deft incurs a penalty in the form
of larger search complexity. On training sets with six examples the base learner
Aleph found clauses to add to the induced theory after only examining, on
average, around six candidate clauses. In contrast, Deft explored over 25
candidate clauses regardless of the support task being used. This difference
in search complexity is entirely due to the modifications of the Score and
Bound procedures described in Section 4.1.3 of the previous chapter. Both
of these procedures are used to guide the branch-and-bound search used by
Aleph and the modifications weaken the bound by assuming that refinements
of a clause during the search could potentially have a perfect prior CPM.
This makes it more difficult for the search to prune portions of the candidate
space which results in more candidates being evaluated. One possible way to
strengthen this bound and reduce the search complexity is discussed in the
next chapter.

The effectively constant overhead in evaluation time per clause due to
Deft, as shown in Figure 5.5 (b), agrees with the analysis of the Describe
procedure in Section 4.2.4. For this domain the overhead is of the order of
a couple of milliseconds suggesting that the computation of a clause’s de-
scription is quite efficient though still more time consuming than evaluating
a clause against a training set. The reason clause evaluation is so efficient
is that Aleph caches evaluation results for a clause and reuses them when
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Figure 5.5. Search and time complexity on tasks at a range
of training set sizes for Concept A. Each graph shows values for
Aleph and Deft using support tasks B, C, D and E. Error bars
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computing evaluations for the clause’s refinements. Given some fairly weak re-
quirements regarding descriptors, a similar caching strategy could be employed
to improve the efficiency of computing clause description during a search. This
improvement is also outlined in the next chapter.

Theory Complexity: Counts of the total number of clauses and literals
in each induced theory were recorded at the end of each run of Deft or Aleph
on a target task. These values were then averaged over all the tasks for a given
support concept, target concept and training size. Once again, the key points
can be made with reference to results for target tasks from concept A. These
statistics are summarised in the graphs of Figure 5.6. The five plots on the
left (one for Aleph and four for Deft using support tasks B, C, D, and E)
show the number of clauses induced from training sets at various sizes. The
corresponding plots on the right show the average number of literals per clause.
These figures were obtained by dividing the total number of literals (including
head literals) by the total number of clauses in each theory.

There is a noticeable difference between the average number of literals
induced by Deft compared to the number induced by Aleph on the smaller
target tasks regardless of the support task that was used. This is to be expected
since all the support task DFTs have at least one has_pred descriptor with a
power of two or more. Evaluation functions that use CPM priors constructed
from these DFTs will therefore assign a higher score to clauses which include
a gainful predicate compared to those which do not. On target training sets of
size six, the clauses include an average of around two body literals compared
to the 0.6 body literals on average when no inductive transfer is used. This
ability of Deft to return larger clauses even though the data does not support
it shows that its modification the evaluation function implements a preference
bias for longer clauses. It is this bias that allows Deft to achieve higher
generalisation accuracies from smaller training sets when bias is correct (when
concepts D and E are assumed to be similar) and causes it to perform worse
when the bias is incorrect (when B and C are used for support).

When the support task used by Deft is for concepts B or C, the influence
of modified evaluation function leads to over-specific clauses. As shown in
Figure 5.6 (b), when the target task has 30 examples, using Deft with these
support tasks can be seen to induce, on average, clauses with slightly more
literals than Aleph. As these larger clauses are more specific they will cover
fewer positive examples which means more clauses must be found to cover the
remainders. This increase in the number of clauses for support tasks B and C
can be seen in Figure 5.6 (a) with an average of around 2.5 clauses per theory.
This same effect is not observed when concepts D or E are used as support.
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Figure 5.6. Theory complexity results for a range of training
set sizes for target tasks for concept A. Each graph shows values
for Aleph and Deft using support tasks for concepts B, C, D
and E. Error bars show 95% confidence intervals.
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The following is an example of one of the three-clause theories learnt from
a 30 example task for concept A by Deft using a task from concept B as
support:
like(A) :- size(A,small), genre(A,scifi), year(A,’90s’).
like(A) :- genre(A,scifi), nation(A,uk).
like(A) :- genre(A,romance), nation(A,aus), year(A,’90s’).

The influence of the support task is primarily due to the genre(A,romance)
and size(A,small) literals. Their inclusion in the third clause have over-
specialised it resulting in uncovered positive examples while the first clause
covers some negative examples reducing the overall accuracy of the theory to
84.5%.

5.2.5. Experiment RP-3: Sensitivity to support task size. Results
from the previous experiment show that the choice of support concept has
a strong effect on the magnitude and direction transfer has on generalisation
performance. The support tasks used in that experiment were all of a generous
size so that the descriptor frequencies present in the DFTs were good estimates
of the true descriptor probabilities for each concept. With fewer examples
available for a support task it is possible that the descriptor frequencies will
be poor estimates and using such a DFT will not be as effective in modifying
the bias for the target task. The purpose of this experiment is to test whether
or not this is the case.

As the previous experiment has shown, the concepts in the reading pref-
erences domain can be separated by similarity into the groups {A,D,E} and
{B,C}. The effect Deft has on accuracy, whether positive or negative, de-
pends on whether the support and target tasks were drawn from the same
group or not. To simplify the remaining experiments in this section represen-
tatives from each group will be chosen rather than running trials on all 25
pairs of support and target combinations at all training sizes. When testing
the effect of support task size on accuracy target tasks were drawn from con-
cept A only and support tasks came from concepts C and D. The target tasks
contained either 6 or 10 examples while the support tasks’ sizes varied from
4 to 100 examples. DFTs were built for each of the support tasks and then
Deft was applied to the target tasks using each of these DFTs. The exact
details of the method are given below.

5.2.5.1. Method. The BuildDFT algorithm (using the settings given at
the beginning of this section) was used to construct a DFT Φ[S, s, N ] from
the tasks Ss,N for each support concept S ∈ {C, D}, training size N ∈
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{4, 6, 10, 20, 30, 40, 60, 100} and support task index s = 1, . . . , 5. The 80 re-
sulting DFTs were each used by Deft to learn a theory from the target tasks
At,6 and At,10 for each target task index t = 1, . . . , 6. The theory induced
on each task was tested on Atest to estimate its accuracy. As in the previ-
ous experiments, various measurements, including accuracy, were made at the
completion of each run. These measurements were then averaged over the 30
pairs of s and t indices.

5.2.5.2. Results and Analysis. The time taken to construct a DFT did not
vary significantly across the 80 different DFTs built for this experiment. The
running time of BuildDFT in each case was around 1.1 seconds regardless of
the support concept used or the number of examples in the support task. This
is slightly surprising as one would expect that when the support tasks have
100 examples the time taken to evaluate each rule during DFT construction
will take around 25 times longer than when only 4 examples are available.
The reason that this is not the case is that rule evaluation is much faster than
the procedure used to sample rules. Regardless of whether there are 4 or 100
examples, 20 rules are sampled from each of 20 bottom clauses. The time taken
to determine the sampling distribution over each bottom clause contributes to
the majority of the 1.1 seconds of DFT construction time.

While DFT construction time does not vary with a changing support size,
the effect on target task accuracy does depend on how many examples are
available in the support task. The two graphs in Figure 5.7 summarise how
the mean accuracies vary with support task size for the two target tasks for
concept A described in the method above. The first graph in the figure shows
the results for the size 6 task and the second graph shows the results for the
size 10 task.

Noticeably, the largest difference between the accuracies when not using a
support task (shown by the horizontal, dotted line in each graph) and when
using one for support concept D occurs when the support tasks have 100
examples. The largest negative effects when using concept C as support also
occur when support tasks for that concept have 100 examples.

According to the analysis regarding sampling parameters made in Sec-
tion 4.3.4, to ensure that descriptor frequencies are estimated confidently
and accurately, approximately 16000 rule/example pairs need to be evaluated.
Given that the BuildDFT was used with sampling parameters which meant
400 rules are created there needs to be at least 40 examples in a support task
to ensure good descriptor frequency estimates. As the graphs in Figure 5.7
show, this size of support task gives transfer effects comparable to when 100
examples are used. While it is not always possible to choose exactly how many
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Figure 5.7. Test accuracies for Experiment RP-3. Plots show
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built using Concept C (solid line) and Concept D (dashed line).
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support task examples will be available to Deft, the results here suggest that
if the support concept can be learnt accurately from the support task then the
DFTs constructed from that support task should be suitable for transfer. If
a suitable number of support task examples are available the most pertinent
issue becomes how best to choose the sampling parameters.

5.2.6. Experiment RP-4: Sensitivity to sampling parameters. In
this experiment, the parameters exs_sampled and cls_sampled are varied over
a range of values to determine what effect they have on transfer using Deft.
The method given below describes in detail how the sampling parameters were
varied. These two parameters control the number and distribution of rules that
are generated when the BuildDFT algorithm is used to estimate descriptor
frequencies for a support task. The total number of rules sampled is just the
product of the parameters and it is expected that if this product is too small
the estimates of descriptor frequency will be poor which, in turn, will lead to
poor estimates for the prior CPMs used in inductive transfer by Deft. The
exs_sampled is believed to be particularly important in obtaining good quality
priors. This parameter controls how many examples are used to construct the
bottom clauses from which rules are sampled. If this is too small, rules may not
be created which cover certain disjuncts within a concept. This may also have
an adverse effect on the quality of descriptor estimates and therefore transfer.

As discussed in Experiment RP-3 above, there is little need to run transfer
trials over all 25 pairs of support and target concepts when the effects of
parameters are being investigated. The primary aim when using Deft is
to improve generalisation accuracy when learning on small training sets. As
shown in the earlier experiments, one situation when this occurs when support
tasks for concept D are used as support for learning on target tasks for concept
A of size 10. The average accuracy for Deft in these cases was 92% compared
to 74% for Aleph. These sets of support and target tasks therefore leave room
for both positive and negative change in accuracy as the sampling parameters
for Deft are varied. The method used to measure these variations is described
below.

5.2.6.1. Method. Ten tasks At,10 (for t = 1, . . . , 10) from concept A were
used as target tasks for Deft. Each application of Deft to each target task
was performed using one of 360 DFTs computed from support tasks with 100
examples drawn from concept D. Each DFT is created by applying BuildDFT
to one of ten support tasks Ds,100 (s = 1, . . . , 10) using a exs_sampled param-
eter set to a value from {2, 5, 10, 20, 40, 80} and a cls_sampled parameter
set to a value from {2, 5, 10, 20, 40, 80}. The ten different support tasks were



5.2. THE READING PREFERENCES ENVIRONMENT 145

Table 5.5. Total number of clauses sampled by BuildDFT
when using the given values for the sampling parameters
exs_sampled and cls_sampled.

exs_sampled
cls_sampled 2 5 10 20 40 80

2 4 10 20 40 80 160
5 10 25 50 100 200 400

10 20 50 100 200 400 800
20 40 100 200 400 800 1600
40 80 200 400 800 1600 3200
80 160 400 800 1600 3200 6400

used when constructing DFTs to reduce the variability of the results for each
parameter setting due to the incidental properties of the support examples.
Similarly, the ten different target tasks were used to reduce the random effects
of the target sample used. Each of the 36 different pairs of parameter settings
were therefore used for 100 separate support-to-target transfers. As in the ear-
lier experiments, the generalisation accuracy of each theory learnt by Deft
is computed through its application to the test set Atest. The accuracy values
reported for each of the 36 parameter settings is taken to be the average over
the 100 trials for each setting. Construction times were also recorded for each
DFT. The average construction time for each parameter setting is taken over
the values recorded for each of the ten support tasks.

The values the sampling parameters vary over were chosen to maximise
the number of pairs taken from these sets which have the same product. The
analysis in Section 4.3.4 shows that the total number of clauses sampled (the
product of the sampling parameters) when creating a DFT affects the quality
of its descriptor frequency estimates. Having many pairs of parameters with
the same products means the clause sample size can be held constant while the
effect of varying the parameters is studied. To clarify this, Table 5.5 shows all
36 pairs of sampling parameters and their products. From this it can be seen,
for example, that there are five pairs of sampling parameters which result in
400 clauses being sampled.

5.2.6.2. Results. There are two quantities of interest in this experiment:
the average time it takes to construct DFTs and the average generalisation
accuracy of theories induced for the target task when using these DFTs. Both
of these quantities can be thought of as functions of the two parameters
exs_sampled and cls_sampled. Figures 5.8 and 5.9 each show two representa-
tions of the construction time and accuracy functions respectively. The per-
spective plot in each case is a straight-forward rendering of the function as a
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Figure 5.8. Perspective (left) and contour (right) plots of the
average construction time in seconds of DFTs for concept D
as a function of the sampling parameters exs_sampled and
cls_sampled. Solid lines on the contour plot are iso-lines for
construction time and the dashed line indicates where the prod-
uct of the parameters is equal to 400.

surface in three dimensions. The surface is a linear interpolation of the values
of the function at each parameter setting. The contour plot shows a top-down
view of the function surface. Each iso-line in a contour plot shows a set of
parameter values which all have the same associated value on the interpolated
surface.

The plots in Figure 5.8 reveal a simple relationship between the number of
clauses and examples sampled and the time taken to construct a DFT. Con-
struction time increases monotonically with an increasing number of sampled
examples or clauses. This increase occurs faster as the number of examples
increase compared to the same increase in the number of clauses. An examina-
tion of the dashed line in the contour plot shows that for a fixed total number
of samples (400) the time to construct a DFT is about a second when the
cls_sampled is 40 and the exs_sampled parameter is set to 10. Increasing the
cls_sampled parameter to 80 and dropping the exs_sampled parameter to 5
reduces the construction time to slightly under a second. However, sampling
80 examples and 5 clauses per example during DFT construction takes an
average of over four seconds.

This strong influence of the exs_sampled parameter on construction time
is due to two factors. First, a bottom clause must be constructed for each
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Figure 5.9. Perspective (left) and contour (right) plots of the
average accuracy of Deft as a function of the sampling param-
eters exs_sampled and cls_sampled. Solid lines on the contour
plot are iso-lines for accuracy and the dashed line indicates where
the product of the parameters is equal to 400.

example from which the clauses used to build the DFT are drawn. Secondly,
only legal clauses are to be sampled from each bottom clause. This requires an
estimate of the distribution of legal clauses of varying lengths (see Section 4.3.2
of the previous chapter). To do this, 100 subsets of the bottom clause are
taken for each length up to the value of the clauselength parameter. Each
subset is then tested against the mode and type constraints to test whether it
is legal. Since the clauselength parameter is set to 4 in the reading preferences
experiment, each extra example that is used for DFT construction requires the
sampling of 400 extra clauses.

All else being equal, the above results suggest choosing the exs_sampled
parameter to be as low as possible if DFT construction time is a concern. How-
ever, this parameter also has an effect on accuracy, as shown in Figure 5.9.
The perspective plot in this figure shows a fairly complex relationship between
the sampling parameters and the resulting effect on accuracy. Broadly speak-
ing, the results show that sampling more clauses during DFT construction
results in higher accuracies for transfer using DFTs for concept D on tasks for
concept A. These reached 94.6% (with a s.d. of 9.2%) when exs_sampled =
cls_sampled = 80 and dropped to 82.7% (s.d. 11.5%) when exs_sampled =
cls_sampled = 2. This last figure is not statistically different (p = 0.22) to
the 74% accuracy reported by Aleph on the same tasks.
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Table 5.6. The effect of the exs_sampled parameter (columns)
on generalisation accuracy (and s.d.) for a fixed number of total
clauses sampled (rows). Italic values show entries corresponding
to cls_sampled settings equal to 5 or 10. Bold values in a given
row differ from the exs_sampled = 20 entry in the same row at
the p < 0.05 level of significance using a paired, two-sided t-test.

exs_sampled
5 10 20 40 80

100 0.89 (0.10) 0.90 (0.10) 0.88 (0.10) - -
200 0.86 (0.11) 0.88 (0.10) 0.93 (0.10) 0.90 (0.10) -
400 0.87 (0.10) 0.90 (0.10) 0.93 (0.10) 0.91 (0.10) 0.92 (0.9)
800 - 0.90 (0.10) 0.93 (0.10) 0.92 (0.10) 0.92 (0.9)
1600 - - 0.93 (0.10) 0.93 (0.10) 0.93 (0.9)

The effect of the sampling parameters on accuracy can be better understood
with reference to Table 5.6. In this table each row shows the effect of changing
the exs_sampled parameter while holding the total number of sampled clauses
fixed. For example, the third row in the table corresponds to the dashed
line in the contour plot of Figure 5.9 where the product of the parameters
is 400. If exs_sampled is set to 5 or 10 examples, the difference in accuracy
compared to a setting of 20 is significant when a total of 200 or 400 clauses
are sampled. However, this effect on accuracy is not observed for low values of
cls_sampled. All of the higher settings for exs_sampled correspond to lower
values for cls_sampled for any given row in the table. None of the entries
corresponding to cls_sampled settings lower than 20 (shown in italics in the
table) are significantly lower than any of the other entries within the same row.

5.2.6.3. Conclusions. Both the construction time and accuracy results point
to exs_sampled being the more important of the two settings used to construct
DFTs. Higher values for this parameter lead to longer times for constructing
DFTs but when these used in a situation that is favourable to positive transfer
the effects of the DFT are stronger, leading to higher accuracies.

5.2.7. Experiment RP-5: The admissibility condition. In Chap-
ter 3, the theoretical analysis of descriptor-based transfer found that to in-
crease the usefulness of descriptors it was necessary to restrict the rule space
used by the support and target concepts to the set of admissible rules for those
concepts, that is rules that cover at least one positive example of the concept.
As the search used by Aleph considers only admissible rules for inclusion in a
theory it is believed that evaluating rules during DFT construction using the
same bias will increase their effectiveness when used during inductive transfer.
All of the experiments reported above were carried out using this assumption
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and it is the aim of this experiment to empirically test whether or not the
admissibility condition is of any importance.

5.2.7.1. Method. The method used for this experiment is almost identical
to that of Experiment RP-2 described in Section 5.2.4.1. The only difference
is that during DFT construction the five DFTs Φ[S, s] were constructed with
the BuildDFT algorithm’s admissibility condition set to false. The rest of
the method is identical, using the DFTs built for this experiment in place of
those constructed for Experiment RP-2.

The DFTs and transfer results were collected in such a way to allow com-
parison with the results from Experiment RP-2. Of particular interest is the
difference in accuracy between Deft when sampling only admissible rules and
when sampling all rules. This was calculated for all target tasks T , support
tasks S and target training set sizes N by taking the mean of the pairwise dif-
ference in accuracy between the Experiment RP-2 runs and those performed
here. Letting acc1(Tt,N , Ss) denote the accuracy obtained by applying Deft
to task Tt,N using the DFT constructed from admissible rules for the sup-
port task Ss and, similarly, letting acc0(Tt,N , Ss) be the accuracy using a DFT
constructed using all rules, then

∆(T, S, N) =
1

30

6∑
t=1

5∑
s=1

acc1(Tt,N , Ss)− acc0(Tt,N , Ss)

is the mean difference in accuracy for target task T of size N using support
task S. The measurement is used to compare the performance of Deft in
Experiment RP-2 with its performance in this experiment. The values of these
mean differences as well as a comparison of the weighted powers for the DFTs
constructed here and in Experiment RP-2 are presented below.

5.2.7.2. Results. By definition, non-admissible rules cover no positive ex-
amples of the support task being used during DFT construction. On average
then, non-admissible rules must therefore cover more negative examples com-
pared to admissible rules. When a DFT is constructed using BuildDFT, each
descriptor-value pair [d, v] has associated with it a CPM that is computed by
averaging the CPMs of sampled rules which have value v for descriptor d. In
this experiment non-admissible rules were included in that average so the re-
sulting CPM for each descriptor-value pair in the DFT must necessarily have
a larger false positive rate.

This increase in false positive rate can be observed as a decrease in weighted
power for each of the descriptors. The power for a descriptor d with value v
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Figure 5.10. Weighted power for has_pred descriptors on the
five support concepts. The left (right) bar for each concept shows
the power when the admissibility condition is (not) used.

and default value v0 is given by

β[d, v] = (q++ [d, v]− q+− [d, v])− (q++ [d, v0]− q+− [d, v0])

where the qij are entries in the CPM averages for the descriptor-value pairs.
If the increase in the false positive rate for the value v is greater than that for
the default value v0 then the power of the pair [d, v] will decrease. This can
be seen in the comparison of the powers with and without the admissibility
condition shown in Figures 5.10 and 5.11. The layout of these figures is the
same as for Figures 5.2 and 5.3 from Experiment RP-2 above except that two
values are reported for each concept. The left (respectively, right) value for
each concept is the average weighted power based on DFT computed using
admissible (respectively, all) rules. The left-hand values are identical to those
shown in the earlier figures from Experiment RP-2.

In every case except one, the value for the non-admissible DFT powers
is less than that for those computed for the admissible DFTs. The slightly
higher value in the case when “year = 90s” is not statistically significant and
may be due to the stochastic nature of the DFT construction procedure. In the
graphs of Figure 5.11 the difference between the admissible and non-admissible
scores is most noticeable, with some descriptors (e.g., “genre = scifi”, “nation
= usa” and “size = small”) having large negative weighted power in the non-
admissible case. The negative powers when all rules are sampled highlight
a number of differences between the concepts that were not present when
only admissible rules were sampled. For example, concepts B and C differ
dramatically for the descriptors “size = large”, “size = small” and “genre =
horror”. Similarly, concepts A and D have very different powers compared
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Table 5.7. Number of common positive and negative examples
between each pair of Reading Preference concepts. Each entry
+P -N denotes that there are P positive and N negative examples
shared by the concepts labelling the row and column of the entry.
The values are not shown under the the main diagonal as they
are identical to those on the opposite side of it.

A B C D E
A +18 -63 +2 -47 +2 -47 +6 -51 +0 -45
B . +18 -63 +0 -45 +2 -47 +2 -47
C . . +18 -63 +2 -47 +2 -47
D . . . +18 -63 +3 -48
E . . . . +18 -63

to concept E for the descriptors “nation = uk” and “nation = usa”. These
differences can be understood with reference to Table 5.1. Since both rules
describing concept B test for “genre = romance”, no positive examples can
have “genre = horror” or “genre = scifi” meaning rules with those descriptors
can only cover negative examples. Similarly, positive examples for concepts A
and D must either have “nation = aus” or “nation = uk” meaning rules that
test “nation = usa” will cover only negative examples of those concepts.

The differences in power brought about by sampling non-admissible rules
has a measurable effect on accuracy when learning with Deft. Figure 5.12
shows the difference ∆(T, S, N) described in the method above for each target
task, support task and training set size. The layout of these values is similar
to the accuracy plots shown in Figure 5.4 above except that the differences
between accuracies, rather than absolute accuracies are shown. The solid,
horizontal line in each of the 25 plots is for reference and shows a difference
of zero. The only large and significant differences are for transfer from E to
A, A to E, B to C, C to B and C to C. In all of these cases, restricting DFTs
to admissible rules only leads to a higher accuracies when compared to using
DFTs that sample admissible and non-admissible rules. The largest of these
differences was 0.2 for transfers from concept B to tasks of size 10 for concept
C. The reason for the difference in accuracy in the C to C case is that the
descriptor powers for admissible DFTs have a larger positive power than the
DFTs when all rules are sampled. This means the preference bias for rules
with high true accuracy will be stronger when using the admissible DFTs.

Apart from the concept C to concept C transfer the other four cases in
which admissible sampling gives improved accuracy can be explained by the
descriptors with negative power. These cause the evaluation of rules that
satisfy those descriptors to be lower than when admissible DFTs are used.
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Figure 5.11. Weighted power for has_arg descriptors. The
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condition is (resp. is not) used.
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Figure 5.12. Difference in test accuracies between Deft us-
ing DFTs constructed using only admissible rules and those con-
structed using all rules. Error bars show 95% confidence intervals
for the true mean difference.
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Significantly, the concept pair A and E share no positive examples. That is,
none of the 81 possible instantiations of a book instance is covered by both
concept A and concept E. The pair B and C also share this property whereas
all of the other concept pairs have at least two positive examples in common,
as shown in Table 5.7.

5.2.7.3. Conclusions. The above results show that sampling only admissi-
ble rules during DFT construction leads to more opportunities for Deft to
improve generalisation accuracy from small training sets. In the cases where
the support and target tasks do not share any common positive examples, us-
ing the admissibility condition reduces the influence of descriptors with large,
negative power and allows Deft to exploit other, positive similarities between
those concepts. Furthermore, there were no situations within the reading pref-
erence environment where sampling only admissible rules lead to significantly
lower accuracies. These observations suggest that a reasonable default setting
is to use the admissibility condition when constructing DFTs.

5.2.8. Experiment RP-6: Sensitivity to descriptor templates. In
this experiment the use of the default templates setting {has_pred, has_arg}
was investigated to see whether some other combination of descriptor templates
can provide better transfer results. This was done by considering each of these
templates in isolation and also in conjunction with the num_lits descriptor
template described in the previous chapter. This template constructs exactly
one descriptor which counts the number of body literals present in a clause.
This descriptor template is also considered in isolation so as to determine
whether it is useful in its own right.

As in previous experiments, the focus here is limited to considering transfer
between a single pair of concepts, in this case from concept D to concept A.
This allows a range of possible settings for the templates parameter to be
explored and analysed.

5.2.8.1. Method. For each support task Ds for s = 1, . . . , 5 and non-empty
set of descriptor templates τ ⊆{has_pred, has_arg, num_lits}, a DFT Φ[s, τ ]

was constructed by BuildDFT using settings identical to those in Table 5.3
but with the templates parameter set to τ . The code used to implement the
three templates can be found in Appendix A. The 35 resulting DFTs were then
used as input to Deft when learning from each of the 30 tasks At,N where
t = 1, . . . , 6 and N ∈ {4, 6, 10, 20, 30}. The accuracies for the resulting 1050
theories induced by Deft for each transfer was computed by applying each
theory to the test set Atest.
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Table 5.8. Power and probabilities for the values of the
num_lits/0 descriptor recorded for concept D. The entries show
the mean value (s.d.) taken over the five tasks of size 100 used
to construct the DFTs Φ[s, {num_lits}].

num_lits
0 1 2 3

power (β) 0.00 (0.00) 0.79 (0.31) 1.42 (0.14) 2.77 (0.38)
prob. (π) 0.02 (0.00) 0.05 (0.00) 0.21 (0.00) 0.72 (0.01)

The parameters of interest in this experiment are the set of templates τ and
the training set size N . The mean accuracy acc(τ,N) for each of their settings
was calculated by averaging over the 30 accuracies obtained by varying the
support task index s and target task index t.

5.2.8.2. Results. All the experiments prior to this one have only used the
template set {has_pred, has_arg} and so these have been the only descriptors
for which powers have been reported. Table 5.8 provides the powers and
probabilities recorded for each of the values the num_lits/0 descriptor takes in
the DFTs for concept D. Unlike the other two descriptor types which only take
on the values “true” and “false” (the default), the num_lits descriptor’s values
are integers between zero (the default) and three, each number describing
the number of body literals in a clause. By definition, the default value of
zero literals has power equal to zero while the powers for the other values are
the increase in log-odds relative to the default. As the table shows, longer
admissible rules have a stronger correlation with correctly predicting positive
examples. This is not surprising since more specific admissible rules cover at
least one positive example but fewer negative examples than the shorter rules.

Whether or not a general preference for longer rules improves predictive
accuracy when examples are limited can be answered with reference to Fig-
ure 5.13. These plots provide a compact way of comparing the accuracies
across a range of training set sizes for concept A and all the combinations
of descriptor templates used to construct DFTs from concept D. Each of the
eight subsets of the templates {has_pred, has_arg, num_lits} are identified
by the presence or absence of each template. The solid (respectively, dashed)
plots within each of the four graphs in the figure show accuracy results when
the has_pred template was used (respectively, not used) when constructing
DFTs. The two leftmost (respectively, two rightmost) graphs show accura-
cies when the template has_arg was not (respectively, was) used during DFT
construction while the first and third (respectively, second and fourth) plots
report results for template sets which did not include (respectively, included)
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Figure 5.13. Accuracy vs. training size for tasks for trans-
fer from concept D to concept A using eight different tem-
plates settings. Each of the eight graphs shows how accu-
racy varies with training set size when a particular subset
τ ⊆{has_pred,has_arg,num_lits} is used to construct a DFT
for concept D. The error bars show 95% confidence intervals for
the mean.

the num_lits template.
The dashed plot in the second graph from the left corresponds to the use

of the template set {num_lits}. The dashed plot in the leftmost graph uses
an empty template set and so reports the same results as baseline learning
on concept A from Experiment RP-1. Comparing these two plots reveals that
using the num_lits descriptor gives a accuracy higher than the baseline by 0.06
(p < 0.02 using a two-sided paired t-test) when there are six training examples
but a lower accuracy than the baseline by 0.06 (p < 0.02) when there are 20
training examples. Both the increase and the decrease in accuracy relative to
the baseline learner are due to the preference for longer clauses when the τ =

{num_lits} DFTs are used. The search order the baseline learner uses means
the shortest rule that covers the most positive examples while excluding all
the negative examples will be selected. On small training set sizes a limited
number of negative examples means this search will terminate early, selecting
an over-general rule. When the {num_lits} DFTs are used, however, the
evaluation function is modified so as to prefer longer rules thereby reducing
the false positive rate. This same preference for longer rules is a liability when
more training data is available, forcing the search to over-specialise, creating
extra rules which ultimately increase the false positive rate. When used in
conjunction with other descriptors, however, the addition of the num_lits
descriptor does not significantly increase or decrease the accuracy of Deft.
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The interaction between the has_pred and has_arg descriptors is also fairly
minimal. Both descriptor types when used alone give substantial increases in
accuracy over the baseline learner, especially at small training set sizes. Com-
paring the dashed plots in the first and third graphs of Figure 5.13 shows
an increase of around 0.24 (p < 0.001) on training sets of size six when the
has_arg descriptor is used by itself. Similar gains can be seen when comparing
the solid and dashed plots in the leftmost graph. The solid plot corresponds
to the exclusive use of has_pred descriptors while the dashed plot shows the
baseline learning results. The combination of the has_pred and has_arg de-
scriptors (as shown by the solid plot in the third graph from the left) is not
significantly different to the has_pred descriptors used alone or the has_arg
descriptors used alone. The only exception to this is on training sets of size 20.
In this case the use of the combination returns theories that are 0.05 higher
than using only has_pred (p < 0.001) and 0.03 higher than using only has_arg
(p < 0.001).

5.2.8.3. Conclusions. When other descriptor templates are used the pres-
ence or absence of the num_lits template has no discernible effect on accuracy.
When used alone, however, the num_lits descriptor provides a small increase
in accuracy on small datasets when compared to the baseline results. This
suggests that this descriptor is not well suited for this environment as it is not
able to separate rules into to meaningful similarity classes.

In contrast, the similarity classes created by the other two descriptors,
has_pred and has_arg, allow for large increases in accuracy when used indi-
vidually to transfer bias from concept D to concept A. When combined, a slight
increase in accuracy was observed on larger training sets and no adverse effects
were recorded. This suggests that of the eight possible subsets of {num_lits,
has_pred, has_arg}, the use of {has_pred, has_arg} is a reasonable default
setting.

A final conclusion that can be drawn from these results is that adding extra
templates never decreased the accuracy of theories learnt by Deft. Further
experiments with a larger number of varied templates would be required to
test whether this is true in general.

5.2.9. Experiment RP-7: Sensitivity to the M parameter. The fi-
nal transfer parameter that the user can control is the M parameter. This
determines the number of virtual examples that are used when Deft’s Db-
Score and DbBound procedures combine a rule’s prior CPM with its actual
CPM. Intuitively, this controls how much influence a support task has over
the evaluation bias on a target task. In this experiment Deft was used with
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a variety of M settings to transfer bias from concepts B, C, D and E to target
tasks from concept A. The details of this experiment are given in the method
below.

5.2.9.1. Method. The target concept used in this experiment was concept A
and the support concepts S were drawn from {B, C, D, E}. The 20 DFTs Φ[Ss]

constructed in Experiment RP-2 for each of the support tasks Ss, s = 1, . . . , 5

were reused for this experiment. Using each of these DFTs in turn, Deft
was applied using each parameter setting M ∈ {1, 5, 10, 20, 50} to the tasks
At,N with training set sizes N ∈ {6, 10, 20} and task indices t = 1, . . . , 6.
Each theory induced by Deft was applied to the test set Atest to obtain
an accuracy measurement acc(Ss, At,N , M). The resulting 1800 trials were
organised by support task, target task size and M parameter setting and the
mean accuracy acc(S, N,M) was computed by averaging over the task indices
s and t:

acc(S, N, M) =
1

30

5∑
s=1

6∑
t=1

acc(Ss, At,N , M).

5.2.9.2. Results. Figure 5.14 contains three graphs: the left, centre and
right showing the accuracies acc(S, N,M) on target tasks for concept A with
sizes N = 6, 10 and 20 respectively. In each graph, Aleph’s accuracy for
each target task size is shown as a horizontal, dotted line. The value reported
by this line comes from the results of Experiment RP-1. The other four lines
within each graph show how the accuracies for Deft change as a function of
the parameter M for each of the four support concepts B, C, D and E.

A striking feature of the graphs in Figure 5.14 is how little impact the M

parameter has on the accuracies reported when Deft was used with DFTs
for concepts D and E. Regardless of the target task size the accuracy for
these support concepts is virtually identical as M ranges between 1 and 50.
While there is slightly more variance when concept E is used as support, the
accuracies in both these cases are never higher or lower than about 3% from
the M = 1 value. This can be explained by considering the interaction between
the CPM classes for the target concept A and the descriptor classes for the
support concepts D and E.

As described in Chapter 3, the set of rules for a learning task can be par-
titioned into classes based on the CPMs assigned to the rules by the training
data. When examples are limited these CPM classes can contain many rules
and, as more examples become available, the number of possible CPMs in-
creases and so the number of rules per CPM class falls. The evaluation function
used by the learner assigns scores to each of these classes based on the entries
in each class’s CPM. Poor test accuracies occur when the high scoring CPM
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Figure 5.14. Mean accuracy as a function of the M parameter
for Deft on target tasks for concept A for various training set
sizes. The dotted horizontal line in each graph shows the ac-
curacy of the baseline learner. Error bars show 95% confidence
intervals.
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classes based on a limited number of training examples have a large number
of rules which are not in the high scoring CPM classes for the test examples.
Description classes - sets of rules that share a common description - are used by
Deft to define a partition independent of the CPM partitions. Each descrip-
tor class is assigned a prior CPM based on the descriptor frequencies in the
DFT used as support. The evaluation function assigns a score to intersections
of CPM and description classes based on the combination p∗ = N

M+N
p+ M

M+N
q

of the training CPM p and prior CPM q.
In these experiments the evaluation function f is the coverage function,

returning the true positive count minus the false positive count of a rule. The
independence of the test accuracy and the M parameter in the cases described
above can be attributed to the linearity of this evaluation function. That is,

f(p∗) = f

(
N

M + N
p +

M

M + N
q

)
=

N

M + N
f(p) +

M

M + N
f(q).

When the rules which maximise f(q) are a subset of the rules which maximise
f(p) these same rules must also maximise f(p∗) for all M > 0. This is what is
happening when the priors q are constructed from support tasks for concepts
D and E. When there are rules which do not maximise f(p) and f(q) simulta-
neously small values of M will make the learner return rules which maximise
the former while large M will result in rules which maximise the latter. This is
the case for when the priors are constructed using concepts B and C as support
and the reason for the poor performance of Deft for large M values.

The above observations can also be used to explain another interesting
feature of the graphs in Figure 5.14, namely using the concepts B and C (which
are dissimilar to concept A) as support can give higher accuracies at low M

values than the baseline learner. Even a small M value lets the evaluation
function differentiate between rules on the basis of their description. The rules
which primarily maximise f(p) but also take into account f(q) perform better
than the rules found by purely maximising f(p).

5.2.9.3. Conclusions. When transferring bias from concepts D and E to
concept A, the M parameter was found to have very little influence on the
Deft’s generalisation accuracy, an effect is explained by the linearity of the
evaluation function used in these experiments. Small M values gave as much
an improvement in accuracy as large M values when the support concepts were
similar, as was the case with concepts D and E. It was also found that, for small
M values, Deft performs better than the baseline learner even when using the
concepts B and C, which are dissimilar to the target concept A. Taken together,
these results suggest that M values should be set to be small relative to the
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number of training examples. The use of the maximum likelihood estimate for
M =

√
N as a default setting for Deft ensures that this is the case.

5.2.10. Experiment RP-8: Analysis of CPM Error. The results of
the experiments described above show that Deft is transferring a bias between
the tasks in the reading preferences domain. Furthermore, when this transfer is
between tasks from the intuitively similar groups A, D and E, or B and C, the
effect of this transfer is an increase in generalisation performance. According
to the theory developed in Chapter 3, one explanation for these improvements
is due to the modifications made to the base learner’s CPM estimates which
take into account the performance of similar rules on the support task. If the
tasks are related - that is, their dissimilarity is low enough - then the Transfer
Theorem implies that the average CPM error using the support task should
be less than the average CPM error without any support.

There are two properties of the reading preferences domain which make
testing this theorem relatively easy in practice. The first is the small size of
the example and rule space. Each of the four predicates genre/2, nation/2,
size/2 and year/2 can only take on one of three possible values so there are
only 34 = 81 possible book instances and 44 = 256 unique rules that can be
constructed. This makes it possible to compute the exact CPM error errT (pE)

for an estimated CPM function pE based on the examples E for the task T .
The second property of this domain is that the descriptor templates has_pred

and has_arg create very fine-grained descriptions of rules. Indeed, each de-
scription corresponds to exactly one rule. Computing the similarity class for
any given rule is therefore trivial as it is the set containing only the rule in
question. Also, the prior CPM for that class is just the CPM for its single
rule evaluated on the support task. In practice however, the implementation
of Deft assumes descriptors are independent and computes CPM priors using
the product of the frequencies of the individual descriptors. The reading pref-
erences environment provides a perfect opportunity to analyse the difference
the practical assumptions make in light of the theory.

5.2.10.1. Method. Theorem 3.18 of the previous chapter gives an upper
bound on the CPM error when using classification priors from a support task
in terms of the normal CPM error for the target task and the dissimilarity and
irregularity of the support and target tasks. To test whether or not the bound
holds in practice these quantities need to be computed and compared to the
empirically obtained CPM error for the Deft evaluated rules.

This was done using the same collection of training folds and sizes for
the target tasks for A and the DFTs for the support tasks for B, C, D, and
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E that were used in Experiment RP-2 above. Using the method described
below, baseline CPM errors errA(p̄) were computed for each of the six training
sets At,N for the target concept A and training sizes N = 4, 6, 10, 20, 40. The
Deft CPM errors errA(p∗

S) were also computed on the same six training sets.
This was done using DFTs for each of the five example sets Ss,100 for the four
support concepts S ∈ {B, C, D,E}.

The CPM error was computed by applying the estimated CPM function
in question f (either for the baseline p̄ or Deft p∗

S) to each admissible rule
r ∈ RA for the concept A and taking the distance between the resulting CPM
f(r) and the true CPM pA(r). For each rule, the estimated CPMs were com-
puted against the training set At,N while the true CPM was computed by eval-
uating the given rule on every one of the 81 possible instances in the Reading
Preferences domain and comparing the rule’s classification to the true classifi-
cation for concept A. The Euclidean norm (see Section 3.4.1 above) was used
when computing the difference between CPMs. By definition, the final CPM
error for the estimated and true CPM functions is the average of these CPM
distances taken over all the admissible rules for the concept A.

For a given support task S and training size N , the empirical difference
between the CPM errors for the baseline CPM function and the Deft CPM
function was computed for the six training tasks At,N and each of the five DFTs
created for the concept S. A rearrangement of equation 3.1 in the Transfer
Theorem says that this difference d(A, S) = errA(p̄)− errA(p∗

S) should satisfy

(5.6) d(A, S) ≥
√

N

N +
√

N

Pr(R′)

Pr(RA)
[∆R′(p̄,p)− (δR′(A, S) + γR′(A))]

where R′ is the set of rules in the domain dom(A, S) of the similarity map
between concepts A and S. This lower bound was tested by computing the set
R′, the distance ∆R′(p̄,p) between the estimated and actual CPM function,
the dissimilarity δR′(A, S) between A and the support S, and the irregularity
γR′(A).

Several properties of the Reading domain and the descriptors used for trans-
fer make it relatively easy to compute many of these terms. As mentioned
above, descriptions uniquely determine a rule and so each description-based
similarity class contains only that described rule. The domain dom(A, S) of
the similarity map between concepts A and S is simply the set of rules that
are admissible for both concepts. That is, R′ = RA ∩RS which was computed
by iterating through all 81 rules and keeping those that covered at least one
positive example of both concepts. The irregularity γR′(A) was zero for all
sets R′ since the average CPM for each similarity class was just the CPM for
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Figure 5.15. Mean CPM Error of Aleph and Deft CPM
estimates on tasks for concept A. Error bars show 95% confidence
intervals.

the single rule in that class. Computing ∆R′(p̄,p) was done by evaluating
both CPM functions on each rule in R′ and taking that average Euclidean dis-
tance between the CPMs they returned. The computation of the dissimilarity
δR′(A, S) was made easier since for each rule r ∈ R′ the prior CPM qT (r)

is just the CPM pT (r) as the similarity class for r only contains r. As the
dissimilarity is the average CPM distance over all similarity classes for rules
in R′ the calculation reduced to computing the average CPM distance over all
rules in R′. Finally, the probability measure Pr was taken to be uniform over
the rules and so the ratio Pr(R′)

Pr(RA)
is just the number of rules in R′ divided by

the number of admissible rules for concept A which is 112.
5.2.10.2. Results and Analysis. Figure 5.15 shows the average CPM errors

for the estimated CPM functions on the tasks At,N for the various example
set sizes N . The values shown at each size are the mean and 95% confidence
interval taken over all the tasks t = 1, . . . , 6 and the five DFTs generated from
the support tasks Ss,100, s = 1, . . . , 5. As can be seen, the CPM error for
the Deft modified CPM estimates are consistently lower on average than the
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Table 5.9. Dissimilarity between the reading preference con-
cepts. Each cell shows the dissimilarity between the row and
column concepts. Entries below the main diagonal are not shown
due to the symmetry of the dissimilarity measure on these tasks.

A B C D E
A 0 0.055 0.047 0.015 0.021
B . 0 0.019 0.055 0.055
C . . 0 0.047 0.047
D . . . 0 0.032
E . . . . 0

baseline CPM estimate on the smaller example set sizes. The CPM estimates
when using concept B or C as support are lower than the raw CPM estimate.
Furthermore, the CPM error when using concept C is indistinguishable from
those made when using the more similar concepts D and E. While surpris-
ing, this is still consistent with the results from the experiments above since
CPM error only measures the average difference between the estimated and
true CPM functions. Generalisation performance, as measured by accuracy
or AUC, depends on the other biases of the learner and, ultimately, on which
rules are selected for the induced theory. Although the use of concepts C and
E as support result in similar CPM error on average, the bias provided by
concept E leads to better rules being selected for the induced theories.

To see how these empirical CPM error results compare with those predicted
by the theory the values for the terms in Equation 5.6 are required. The num-
ber of rules admissible for concept A that were also admissible for concepts
B, C, D and E were 42, 46, 80 and 56, respectively making the proportions
Pr(R′)
Pr(RA)

approximately equal to 0.375, 0.411, 0.714, and 0.500. The dissimilari-
ties δR′(A, S) are shown in the top row of Table 5.9 and agree with the intuition
and earlier results that suggest concepts D and E are more similar to A than
B or C.2

These values were used to compile Table 5.10 by computing the empirical
difference between the raw and posterior CPM error and theoretical lower
bound on the tasks of size 10 for concept A. As there were six example sets
of size 10 and five DFTs for each support task, a total of thirty differences
and bounds were computed for each support task. The values in the second
and third columns of the table show the mean values and sample standard
deviations. The final column is a tally of the number of times the lower bound
was valid out of the 30 trials.
2Although it is not the case in general, this table is symmetric because the similarity classes
for this domain only contain a single rule.
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Table 5.10. The empirical difference, theoretical lower bound
and number of times the lower bound was respected for the raw
and posterior CPM errors for tasks A with 10 examples using
the support tasks B, C, D and E.

S d(A, S) bound d(A, S) ≥ bound
B 0.0067 (0.0003) 0.0022 (0.0002) 30/30
C 0.0095 (0.0004) 0.0038 (0.0003) 30/30
D 0.0102 (0.0005) 0.0149 (0.0004) 0/30
E 0.0088 (0.0004) 0.0097 (0.0002) 12/30

The theoretical lower bound held for all 30 of the posterior CPM functions
built using the support tasks B and C but did not hold at all for support
tasks for concept D and less than half the time for concept E. These results
show that the Transfer Theorem over-estimated the amount of improvement
in CPM error that was expected when using the tasks D and E as support
for the similar task A. This discrepancy between theory and practice is due to
the approximations made in the implementation of similarity-based transfer
as Deft, the main one being the decomposition of description classes into
descriptor frequencies. This simplification, along with the use of sampling
techniques to estimate the frequencies, make the Deft-constructed posterior
CPM function differ from the theoretical one. This experiment has shown that
these simplifications weaken the guarantees made by the theoretical analysis
of similarity-based transfer in the Chapter 3. Adapting the theory to take into
account these simplifications is discussed further as future work in Chapter 6.

5.2.11. Summary of Results and Conclusions. The experiments and
analysis reported in this section aimed to understand under what circum-
stances the use of the inductive transfer system Deft can improve learning
performance. The simplicity of the five reading preference concepts meant this
question could be thoroughly explored by carefully varying and controlling the
many parameters and factors that were suspected to have an influence on in-
ductive transfer. Furthermore, the small number of rules and instances in this
domain meant that CPM error could be explicitly computed and compared
with the implications of the Transfer Theorem.

The first two experiments, Experiments RP-1 and RP-2, were used to com-
pare the baseline learner Aleph with Deft over a range of training set sizes
and support and target pairs using a default set of parameter settings. The
results of these experiments confirmed that, with an appropriate choice of sup-
port task, Deft can achieve large improvements in accuracy over the baseline
learner Aleph when training examples are limited. These gains were shown
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to be due to a preference, imparted by the support task priors, for rules which
were more specific than would normally be suggested by the training data
alone. DFT construction time was shown to be significant relative to learning
times, however the use of DFTs once they were constructed cost very little in
terms of overhead.

The results of Experiment RP-3 examined the effect the size of support
tasks had on the results from the previous experiments. It was found that
Deft performed best provided there were enough examples to induce an ac-
curate theory from the support task. Increasing the number of examples in
support tasks beyond this did not significantly effect the transfer results.

Experiments RP-4 and RP-5 were designed to investigate the effects of
varying the DFT construction parameters. In Experiment RP-4 the sam-
pling parameters exs_samples and cls_sampled were varied and the resulting
changes in DFT construction times and transfer accuracies recorded. It was
found that of these two parameters varying exs_sampled caused the great-
est changes in the recorded quantities. DFT construction times grew fastest
when increasing exs_sampled and too small a value for this parameter had
an adverse effect on transfer accuracy. Some heuristics for choosing values for
the sampling parameters include making exs_sampled large enough to ensure
every disjunct in the target concept is sampled from and setting the product
of the two parameters to be larger than the value derived from the analysis of
BuildDFT in Section 4.3.4. The results of Experiment RP-5 also suggest that
the best set of descriptor templates to use is {has_pred, has_arg}. Trans-
fer using these performed slightly better than using either one alone while
the addition of the template num_lits did not have any measurable effect on
accuracy.

The admissibility condition used by Deft when constructing DFTs was
investigated in Experiment RP-6. When admissible and non-admissible rules
were sampled during DFT construction the overall power of each descriptor-
value pair in the resulting DFTs dropped. These differences gave no improve-
ment in transfer results compared to when only admissible rules were sampled.
Furthermore, support and target pairs that showed positive transfer effects
when only admissible rules were used, such as concepts B and C or A and
E, no longer yielded improvements in accuracy when used by Deft. It was
observed that these pairs shared no positive examples and so it was concluded
that only admissible rules be sampled during DFT construction, especially if
transfer between disjoint concepts is desired.

The amount of influence a DFT has on rule evaluation is controlled by
Deft’s M parameter. By default this is set to its maximum likelihood es-
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timate, that is, the square root of the number of available training instances
in the target task. The results of Experiment RP-7 showed that, in the cases
where support concepts had a positive influence on accuracy, changing the
value of the M parameter had no significant effect on this influence. Analysis
showed that this was due to the linearity of the evaluation function used in
these experiments. Increasing the M parameter did, however, magnify the
decrease in accuracy when a bad choice of support task was made. The con-
clusion was that M should be chosen to be small relative to the number of
examples N . This is something that he default setting of M =

√
N ensures.

The culmination of the above results suggest that the choice of parameter
settings for Deft do not have a great effect on the transfer results in the
Reading Preferences domain. By and large, the most important factor in
determining whether or not the use of Deft will result in an increase in
generalisation accuracy is the choice of support task. This sits well with the
intended use of Deft as a tool which allows a domain expert to select an
inductive bias for a limited data learning task without necessarily requiring a
deep understanding of the details of the learning and transfer algorithms.

Finally, the experiment and analysis reported in Experiment RP-8 suggests
more work is needed in order to improve the theory of Chapter 3 to take into
account the simplifications made in order to implement Deft. In order to
make the computation of prior CPM functions tractable it was necessary to
assume the descriptors used in a transfer were independent. This is clearly not
the case in the experiments performed above and this difference is reflected
by the theoretical CPM error improvement being larger than those observed
empirically.

5.3. The Chess Environment

Chess has long been studied by artificial intelligence researchers as it ties
together many areas of the discipline: planning, knowledge representation,
learning, search, and pattern recognition. From an ILP researcher’s point of
view, the arrangement and movement of pieces is best represented relation-
ally, using predicates to state which piece threatens other pieces, the relative
position of pieces, and movement on the board.

Learning symbolic descriptions of rules and strategies for chess has had
a long history. The problem of learning descriptions of legal moves for vari-
ous pieces from examples was introduced by Vere [1977] and later studied by
De Raedt and Bruynhooghe [1992], Datta and Kibler [1993], and Khan et al.
[1998] as an environment of related learning tasks. Both Khan et al. [1998] and
Datta and Kibler [1993] used the chess movement environment to investigate
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inductive transfer using predicate invention. They only considered moves on
empty chessboards. In Datta and Kibler’s work, moves by the Rook, Bishop,
Queen and Knight were considered as a sequence with concepts shared be-
tween each task. In the Repeat Learning (RL) work by Khan and others,3

only King and Knight movements were considered, with invented predicates
being transferred from King to Knight, King to King, Knight to King and
Knight to Knight. The same datasets and methodology used by Khan et al.
[1998] are used here to evaluate Deft.

Of the five inductive transfer approaches reviewed in Section 2.5, Repeat
Learning was the most appropriate inductive transfer approach with which to
compare Deft. The foremost reason for this is that RL is the simplest of all of
the approaches and was originally implemented to use the same base learning
algorithm as Deft. This not only meant the experiment reported here was
easier to set up and run but also that differences in the performance of the two
systems would be due to transfer effects and not properties of the base learner.
Furthermore, comparisons with the other inductive transfer approaches to rule
learning seemed to have dubious benefit. The predicate invention and rule
model approaches of Mobal-MAT and Clint-CIA were designed for learn-
ing apprentice systems and require interaction with a human expert. The
relational cliché techniques used by Cluse and LRC extend Focl’s greedy,
hill-climbing search by adding extra search actions to it, however the search
performed by Aleph is complete so the addition of extra search actions via
clichés would, at best, only reorder the search. Finally, the concept sharing
approach of MFocl is a special case of the generalised repeat learning used
in these experiments.

The experiment reported here had three main aims. The first was to test
Deft on another environment of tasks. As the chess tasks have been used to
test other approaches to inductive transfer they make a good, independent test-
bed for Deft. The second was to compare the performance of two different
approaches to inductive transfer, namely Deft and Repeat Learning. To this
end, the RL algorithm was re-implemented for these experiments so as to use
Aleph as the base level learner. This not only allowed for a fairer comparison
of the two algorithms but also functioned as a replication of the original RL
experiments. The third aim was to see if the two inductive transfer methods
could be combined and whether such a combination is beneficial. The effect
Deft and RL have on a learner’s bias are more or less independent: the former
modifies its evaluation bias while the latter modifies its language bias through
3See Section 2.5 for an overview of RL.
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Table 5.11. Description of the predicates used in the Chess
domain. The king/2 and knight/2 predicates are the target
predicates for the King and Knight concepts respectively. The
type f and r specify the types “file” and “rank” respectively. The
’?’ mode is shorthand for input (+), output (-) and constant
(#).

Predicate Mode Description
rdiff(+r, +r, ?int) Third argument is the number of ranks

from first to second.
fdiff(+f, +f, ?int) Third argument is the number of files from

first to second.
king(pos(+f,+r), pos(+f,+r)) Moving from first argument’s file and rank

to second is a legal King move.
knight(pos(+f,+r), pos(+f,+r)) Moving from first argument’s file and rank

to second is a legal Knight move.

the invention of predicates on a support task which are then used when learning
on the target task. A search using RL invented predicates can be guided by
an evaluation function modified by Deft.

5.3.1. Materials. The chess movement tasks involve learning rules to
describe the legal moves of King and Knight pieces on an empty board.4

The predicates to be learnt are king/2 and knight/2 where the first ar-
gument of each predicate is the start position, represented by the function
pos(File,Rank). The second argument holds the end position, also repre-
sented using the function pos/2. The background knowledge consists of the
predicates rdiff/3 and fdiff/3. The former describing the difference be-
tween two ranks, rdiff(R1,R2,Diff), and the latter the difference between
two files, fdiff(F1,F2,Diff). These predicates and their modes are sum-
marised in Table 5.11.

5.3.1.1. Datasets. This experiment used the background and example sets
made available by Khan et al. [1998], who describe their construction as fol-
lows. First, all 64× 64 possible pairs of chessboard positions were generated.
These were then classified according to whether they are legal moves for the
Knight or King resulting in two “gold standard” datasets Kitest for the King
movement concept and Kntest for the Knight movement concept. Both the
4Some preliminary experiments were tried using Queen, Rook and Bishop movement but
compared to the Knight and King movement domains they are very easy to learn. Both the
Rook and Bishop movements can be described in two short clauses while Queen movement
is just the disjunction of the Rook and Bishop theories. Aleph was able to learn accurate
theories from tiny datasets obviating the need for inductive transfer.
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King and Knight datasets contained roughly 8 times more negative examples
than positive examples.

Training sets were then derived from the complete datasets by random
sampling with replacement. In total, 140 training sets were created for each
of the two chess pieces. Twenty tasks, indexed by t = 1, . . . , 20, were cre-
ated for seven different training set sizes N ∈ {10, 20, 30, 40, 60, 80, 160}. For
convenience, these will be denoted Kit,N for the King tasks and Knt,N for
the Knight tasks. Each task was constructed to contain an equal number of
positive and negative examples.

5.3.1.2. Algorithms. As well as Deft, three other types of learning algo-
rithms were applied to the chess tasks. These were Aleph, RL and RL+Deft.
The RL algorithm is a re-implementation and slight extension of the Repeat
Learning system of Khan et al. [1998] and RL+Deft denotes its simultaneous
use with Deft as described below. As in the reading preferences environment,
Aleph was used by itself as a baseline for learning performance and complex-
ity.

The RL Algorithm - In its original incarnation, the implementation of
repeat learning used Progol [Muggleton, 1995] as a base level learner and
used its built-in constraint solving procedures to invent predicates from support
tasks. Predicate invention is performed as part of a standard induction by
the base learner. As described in Section 2.5 of the literature review, the
predicates invented from support tasks using this technique are then added to
the background knowledge when learning on a target task.

RL, the implementation of repeat learning used in this experiment, differs
from the original in two ways. Firstly, Aleph rather than Progol is the
system used as the engine that performs the search during the invention and
reuse stages of repeat learning. As both systems use inverse entailment for
their search the effects of this difference are negligible.

The second modification RL introduces is to automate the reuse of in-
vented predicates. In its original implementation, Repeat Learning writes to
file the models of the invented predicates. The experimenter then chooses
which predicates to reuse on a target task by adding their models to the back-
ground knowledge and setting the mode and type information that is given to
the base learning system. As the newly invented predicates are only defined
in terms of ground models the applicability of the approach is limited. The
main difference between that original form and its implementation here is that
all the predicates invented on the support task are reused on the target. No
selection of appropriate predicates by the experimenter takes place.
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For the chess tasks, RL was configured to invent predicates over the con-
stants appearing in the third argument of the fdiff/3 and rdiff/3 predicates.
This is consistent with the way in which repeat learning was used in the exper-
iments by Khan et al. [1998]. Predicates invented in this way should exploit
symmetries in the Knight and King movement definitions by allowing clauses
to express disjuncts of file and rank differences.

The RL+Deft Algorithm - The effect Deft and RL have on a learner’s
bias are more or less independent: the former modifies its evaluation bias while
the latter weakens its language bias. A search using RL invented predicates
can be guided by an evaluation function modified by Deft.

Combining the RL and Deft algorithms for inductive transfer is straight-
forward. First, the RL predicate invention method is applied to a support
task. Deft’s consolidation procedure BuildDFT is then applied separately
to the same support task. This results in a set of invented predicates and a
DFT for the support task. To apply RL+Deft to a target task the invented
predicates are added to the target background knowledge as just described for
RL. The DFT built on the support task is then used by Deft on the target
task in the normal manner.

It is worth noting that the DFT build on the support task will not men-
tion any of the predicates invented by RL as the invention and consolidation
processes are run separately. This was the simplest way of combining the two
algorithms. Many of the clauses generated on the target task will, however,
contain the invented predicates. These will have no effect on the construction
of CPM priors by Deft using the DFT.

5.3.1.3. Settings. All three inductive transfer methods, Deft, RL and
RL+Deft, use Aleph as their base level learner. The settings used for
Aleph were kept constant across all the methods and are summarised in Ta-
ble 5.12. The settings for clauselength, i and nodes are slightly higher than
those used in the Reading Preferences environment as the target concepts for
chess movement are slightly more complicated. It is important to note that the
Aleph settings described here are the same ones used by RL when inventing
as well as using predicates.
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Table 5.12. Settings used by Aleph and Deft for experi-
ments within the Chess domain

Learner Setting Value
Aleph clauselength 6

i 3
minacc 1.0
nodes 1000

BuildDFT admissibility true
exs_sampled 40
cls_sampled 10
templates {has_pred, has_arg}

DbScore M
√

N

Table 5.12 also summarises the default settings for Deft in the chess ex-
periment. These are predominantly the same as those used in the reading
preferences environment. Default values of 40 and 10 were chosen for the
two sampling settings exs_sampled and cls_sampled respectively. These were
chosen for reasons similar to those for the reading preferences environment in
Section 5.2 above. That is, 40 examples are sampled as this is half of the
total number of positive examples and 10 clauses per example were sampled to
ensure the total number of clause evaluations was larger than the lower bound
derived in the previous chapter.

5.3.2. Experiment Chess-1: Comparison of Aleph, Deft and
RL. In this experiment the generalisation performance of Deft, RL and the
combination of Deft and RL were all compared to the baseline performance
of Aleph on the King and Knight movement tasks. As discussed in the
introduction to this section, the aims of this experiment are to try Deft on a
new environment, compare Deft with repeat learning, and determine whether
there is any value in combining the two approaches to inductive transfer. All
three aims are carried out using the King and Knight as a support and target
pair. When King tasks were used as a target, the inductive transfer algorithms
used a large Knight task as support and vice versa. In each case, Deft used
the support task to construct a DFT while the RL algorithm used the support
task to invent predicates. When RL+Deft were used in conjunction on a
target task both the priors from the DFT and the invented predicates were
used. The details of this procedure are described in the method below.

5.3.2.1. Method. The method used for this experiment can be broken up
into three main phases: 1) establishing the baseline learning results for Aleph,
2) DFT construction using Deft and predicate invention using RL, and 3) ap-
plying Deft, RL and RL+Deft to the target tasks. The first phase consisted



5.3. THE CHESS ENVIRONMENT 173

of the following steps. For each target concept T ∈ {Ki, Kn} Aleph was run
on the 140 tasks Tt,N for training set size N ∈ {10, 20, 30, 40, 60, 80, 160} and
task index t = 1, . . . , 20. The resulting theories were tested on the correspond-
ing test set Ttest for the target concept.

For the second phase, DFT construction and predicate invention was car-
ried out using the following two steps:

(1) Descriptor frequency tables Φking and Φknight were created for King and
Knight movement concepts respectively. The was done by applying
Deft to the tasks Ki1,160 and Kn1,160 using the sampling settings
and descriptor templates described above.

(2) Predicates were invented using the RL algorithm for the support tasks
Ki1,160 and Kn1,160. RL was restricted to invented predicates over
the constants appearing in the third arguments of the fdiff/3 and
rdiff/3 predicates. The sets of invented predicates are denoted Qking

and Qknight respectively.

Finally, Deft, RL and RL+Deft were applied to the target tasks using the
results of the above consolidation steps. The method used for this third phase
was as follows:

(1) First, Deft was applied to all 140 of the King and Knight tasks using
the Φking as the support DFT when applied to the Knight tasks. The
Φknight DFT was used when Deft was applied to the 140 King tasks.

(2) RL was applied to the 140 tasks for the King concept using the in-
vented predicates Qknight as extra background knowledge. Similarly,
RL was also applied to the 140 Knight tasks with the Qking predicates
added to the background knowledge.

(3) Finally, RL+Deft was applied to each of the 140 King tasks using
the Qknight predicates as extra background knowledge and prior CPMs
were created using the DFT Φknight. Similarly, RL+Deft was applied
to the 140 Knight tasks using Qking as extra background and the DFT
Φking was used for the creation of priors.

(4) All the theories induced from the 280 tasks Tt,N in the previous three
steps were tested on their corresponding test set Ttest. The true pos-
itive and false positive rates computed from the test set were then
averaged to determine the AUC score for each theory. The number of
clauses and literals used in each theory was also recorded.

The AUC score used here is the same performance measure as used by Khan
et al. [1998], though they only refer to it as the average of the true positive and
true negative rates. These two measures are equivalent [Fawcett, 2004] and are
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Table 5.13. Default priors and descriptor power for the DFTs
for the King and Knight tasks.

Task
King Knight

has_pred has_arg Power (β) Prob. (π) Power (β) Prob. (π)
fdiff - 1.04 0.99 0.37 0.99

-2 - 0 2.66 0.09
-1 1.62 0.25 0.79 0.24
0 -0.34 0.61 -0.32 0.56
1 1.82 0.27 0.66 0.17
2 - 0 2.76 0.11

rdiff - -0.81 0.99 0.47 0.99
-2 - 0 1.40 0.21
-1 1.52 0.26 1.49 0.09
0 -0.65 0.62 -0.25 0.64
1 1.48 0.28 1.51 0.12
2 - 0 1.32 0.21

used instead of test accuracy due to the large class imbalance of around eight
negative examples for every positive example in the test sets. As in the reading
preference experiments, mean values and standard deviations for the theories
induced by each learning algorithm were calculated for each target task T and
training set size N by averaging over all twenty task indices t = 1, . . . , 20.

5.3.2.2. Results and Analysis. The results and analysis of this experiment
are presented in three parts. The first part examines the auxiliary information
- the DFTs and invented predicates - created by Deft and RL. The comparison
of these support task summaries for the two target concepts gives some insight
into how the respective algorithms modify the bias used by the base learner.
The second part reports the AUC scores achieved by the baseline learner,
Deft, RL and the combination RL+Deft on the King and Knight tasks.
Statistical comparisons of AUC scores are performed between all four learning
algorithms and reveal improvements by all three inductive transfer approaches.
The final part of this section attempts to understand the gains in AUC by
examining the theories induced by the baseline learner and each of the transfer
methods.

A summary of the DFTs constructed for this experiment is provided in
Table 5.13. The presentation used is the same as for the DFTs in the read-
ing preference experiments, showing the power for each of the non-default
descriptor-value pairs. The powers for the descriptor-value pairs in the DFTs
built from the King and Knight tasks show a strong correspondence indicating
that the well performing clauses for the two concepts are similar. In particu-
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Table 5.14. Predicates invented by RL on the King and Knight tasks.

Invented predicates Qking

q0(-1). q0(0). q0(1).
q1(-1). q1(1).
q2(-1). q2(0).

Invented predicates Qknight

q3(-2). q3(-1). q3(1). q3(2).
q4(-1). q4(1).
q5(-2). q5(-1). q5(1).
q6(-2). q6(2).
q7(-1). q7(1). q7(2).
q8(-2). q8(-1).
q9(1). q9(2).

lar, the use of the fdiff(F1,F2,-1) and fdiff(F1,F2,1) literals correlates well
with correct positive predictions on both tasks. The descriptors present in the
Knight DFT but missing in the King DFT are due to the difference in admis-
sible clauses for each concept. Examples of Knight movements always involve
a rank or file difference of two whereas a King changes its rank or file by at
most one. When learning using these DFTs as support, a preference should be
shown towards clauses which use these constants over those which do not.

Predicates invented by RL on the King and Knight tasks are shown in
Table 5.14. Each predicate is defined by its ground instances which range
over integer values. On the King task RL invented three distinct predicates,
q0 through q2, each defining a disjunction of values between -1 and 1. On
the Knight task, RL invented seven predicates q3 through q9, each defining a
disjunction of values between -2 and 2. The predicates q1 and q4 express the
same disjunction of values, namely -1, 1. This disjunction is particularly useful
for learning both the King and Knight concepts as it can be used to express
differences of one square in either direction along a rank or file. It is expected
that these two predicates will feature prominently in the theories induced by
RL and RL+Deft when these are examined below.

The AUC scores for all three transfer methods and the baseline learner
are summarised for the two chess concepts in Tables 5.15 and 5.16. The first
table shows the scores on the King tasks at the seven different training sizes
while the second reports the same information for the Knight tasks. For both
chess concepts the AUC scores for theories learnt by Aleph increase as more
training examples become available. Theories learnt from 160 examples con-
sistently have almost perfect prediction regardless of the learning algorithm
used. An example of a theory learnt by Aleph on a large King task is shown
in Figure 5.16. This shows how each of the eight possible King moves are each
covered by a single clause.5

5The other clause king(pos(A,B),pos(A,B)) covers the case when the King stays in its
starting position. This was added as a “legal” King move in the experiments reported by
Khan et al. [1998] and so it is done so here.
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[ +8,-0] king(pos(A,B),pos(A,B)).
[+11,-0] king(pos(A,B),pos(A,C)) :- rdiff(C,B,-1).
[+10,-0] king(pos(A,B),pos(A,C)) :- rdiff(C,B,1).
[ +7,-0] king(pos(A,B),pos(C,B)) :- fdiff(C,A,-1).
[ +6,-0] king(pos(A,B),pos(C,B)) :- fdiff(C,A,1).
[ +9,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,-1), fdiff(C,A,-1).
[+12,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,1), fdiff(C,A,1).
[+13,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,-1), fdiff(C,A,1).
[ +4,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,1), fdiff(C,A,-1).

Figure 5.16. A theory induced by Aleph from a training set
with 160 examples of the King concept. The numbers in square
brackets before each clause indicate the number of true positives
and false positives that clause covers.

On tasks with fewer than 60 examples Deft achieves higher AUC scores
than the baseline learner Aleph on both the King and Knight tasks. The
differences between these two algorithms becomes larger as fewer examples are
available to the learners. The largest average difference of 10% occurs on King
training sets with 10 examples. These results are consistent with the behaviour
of Deft observed in the reading preferences domain and suggest that the bias
modification made by using support task DFTs improve evaluation estimates
when training data is very limited.

The RL algorithm also shows significant gains in AUC score over the base-
line learner on both chess concepts. Unlike Deft, the larger gains due to RL
occur on medium-sized King tasks with the largest average improvement of
8.2% recorded on King tasks of size 40 respectively. On the King and Knight
tasks with only 10 examples the improvements due to RL are much smaller
than those due to Deft while on the largest training sets both transfer ap-
proaches perform as well as the baseline learner. These results suggest that
when sufficiently many positive examples become available the predicates in-
vented by RL are used in single clauses to cover sets of examples that would
otherwise require several separate clauses.

In the discussion at the beginning of this section it was argued that the
hybrid transfer approach should capitalise on the advantages of its compo-
nent systems as the bias modified by each is independent of the other. Deft
changes the base learner’s evaluation by adding CPM priors derived from DFTs
while RL changes the representation bias used by the base learner by adding
predicates invented from the support task. If this was the case, the improve-
ments made by Deft on the very small training sets should also been made by
RL+Deft as well as the improvements due to the addition of invented pred-
icates on medium-sized tasks. This behaviour was observed on the King tasks
and, to a lesser extent, on the Knight tasks, and in all cases the RL+Deft
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Table 5.15. Mean AUC values of all four algorithms as percent-
ages on the King tasks. The figures in brackets show the sample
standard deviation. Bold entries indicate a score greater than
Aleph while “R” and “D” indicate a score greater than RL or
Deft respectively. All tests are single-sided, paired t-tests at
the p < 0.01 level of significance.

Aleph Deft RL RL+Deft
10 61.3 (1.1) 71.3 (1.4) [R] 66.3 (1.9) 73.2 (1.5) [R]
20 72.4 (1.4) 79.1 (1.6) 78.2 (2.2) 82.4 (1.8) [D,R]
30 77.5 (1.0) 85.7 (0.7) 84.5 (1.1) 87.5 (0.9) [R]
40 84.9 (1.1) 90.2 (1.2) 93.1 (1.3) [D] 93.1 (1.1) [D]
60 91.2 (1.3) 94.8 (1.0) 95.7 (1.3) 96.8 (1.0) [D]
80 95.6 (1.0) 97.1 (0.7) 98.9 (0.5) [D] 98.9 (0.5) [D]
160 99.6 (0.3) 99.6 (0.3) 99.8 (0.2) 99.8 (0.2)

Table 5.16. Mean AUC values of all four algorithms as per-
centages on the Knight tasks. The figures in brackets show the
sample standard deviation. Bold entries indicate a score greater
than Aleph while “R” and “D” indicate a score greater than RL
or Deft respectively. All tests are single-sided, paired t-tests at
the p < 0.01 level of significance.

Aleph Deft RL RL+Deft
10 62.4 (1.0) 71.1 (1.1) [R] 67.3 (1.5) 71.9 (1.1) [R]
20 71.8 (1.0) 79.7 (1.2) [R] 77.2 (1.7) 80.6 (1.5) [R]
30 79.6 (1.3) 88.5 (1.0) 87.8 (1.3) 89.1 (1.2)
40 86.3 (1.5) 92.4 (1.3) 92.4 (1.5) 93.1 (1.3)
60 93.3 (1.3) 97.3 (0.8) 97.8 (0.7) 97.8 (0.7)
80 96.4 (0.9) 97.9 (0.7) 98.2 (0.6) 98.2 (0.6)
160 99.8 (0.2) 99.8 (0.2) 99.8 (0.2) 99.8 (0.2)

combination performs at least as well as the RL or Deft algorithms alone.
On the small King tasks (those with 10, 20 and 30 examples) and the

small Knight tasks (with 10 and 20 examples) the RL+Deft combination
significantly outperforms RL used by itself. The AUC scores achieved in these
cases are at least as good as those reported when using Deft on its own and
better by about 3% than both the Deft and RL algorithms on the King tasks
of size 20. When the amount of training data increases to 40, 60 and 80, the
hybrid system outperforms Deft alone on the King tasks with AUC scores
comparable to those recorded for RL alone. No significant improvement over
Deft was recorded for these sizes on the Knight tasks as all three approaches
had similar AUC scores.

These improvements made by Deft, RL and RL+Deft can be better un-
derstood by examining the theories induced by each approach. In the reading
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preference experiments, counting the number of clauses and literals in each
theory proved to be a quick way to form a picture of how Deft was modifying
the preferences of the base learner. This technique is employed again for this
experiment and the theory and clause sizes are displayed as functions of train-
ing size for the King tasks in Figure 5.17 and the Knight tasks in Figure 5.19.

The first graphs in both figures are somewhat difficult to read as the plots
for the number of clauses in theories induced by Aleph and Deft coincide,
as do the plots for RL and RL+Deft. There is, however, a large difference
in the number clauses induced by the RL and non-RL approaches on larger
task sizes. The invented predicates used by both RL and RL+Deft enable
accurate theories for both the King and Knight tasks to be represented using
half as many clauses as required to express accurate theories without them.
The use of these invented predicates can be observed in the plots of average
clause length in the second graphs in both figures. On the larger Knight and
King tasks RL induces clauses that are, on average, about one literal longer
than those found by Aleph. An example of a theory induced by RL on a large
King task is given in Figure 5.18. Each pair of clauses in the theory induced
by Aleph (shown in Figure 5.16) representing moves within a file or rank has
been replaced by single one which uses an extra q4 literal.

Table 5.17 shows how frequently each invented predicate was used in the-
ories induced by RL and RL+Deft from tasks at each training size for the
King and Knight concepts. The predicates q1 and q4 are used very often by
both RL and RL+Deft when learning theories for the Knight and King tasks,
respectively. This is because the disjunction of values expressed by these pred-
icates allows a greater number of positive examples to be covered with fewer
clauses. RL+Deft also infrequently includes the less useful predicates q2 and
q9 on the smaller training set sizes.

Longer clauses are a distinct feature of both Deft approaches on all tasks
to which they are applied. This suggests that the preference bias due to the
DFTs is causing the base learner to specialise clauses further than the data
alone would require. This specialisation is advantageous on the very small
datasets as witnessed in the performance results discussed above. More specific
clauses have a lower false positive rate and hence theories which use them have
a higher AUC score. What is slightly puzzling is why these over-specialised
clauses do not reduce AUC scores on the larger training set sizes. An exami-
nation of the theories induced by Deft on the 160 example King tasks showed
that many of theories looked like the one shown in Figure 5.20. Here can be
seen clauses with extraneous literals and literal combinations which do not af-
fect which instances are covered. For example, the literals like fdiff(A,A,0) in
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Figure 5.17. Theory complexity on King tasks as a function
of training set size for the standard Aleph algorithm and the
three transfer approaches using the Knight concept as support.
Error bars show 95% confidence intervals for the mean.
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[+21,-0] king(pos(A,B),pos(A,C)) :- rdiff(B,C,D), q4(D).
[+22,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,-1), fdiff(A,C,E), q4(E).
[+16,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,1), fdiff(A,C,E), q4(E).
[+13,-0] king(pos(A,B),pos(C,B)) :- fdiff(A,C,D), q4(D).
[ +8,-0] king(pos(A,B),pos(A,B)).

Figure 5.18. A theory induced by RL from a training set with
160 examples of the King concept. The numbers in square brack-
ets before each clause indicate the number of true positives and
false positives that clause covers.

Table 5.17. The distribution of invented predicates in theories
induced by RL and RL+Deft. Columns specify the training
task size and the rows describe the algorithm, target task and
invented predicate of interest. Each entry shows how many of
the twenty tasks at each training size contained the specified
predicate.

Training Size
Alg. Task Pred. 10 20 30 40 60 80 160

RL King q4 8 15 16 19 20 20 20
Knight q1 9 13 19 20 20 20 20

RL+Deft King q4 11 16 17 18 20 20 20
q9 4 1 6 2 1 0 0

Knight q1 11 13 19 20 20 20 20
q2 1 1 0 0 0 0 0

the first through fifth clauses are tautologies. In the sixth through ninth clauses
combinations like rdiff(D,B,-1), rdiff(B,D,E), fdiff(A,C,E) are just ver-
bose ways of writing the simpler conjunction rdiff(D,B,-1), fdiff(A,C,1).
Adding these extra literals to a clause will not change its CPM estimate but it
will change the CPM priors calculated from the Knight DFT. Since the Knight
DFT assigns a slightly larger positive power to has_pred(fdiff/3) than the
negative power assigned to has_arg(fdiff,3,0) the net change in the CPM
prior will be to increase the true positive rate more than the false positive rate
and so the evaluation of such a clause with the additional literal will be posi-
tive. These changes in evaluation affect both Deft and RL+Deft equally as
the addition of predicates invented by the RL component of RL+Deft does
not change the CPM priors for a clause.

5.3.3. Conclusions. The results for the above experiment provide a num-
ber of insights into inductive transfer using both description-based transfer and
repeat learning. Firstly, Deft was shown to work on a second environment of
related tasks with results that were competitive with a representation-based
inductive transfer technique. The chess movement tasks are ideally suited to
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Figure 5.19. Theory complexity on Knight tasks as a function
of training set size for the standard Aleph algorithm and the
three transfer approaches using the King concept as support.
Error bars show 95% confidence intervals for the mean.
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[ +8,-0] king(pos(A,B),pos(A,B)) :- fdiff(A,A,0).
[+11,-0] king(pos(A,B),pos(A,C)) :- rdiff(C,B,-1), fdiff(A,A,0).
[+10,-0] king(pos(A,B),pos(A,C)) :- rdiff(C,B,1), fdiff(A,A,0).
[ +7,-0] king(pos(A,B),pos(C,B)) :- fdiff(A,A,0), fdiff(C,A,-1).
[ +6,-0] king(pos(A,B),pos(C,B)) :- fdiff(C,A,1), fdiff(C,C,0).
[ +9,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,-1), rdiff(B,D,E), fdiff(A,C,E).
[+12,-0] king(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(C,A,1), fdiff(A,C,E).
[+13,-0] king(pos(A,B),pos(C,D)) :- rdiff(D,B,-1), rdiff(B,D,E), fdiff(C,A,E).
[ +4,-0] king(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(C,A,-1), fdiff(C,A,E).

Figure 5.20. A theory induced by Deft applied to a training
set with 160 examples of the King concept. The numbers in
square brackets before each clause indicate the number of true
positives and false positives that clause covers.

the predicate invention and transfer employed by repeat learning. Describing
the King and Knight movements using the rank and file difference predicates
requires many small disjuncts, each handling different directions of what are
symmetrical movements. As the results of this experiment showed, the pred-
icates invented by RL are able to capture some of the symmetries making it
easier to define the pieces’ movements using fewer clauses. Somewhat surpris-
ingly then, Deft was also able to improve generalisation performance over the
baseline learner to a degree similar to that of RL. On very small training set
sizes, Deft outperformed RL suggesting that, under these circumstances, the
use of priors to improve evaluation estimates is a more appropriate approach
to bias learning than a representational change such as predicate invention.

The second observation was that the combination of these techniques was
shown to be better than either used alone. This showed that the strengths
of each type of bias transfer - evaluation-based and representational - was
combined without any detrimental effect. Deft is able to specialise clauses
without an abundance of negative examples. In a complementary fashion, the
invented predicates used by RL are helpful when there are sufficient negative
but too few positive examples. Each rule using the invented predicates can
cover what would require several small disjuncts without them. The combina-
tion of these pressures, as exhibited by RL+Deft results in a hybrid inductive
transfer system that has a larger range of task sizes for which it will perform
well.

The final observation that came out of the above experiment and analy-
sis was that Deft can sometimes add too many literals to a clause without
affecting the instances it covers. As discussed above, this extra-evidential spe-
cialisation is what makes Deft useful when training data is limited. However,
more work needs to be done on ways to avoid the addition of unnecessary
literals as the resulting theories are more difficult to understand than their
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counterparts induced without Deft.

5.4. Heart Disease Environment

The previous two experiments provide evidence for the utility of Deft as a
inductive transfer technique on two different artificial domains. The main pur-
pose of this experimental section is to examine whether these positive results
carry over to data taken from a real world source.

The Heart Disease domain consists of three tasks, each of which require a
learner to predict whether or a patient has heart disease based on several of
their readily available features such as the patient’s age, gender, blood pressure,
ECG readings and the type of chest pain the patient is reporting. Each task
consists of patient data from one of three hospitals, one in the U.S.A., one in
Canada and the other in Hungary. These tasks are believed to be related as
they all require a learner to construct a model for predicting heart disease,
however each task may be slightly different due to differences in the patient
populations in each country.

These tasks were first used in a inductive transfer context by Silver [2000]
in his Ph.D. thesis to empirically test his Task Rehearsal Method (TRM)
approach to inductive transfer for artificial neural networks. An overview of
the TRM is given in Section 3.6.3 above. The purpose of the experiments
in this section was to apply Deft to the same set of tasks and compare its
performance with Silver’s TRM approach for neural networks.

The experimental set up and method to test transfer using Deft on ver-
sions of the tasks with artificially limited data are given in the Sections 5.4.1
and 5.4.2. The results presented in Section 5.4.3 show that using Deft on
these tasks never harms generalisation performance relative to learning with-
out transfer and occasionally outperforms it. These improvements using Deft
are then compared in Section 5.4.4 to “theory transfer”: simply applying a the-
ory learnt on a support task to the target task. Deft is found to outperform
theory transfer in a number of cases suggesting that Deft’s use of support
and limited target task information can work better than the exclusive use of
support data. Many of these results are at least qualitatively similar to those
reported by Silver for his TRM approach and are discussed in Section 5.4.5
before concluding with Section 5.4.6.

5.4.1. Materials. The tasks used in these experiments are derived from
the Heart Disease dataset found at the UCI Repository [Newman et al., 1998].6

6In accordance with the dataset’s terms of use, the following institutions and researchers are
acknowledged for providing the original data from which these tasks were derived: Hungar-
ian Institute of Cardiology, Budapest: Andras Janosi, M.D ; University Hospital, Zurich,
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Table 5.18. Description of the predicates used in the Heart
Disease domain. Each patient has a unique identifier of type id.
Values in the description shown in typewriter font are values
for the constant mode argument (#arg) in the predicate. The
disease/1 predicate is the learning target.

Predicate Mode Description
age(+id, -number) The age of the patient in years.
sex(+id, #sex_type) The gender of the patient (male, female).
cp(+id, #cp_type) Type of chest pain: typical angina (typical),

atypical angina (atypical), non-anginal pain
(non), or asymptomatic (asympt).

trestbps(+id, -number) Resting blood pressure upon admission in mm Hg.
restecg(+id, #restecg_type) Resting electrocardiograph results: normal

(normal), having ST-T wave abnormality
(abnormal), or showing left ventricular hypertro-
phy (hyper).

lteq(+number, #number) The “less than or equal to” relation.
gteq(+number, #number) The “greater than or equal to” relation.
disease(+id) Patient has a greater than 50% narrowing of any

major coronary artery .

Each task consists of data taken from patients at the Hungarian Institute
of Cardiology in Budapest (hung), the V.A. Medical Center in Long Beach
(vamc), and the Cleveland Clinic Foundation (cleve). The target concept for
each task is to predict whether or not a patient at the hospital is suffering
from heart disease based on their physical attributes, the results of various
tests and the symptoms they present. In order to compare the work here to
the results obtained by Silver’s study of the same domain, the features used in
this experiment are the same as those described in [Silver, 2000, §6.3] and are
summarised in Table 5.18 along with their mode and type constraints.

The disease/1 predicate is taken to be the learning target for tasks in this
experiment. Table 5.19 shows the number of examples in each of the three
datasets as well as their class distribution.7 Notably, the class distribution of
the vamc data has a ratio of roughly 3:1 positive to negative examples while
the cleve and hung datasets have ratios close to 1:1 and 1:2, respectively.

Switzerland: William Steinbrunn, M.D. ; University Hospital, Basel, Switzerland: Matthias
Pfisterer, M.D. ; V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert
Detrano, M.D., Ph.D.
7There is a small discrepancy between the size and skew of the datasets used here and those
reported in [Silver, 2000]. His example counts for hung and vamc also differ from those in
the original UCI dataset.
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Table 5.19. Summary of the Heart Disease tasks showing the
total number of examples available from each hospital as well as
their class distributions.

Dataset Hospital # of Pos. # of Neg. Total
cleve Cleveland Clinic 125 157 282
hung Hungarian Institute of Cardiology 106 188 294
vamc V. A. Medical Center 149 51 200

The parameter settings used by Aleph and Deft in this experiment are
given in Table 5.20. The value 0.8 was chosen for the minacc parameter af-
ter some preliminary runs at a variety of minacc settings. Using this value,
Aleph was able to induce theories from all three tasks with relatively high
AUC scores. The large value for the exs_sampled setting was chosen as a
result of the analysis of the experiment reported in Section 5.2.6 above sug-
gest that larger values of this setting result in better DFTs. The has_argsym
descriptor template was used instead of the has_arg template from the previ-
ous experiments. Unlike the has_arg template used in the experiments of the
previous sections, has_argsym only constructs has_arg descriptors for non-
numeric arguments. This was done to avoid a large number of descriptors
like has_arg(gteq,2,57) that Deft constructed using the original has_arg
template on preliminary runs on the datasets. The experiments in this section
were tried with both the has_arg and has_argsym templates and no signifi-
cant difference in performance was detected so the has_argsym template was
used to keep the DFTs smaller and easier to analyse.

Table 5.20. Settings used by Aleph and Deft for experi-
ments within the Heart Disease domain

Learner Setting Value
Aleph clauselength 6

i 2
minacc 0.8
nodes 5000

BuildDFT admissibility true
exs_sampled 100
cls_sampled 50
templates {has_pred,

has_argsym}
DbScore M

√
N

5.4.2. Method. The efficacy of inductive transfer using Deft compared
to standard, single task learning using Aleph was measured by evaluating
theories induced by both algorithms using four performance metrics: accuracy,
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true positive rate, true negative rate and AUC. Due to its invariance to class
distribution, AUC will be used as the primary measure of learning performance
while the other measures are used for analysis (TPR, FPR) and comparison
to Silver’s results (accuracy).

Repeated measurements on each task were turned into summary statistics
using ten-fold cross-validation. That is, letting E = F1 ∪ . . . ∪ F10 denote a
dataset and its ten folds, the ith test set is Fi and the corresponding training
set Ei = E − Fi. When using the complete datasets, learners are trained on
the examples in each Ei and the resulting theories tested on Fi. The collection
of ten pairs for each hospital will be denoted by the dataset names cleve,
hung and vamc. Performance results are determined by averaging the values
recorded on each of the test folds.

Limited data training sets, denoted Êi, were constructed by randomly
drawing five positive and five negative examples without replacement from
each training fold Ei. Learners were applied to each Êi and the resulting
theories tested on the corresponding test examples Fi. The collection of ten
limited training and test pairs for each hospital are denoted cleve10 , hung10

and vamc10. Constructing the limited data training sets in this way ensures
that the test sets are independent. Furthermore, the test sets are the same as
those used for the full training data trials and so results for the limited and
full data trials can be compared using paired t-tests.

To establish the baseline learning results, Aleph was used to induce theo-
ries for the full data and limited data collections for each of the three hospitals
using the settings described in the section above. Deft was also applied to
the three limited data collections cleve10 , hung10 and vamc10 using DFTs con-
structed from each of the complete datasets cleve, hung and vamc. Transfer
between support and target tasks for the same hospital were not attempted
as the examples for these pairs are not independent. Excluding these pairs
left a total of six transfer pairs: cleve to hung10 and vamc10, hung to cleve10

and vamc10, and vamc to cleve10 and hung10. A single DFT for each of the
datasets cleve, hung and vamc was built using the settings shown in Table 5.20
and used for all transfers involving the respective support task. Preliminary
experiments showed that there was little to no change in the transfer results
when other DFTs were constructed and used.

5.4.3. Results and Analysis. The results of using Deft to transfer bias
between the hospital tasks are summarised in Table 5.21. Each row gives the
results for a specific support and target pair and the entries in a row report
the mean and sample standard deviation for each of the four performance
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Table 5.21. Accuracy, true positive/negative rates and AUC
scores on the Heart Disease tasks with 10 examples. Entries
in bold are significantly larger than the baseline figures at the
p < 0.05 level using a single-sided paired t-test.

Target Support Accuracy TPR TNR AUC
cleve10 none 65.4 (3.0) 65.2 (8.9) 65.5 (4.7) 65.4 (3.4)

hung 72.1 (2.9) 58.6 (7.8) 82.8 (2.8) 70.7 (3.2)
vamc 72.4 (2.9) 64.4 (8.3) 79.0 (3.3) 71.1 (3.3)

hung10 none 60.8 (5.0) 74.0 (5.3) 53.5 (8.4) 63.8 (4.0)
cleve 67.0 (5.2) 71.0 (4.5) 64.6 (8.0) 67.8 (4.4)
vamc 64.5 (4.5) 68.0 (4.3) 63.0 (7.7) 65.5 (3.6)

vamc10 none 36.5 (3.5) 29.6 (5.7) 57.0 (8.7) 43.3 (3.5)
cleve 50.5 (3.0) 48.3 (3.2) 57.0 (9.2) 52.6 (4.6)
hung 48.6 (4.1) 45.7 (5.0) 56.3 (9.4) 51.0 (4.9)

measures. The rows are split into three groups according to which task was
used as the target. The first row in each group shows the performance results
for the baseline learner Aleph while the other two show the results for Deft
using DFTs constructed from the task shown in the second column.

In all cases the AUC for the Deft results are consistently higher than the
corresponding measurements for the baseline learner indicating that the eval-
uation bias transfered by Deft has a positive effect on learning performance.
The AUC results for the cleve to vamc10 transfer is statistically significantly
higher than the baseline results at the p < 0.04 level using a single-sided paired
t-test. The AUC improvement when transferring bias from hung to vamc10 is
at the p < 0.09 level of significance. From these results it can be concluded
that Deft was able to successfully transfer bias between all the tasks in this
domain but, apart from transfer to vamc10, the resulting improvements are not
as significant as those observed in the Reading or Chess environments.

One reason the improvements due to transfer were not significant on the
cleve10 and hung10 tasks is because the theories induced from the limited train-
ing sets by the baseline learner were almost as good as those learnt from the full
training sets. The entries in Table 5.22 show the mean performance measures
and sample standard deviations for the baseline learner on the full training sets
cleve, hung and vamc. A comparison of the limited dataset and full dataset
results reveals that vamc is the only learning task that is made dramatically
more difficult by limiting the training examples. Whereas the mean paired
differences between the full and limited AUC results for the cleve and hung
tasks are 1.8% and 1.1% respectively, the mean difference for the vamc task is
13.2% (p < 0.002).

The performance improvements that were observed can be attributed to
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Table 5.22. Mean performance measures (as percentages) for
Aleph on the three complete datasets for Heart Disease tasks.
The bracketed numbers show sample standard deviation.

Accuracy TPR TNR AUC
cleve 68.2 (3.2) 58.4 (5.6) 76.0 (3.9) 67.2 (3.3)
hung 69.8 (2.0) 47.2 (4.9) 82.5 (3.9) 64.8 (2.0)
vamc 68.5 (2.8) 81.3 (4.2) 31.7 (6.9) 56.5 (3.2)

the similarity between the three tasks, as evidenced by the comparable powers
and probabilities in the DFTs summarised in Table 5.23. For example, the
has_pred(cp) has positive power on all three tasks and frequently occurs. The
strength of this descriptor is larger for cleve and hung than vamc. Similarly,
asymptotic chest pain, tested by the has_argsym(cp,2,asympt) descriptor, is
frequently correlated with positive prediction on all three tasks, though once
again the powers on cleve and hung are larger than for vamc.

The DFT for the vamc task also suggests why it may have been a more
difficult task to learn. Unlike the cleve and hung DFTs, there is no descriptor
which is both frequently occurring and has high power on the vamc task. This
means that any rules that discriminate well between positive and negative
examples do not have many descriptors (and therefore literals) in common
whereas clauses containing the literal cp(A,asympt) will generally perform well
on the cleve and hung tasks. This, in turn, means that the vamc concept
is difficult to accurately describe using large disjuncts. The high mean true
positive rate (TPR) of 81.3% and low mean true negative rate (TNR) of 31.7%
on the full vamc task show that the clauses induced by Aleph were over-
general, incorrectly covering too many negative examples. However, the 3:1
ratio of positive to negative examples in the full vamc training sets meant these
were preferable to more specific clauses.

On the vamc10 tasks the proportion of positive and negative examples is
equal. Under these circumstances, many of the theories induced by Aleph
included clauses with a single, ground head literal which was only true on a
specific positive training example. These theories therefore covered few positive
examples in the test sets leading to a poor TPR. The TNR of 57% implies that
the examples that were covered in the test sets were roughly have positive and
half negative.

Deft was able to significantly improve the TPR on the vamc10 tasks by
modifying Aleph’s evaluation function so as to prefer clauses that generalised
away from the training examples even if they only covered a single positive
example and therefore scored as well as a single, ground literal. An examina-
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Table 5.23. DFT summaries for the cleve, hung and vamc
tasks. The first row in each group (age, cp, restecg, sex and
trestbpm) gives the power β and probability π for the corre-
sponding has_pred descriptor. The remaining rows in each group
show the same statistics for the has_argsym descriptor that tests
the value of the predicate’s second argument.

Task
cleve hung vamc

has_pred has_argsym(·, 2, ·) β π β π β π

age - -0.16 .77 -0.16 .77 0.04 .82
cp - 1.3 .83 1.6 .83 0.40 .85

asympt 1.8 .72 2.2 .65 0.73 .63
atypical -2.4 .02 -4.1 .04 -2.0 .05
non -2.7 .05 -2.5 .09 -1.0 .14
typical -2.2 .03 -0.01 .05 0.76 .03

restecg - 0.25 .78 0.12 .76 0.06 .80
abnormal 4.0 .01 -0.13 .17 -0.54 .37
hyper 1.0 .50 0.81 .01 0.41 .08
normal -1.1 .26 0.13 .58 0.60 .35

sex - 0.33 .60 0.31 .61 -0.05 .65
female -1.3 .12 -2.2 .08 1.7 .01
male 0.6 .48 0.50 .53 -0.06 .64

trestbps - -0.11 .82 -0.37 .83 0.12 .64
gteq - 0.13 .51 -0.07 .53 0.43 .53
lteq - -0.41 .36 -0.46 .36 -0.33 .33

tion of the complexity of the theories produced by Aleph and Deft confirms
this, as shown in Table 5.25. The number of clauses in the theories for vamc10

induced by Aleph and Deft were identical on every fold with a mean of 2.8
clauses per theory taken over the folds. This was the case regardless of the
support task used. The average number of literals per clause, however, is only
1.8 when Aleph is used compared to 5.5 and 5.4 when Deft is used with
cleve and hung respectively. The same increase in literals was observed in the
theories for the cleve10 and hung10 tasks when Deft was used. On the cleve10

tasks, the more specific clauses significantly improved the TNR without ad-
versely affecting the TPR, thereby raising the AUC overall while on the hung10

tasks this effect was also present but less pronounced.
These results show that the modifications made by Deft evaluation func-

tion used by Aleph result in a preference for more specific clauses. The ob-
served improvements to AUC are due to this preference reducing the number
of incorrectly covered negative examples (for cleve10 and hung10) or forcing
Aleph to generalise away from the training examples (for vamc10). The fact
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Table 5.24. The complexity of theories induced for the limited
data tasks in the Heart Disease domain. Complexity is measured
by the mean number of clauses per theory and mean number of
literals per clause (including the head literal).

Target Support Clauses Lits. per Clause
cleve10 none 2.0 (0.0) 2.2 (0.2)

hung 2.0 (0.0) 4.9 (0.1)
vamc 2.0 (0.0) 5.2 (0.1)

hung10 none 1.4 (0.2) 2.4 (0.3)
cleve 1.4 (0.2) 4.0 (0.5)
vamc 1.4 (0.2) 4.0 (0.5)

vamc10 none 2.8 (0.2) 1.8 (0.2)
cleve 2.8 (0.2) 5.5 (0.1)
hung 2.8 (0.2) 5.4 (0.2)

that the number of positive examples covered was not adversely affected by
these specialisations shows that the preference bias that Deft transfers is
capturing some information about the concepts that is relevant to all three
tasks.

5.4.4. Theory Transfer. An alternative to bias transfer which Silver
[2000] explored in the Heart Disease environment was the transfer of entire
theories. This is referred to as direct transfer in Section 2.4.4 while Silver calls
it theory transfer. This involves constructing a “standard model” for heart dis-
ease prediction using all the training examples from one hospital (the support)
and then testing it on examples for a second, target hospital. If the examples
for all three hospitals were drawn from the same underlying distribution, then
the models learnt on each hospital would be expected to be interchangeable,
performing equally well across the tasks. This hypothesis was tested using
Aleph using the same settings as the previous section and the performance
results compared to those obtained when Deft was used for transfer.

The method for this experiment involved applying Aleph to the entire
example set for one of the hospitals and evaluating the resulting theory on the
complete example sets for the other two hospitals. Once again, training and
testing Aleph on datasets for a single hospital was excluded leaving a total
of six transfer pairs: cleve to hung and vamc, hung to cleve and vamc, and
vamc to cleve and hung. The order in which examples are selected by Aleph
for bottom clause construction and search during the FindRule procedure
can have a large effect on the quality of the induced theory. For this reason,
the training and testing for each pair of tasks was repeated 30 times allowing
Aleph to select different start examples in each case. The resulting test
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Table 5.25. Accuracy, true positive/negative rates and AUC
scores (as percentages) on the complete Heart Disease datasets
using theory transfer.

Test Train Accuracy TPR TNR AUC
cleve hung 61.9 (2.2) 33.7 (4.6) 84.4 (4.7) 59.0 (2.2)

vamc 64.9 (6.5) 87.6 (3.3) 46.8 (12.5) 67.2 (5.8)
hung cleve 70.6 (4.0) 43.6 (16.2) 85.9 (3.6) 64.7 (6.6)

vamc 66.6 (10.8) 88.9 (3.8) 54.0 (18.2) 71.4 (8.0)
vamc cleve 57.9 (7.5) 57.1 (11.3) 60.1 (5.4) 58.6 (4.2)

hung 54.4 (5.0) 48.8 (9.4) 70.8 (9.5) 59.8 (2.4)

accuracies, true positive and true negative rates and AUC were averaged over
these 30 runs for each transfer pair to obtain mean performance values.

Table 5.25 shows performance results for the six pairs of theory transfer
trials. The entries in the second column specify the training dataset that
Aleph used to induce a theory while the first column names the dataset that
was used to test the resulting theory. The remaining four columns give the
mean performance for each of the measures taken over the 30 trials along with
the sample standard deviation.

These results show that Aleph learns quite different theories for each of the
three hospital datasets, as exhibited by the AUC and true positive/negative
rate scores. The models induced from the cleve examples have a higher TPR
and lower TNR when tested on the hung examples than when tested on the
vamc dataset. The 6.1% difference in AUC on these test sets is significant at
the p < 0.001 using a one-sided difference of means t-test. The AUC value of
58.6% for the cleve theories tested on the vamc examples is also significantly
lower than the AUC of 67.2% reported in the first row of baseline results
Table 5.22 (p < 0.001). The baseline AUC of 64.8% for the hung task was
also significantly higher than the theory transfer results for hung theories to
the cleve or vamc examples (p < 0.001). In contrast, the AUC score for the
vamc theories are larger when tested on the hung examples than on the cleve
examples (p < 0.05) and both are larger than the baseline AUC value of 56.5%
for the vamc task (p < 0.001). These results confirm that the difference in
example sets between the three hospitals results in different theories being
induced for each. The main reason for this is the different class distributions
across the three tasks. No information about the target task is used when
performing theory transfer.

When Deft is used to transfer bias between the hospital tasks it makes
use of classification priors constructed from the support task and combines
them with rule evaluations on the limited number of examples from the target
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task. A comparison of the theory transfer results with the performances of
Aleph and Deft on the limited data tasks (Table 5.21) shows that neither
theory transfer nor Deft is a superior method of transfer for all pairs of tasks.
The AUC score for the hung to cleve theory transfer is lower by 11.7% than
reported when using Deft to perform transfer to the cleve10 task (p < 0.001).
Also, the AUC for the vamc to cleve theory transfer was lower by 3.9% when
compared to the Deft transfer for the same tasks (p < 0.01). In contrast,
theory transfer had a 5.9% higher AUC score (p < 0.02) for vamc to hung
transfer while the rest of the Deft and theory transfer comparisons were
statistically indistinguishable at the p < 0.05 level.

5.4.5. Discussion. In Experiment 14 of his doctoral thesis, Silver [2000]
used the Heart Disease datasets to evaluate his neural network based, multi-
task learning system ηMTL and the Task Rehearsal Method (TRM). Three
types of inductive transfer were attempted on the Heart Disease tasks in his
experiment. In the first type of attempt a previously trained network for cleve,
hung or one of four artificially created tasks were used exclusively to provide a
bias when learning from a vamc task with only five positive and five negative
examples. Secondly, theory transfer was tried by applying the networks trained
on cleve and hung tasks to the vamc task. The third type of transfer used
all six tasks simultaneously as support tasks for vamc. Since Deft does not
perform transfer from multiple support tasks this last type of transfer will not
be considered further here. Section 6.2.3 in the next chapter discusses how
Deft may be modified in the future to handle multiple support tasks.

In broad terms, conclusions drawn from Silver’s transfer experiments using
the single support tasks and theory transfer are consistent with results observed
when Deft was applied to the same pairs of support and target tasks. That is,
the use of bias learnt from a support task can improve learning performance
when training data is limited on a target task and in some cases inductive
transfer can achieve better results than theory transfer. The replication of
these two results using two different transfer methods strengthens the claim
that biases exist that are useful to all three Heart Disease tasks even though the
best target theories for each are different. However, there are some differences
in methodology and results between the experiments reported here and Silver’s
that are worth remarking upon.

Although both Deft and the TRM were able to achieve significant im-
provements in AUC and accuracy when applied to vamc10 as a target task,
the performance of the baseline learner and Deft were much worse than re-
ported by Silver. His baseline neural network was able to achieve an accuracy
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of 66.65% compared to the 36.5% accuracy here. Transfer using the TRM
from the cleve and hung task resulted in accuracies of 76.1% and 74.7% re-
spectively. The increase in accuracy is similar using Deft (i.e., around 10
percentage points) but the final accuracy of the induced theories is around
50%. Furthermore, his attempt at theory transfer from the cleve task to the
limited vamc task performed significantly worse than transfer using ηMTL.
This was not the case when Deft and Aleph were used with the same pairs
of tasks.

These discrepancies can be attributed to a couple of differences between
the experimental setup and algorithms used here and in Silver’s work. Firstly,
the base learners used here and in Silver’s work are very different and secondly,
Silver repeatedly used the same train, test and validation set for the limited
vamc task whereas the methodology here used ten independent training sets
of size 10. In future work, a better comparison of Deft and ηMTL could be
made by trying ηMTL on different limited vamc tasks as well as on the other
transfer pairs.

5.4.6. Conclusions. The three tasks that constitute the Heart Disease
environment are intuitively similar as all three tasks require a learner to con-
struct a predictive model of heart disease using the same patient features. The
successful transfer of inductive bias between these tasks by Deft and ηMTL
[Silver, 2000] confirm this intuition.

One weakness of rule learning compared to whole theory learning such as
neural networks is that the available examples strongly influence the overall
structure of the induced set of rules. It is possible that transfer with ηMTL
provided a bias for part of the model that was not supported by the available
examples when using Deft as rule learning can only construct rules for dis-
juncts that are supported by the examples. The gains made by Deft on these
tasks are once again due to the DFTs creating a bias that prefers specialised
clauses over simpler ones.

It would also be instructive to apply Silver’s ηMTL to the other pairs of
tasks to see whether the similar or better gains than Deft can be made on
limited data versions of the cleve and hung datasets. The DFTs produced by
Deft suggest that these two tasks that have the more in common than they
do with vamc.

5.5. Molecular Biology Environment

This section introduces a learning environment consisting of two well-
known tasks from the ILP literature: mutagenesis [Srinivasan et al., 1994]
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and carcinogenesis [Srinivasan et al., 1997]. The target theories for these tasks
are used to predict cancer-related behaviour of nitroaromatic molecules from
their two- and three-dimensional atomic structure and chemical properties.
Mutagenic substances are known to cause changes to cellular DNA which of-
ten results in carcinogenic behaviour. For this reason it seems reasonable to
assume that this pair of tasks would be amenable to inductive transfer.

The aim of the experiment reported in this section was to determine whether
Deft was able to improve learning on artificially limited training sets for the
mutagenesis and carcinogenesis tasks. The results show this was not the case,
and an examination of the DFTs constructed from the full datasets of each
task reveal that the tasks are not a similar as first thought.

5.5.1. Materials. In the original datasets for the mutagenesis (mut) and
carcinogenesis (carc) tasks, the background knowledge used by the problems
to describe molecules contained relations for their atoms and bonds, chemical
features, the presence of particular molecular groups such as benzene, and their
three-dimensional structure. A total of 125 positive and 63 negative examples
are available for the mut task and 182 positive and 148 negative examples for
the carc task. The only relations immediately common to both tasks were those
concerning the graphical structure of the molecules, that is, the atoms they
contained and the bonds between them. Srinivasan et al. [2003] called these
the M0 and C0 predicate groups for the mut and carc tasks respectively. To
avoid complicating the experiment and its analysis theories and DFTs for the
mut and carc tasks will be constructed using only these common predicates.
Table 5.26 gives a short description of each of these predicates along with the
mode and type information that was used to constrain the rule space.

Once again, Aleph was used as the baseline learner and Deft as the
transfer method. Table 5.27 lists the settings used for both of these algorithms
in the trials reported in this section. The settings for Aleph were chosen in line
with what have been reported as reasonable default settings for these problems
in the past [Srinivasan et al., 2003]. As in the Heart domain, the exs_sampled
and cls_sampled settings for Deft were chosen so that 5000 clauses were
sampled to construct the DFTs. As examples are prevalent on both tasks the
exs_sampled setting was taken to be higher than the cls_sampled setting in
line with the results from Experiment RP-4 in Section 5.2.6 above.

Preliminary DFT construction using these settings and the has_pred and
has_arg descriptor templates resulted in hundreds of descriptors of the form
has_arg(p, 2, float) where float is a floating point number and p was one
of lteq/2, gteq/2 or =/2. These all had very low power and frequency and
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Table 5.26. Description of the predicates, modes and types
used in the mutagenesis and carcinogenesis tasks. The active/1
predicate is the target predicate for the tasks.

Predicate Mode Description
atm(+mol,-id #elem,#int,-chg) The molecule mol contains an elem atom iden-

tified by id of a particular type (int) with the
given partial charge chg.

bond(+mol,+id,±id,#int) The molecule mol has a bond between the
atoms identified in the second and third ar-
guments (id) with a bond type given by the
fourth argument (int).

lteq(+charge, #number) The “less than or equal to” relation for charges.
gteq(+charge, #number) The “greater than or equal to” relation for

charges.
=(+charge, #number) The “equal to” relation for charges.
active(+mol) The molecule is in the positive class for the

task (i.e., mutagenic or carcinogenic).

were therefore removed through the introduction of the has_argnf descriptor
template. Like the has_argsym template used in the Heart Disease experiments,
this template constructs exactly the same descriptors as the original has_arg
template except for those that contain a floating point number in the third
argument. The results of the experiment below were unchanged by the use of
has_argnf in place of has_arg and meant the constructed DFTs were smaller
and easier to analyse.

Table 5.27. Settings used by Aleph and Deft for experi-
ments within the Molecular Biology domain

Learner Setting Value
Aleph clauselength 4

i 2
minacc 0.8
nodes 5000

BuildDFT admissibility true
exs_sampled 100
cls_sampled 50
templates {has_pred, has_argnf}

DbScore M
√

N

5.5.2. Method. To simulate limited datasets for the mut and carc tasks
the original datasets, containing 188 and 330 examples respectively, were split
into ten folds and sampled from using the same method as for the Heart Disease
tasks. Letting E = F1 ∪ . . . ∪ F10 represent one of the original datasets. Each
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of the test folds Fi contained approximately 10% of the original examples in
as close to E’s class distribution as possible. The ten full-sized training and
test pairs are then (Ei, Fi) where Ei = E − Fi. The training example folds Êi

for the limited data version of the dataset were sampled without replacement
from the corresponding full data training set Ei. The limited data tasks for
this experiment were constructed to have roughly 20% of the original dataset
with approximately the same class distribution as the full dataset. For the mut
task, this meant there were 24 positive examples and 12 negative examples in
each Êi and for the carc task there were 36 positive and 30 negative examples
in each Êi. The collection of limited data tasks for mutagenesis is denoted
mut20% and, similarly, the set of limited data carcinogenesis tasks is denoted
carc20%.

To establish a baseline level of performance on the mut20% and carc20%

tasks Aleph was applied to each of the training folds using the settings shown
in Table 5.27. The resulting theory in each case was evaluated on the cor-
responding test fold. Deft was applied in the same manner to each of the
limited data training folds for both tasks using the settings shown in the above
table. When the training fold was for a mut20% task a DFT built from the
carc task was used and vice versa. The DFTs were built by applying Deft
once to the entire datasets for the mut and carc tasks. The parameters used
for BuildDFT procedure were those shown in Table 5.27. The evaluations of
the theories returned by Aleph and Deft were averaged over the ten folds
to obtain mean values and sample standard deviations for the AUC and true
positive/negative rates.

5.5.3. Results and Analysis. The main result to report for the exper-
iment described above is a negative one. No improvement in generalisation
performance was observed when using Deft on either of the two limited tar-
get tasks. As shown in Table 5.28 there is no significant difference between
the AUC scores for the baseline learner and Deft on either of the artificially
limited mut20% or carc20% tasks. Differences were tested for using two-sided,
paired t-tests at the 0.05 level of significance.

There are at least two reasons as to why no difference in performance was
observed. One is that Deft was unsuited to this domain and was unable to
exploit any similarities between the two problems. This could be due to a poor
choice of descriptor templates or bad example and clause sampling settings.
Alternatively, there may be no similarity to exploit and the assumption that
the mut and carc tasks are related is incorrect. The remainder of this analysis
provides evidence for the latter possibility over the former.
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Table 5.28. Mean performance measures and their sample
standard deviation for Deft and the baseline learner on the
limited example mutagenesis and carcinogenesis tasks.

AUC TPR TNR
Baseline mut20% 68.5 (2.8) 74.2 (4.3) 62.9 (6.9)

Deft carc to mut20% 67.5 (3.4) 75.0 (3.4) 60.0 (8.3)
Baseline carc20% 53.3 (1.9) 41.7 (2.9) 65.0 (4.3)

Deft mut to carc20% 50.2 (2.8) 39.6 (4.0) 60.7 (4.0)

Evidence against the Deft being unsuitable for transfer in this domain was
gathered by applying Deft to the limited data tasks using the DFT for the
same task, reusing the same training and test folds as the original experiment.
That is, the mut20% tasks were learnt from using Deft with the mut DFT and
the carc20% tasks were tried with the carc DFT. The expectation was that no
positive transfer would be observed in these trials if Deft or its configuration
were unsuitable for these tasks. This was not the case. When using the mut
DFT as support for the mut20% task the mean AUC was 74.9% (with a sample
standard deviation of 3.3%). This represents an improvement of 6.4% points
over the baseline significant at the p < 0.01 level. Most of this increase was
due to a higher TPR of 82.2 (3.4) and a slightly higher TNR of 67.6 (7.7). The
TPR increase is significant at the p < 0.01 level while the increase is TNR is
significant at the p < 0.05 level. No significant difference in AUC, TPR or
TNR was observed for the Deft carc to carc20% trials.

These results suggest two things. Firstly, the DFT for the mut task is
capturing a useful bias that enables positive transfer to the limited data mut
tasks. Secondly, no such useful bias is being captured in the carc DFT. The
lack of useful bias for the carc task explains the lack of transfer in the carc to
mut20% trials. If the carc DFT cannot impart a useful bias to a task that is
known to be similar (i.e., the carc task itself) there is little chance of it doing
so for a possibly different task. The positive transfer from the mut DFT to
the limited data mut20% tasks and the lack of transfer to carc20% tasks suggest
that the mutagenesis and carcinogenesis problems are not similar enough for
successful transfer to take place.

Further evidence for the tasks being dissimilar was found in an examination
of the DFTs constructed for each task. A total of 43 descriptors were created
from the mut dataset, of which 5 were for the has_pred template and the other
38 for the has_argnf template. The DFT from the carc dataset also contained
5 has_pred descriptors as well as 60 has_argnf descriptors. The has_pred

descriptors were common to the DFTs for both tasks and had almost identical
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Figure 5.21. The powers of descriptors in the mut and carc
DFTs. The horizontal and vertical position of each point corre-
sponds to the power for a descriptor in the mut and carc DFT
respectively. The dashed line is the least-squares line of best fit.

probabilities and power in each, except for the has_pred(’=’/2) descriptor
which had a power of 1.86 in the mut DFT and a power of -0.02 in the carc
DFT.

There was a much greater difference in the has_argnf descriptors in the for
DFTs. A total of 68 unique descriptors were created from that template type
across the two DFTs of which only 30 of those were common to both. The pow-
ers for descriptors in the mut DFT ranged from -3.52 for has_argnf(atm,4,35)
which had a probability of 0.004, to 12.93 for has_argnf(atm,4,28) which had
a probability of 0.038. The range of powers in the carc DFT went from -5.90
for has_argnf(atm,4,60) (probability 0.001) to 7.35 for has_argnf(atm,4,41)

(probability 0.004). The high powers for the descriptors at these extremes are
most likely due to their rarity.

Figure 5.21 shows a plot of the powers of the 30 has_argnf descriptors
that are common to the mut and carc DFTs. The horizontal position repre-
sents a descriptor’s power in the mut DFT while its vertical position gives its
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power in the carc DFT. Two observations can be made from this plot. First,
of those descriptors common to both DFTs, the range of powers in the carc
DFT is much smaller than the range in the mut DFT. The highest power is
2.13 for the has_argnf(atm,4,29) descriptor while the lowest power is -0.81
for the has_argnf(atm,4,8) descriptor. The lack of highly discriminating de-
scriptors for the carc task is probably due to its difficulty to learn using only
the C0 background predicates. The AUC recorded for Aleph applied to the
full carc dataset was 51.3% with a standard deviation of 3.3% using ten-fold
cross validation. In contrast, the mut DFT has powers for the common de-
scriptors ranging from -3.52 for the has_argnf(atm,4,35) descriptor to 7.02 for
the has_argnf(atm,4,51) descriptor. The mean AUC on the full mut dataset
was 73.9% (3.1%), significantly higher than the AUC for the full carc task.
The second observation that can be made from the figure is that there is no
correlation (r = −0.040) between the powers in the two DFTs as shown by the
dashed line in the figure. The relatively few common descriptors and the lack
of correlation between their powers suggests that the tasks are not as similar
as first thought.

5.5.4. Conclusions. The conclusion from the experiments and analysis
in this section is that the mutagenesis and carcinogenesis tasks, while both
superficially about cancer-causing properties of molecules, are not similar in
a manner that can be exploited by the Deft approach to inductive transfer.
If any similarity exists it is of a subtler form than can be detected with the
descriptors used here. This finding is consistent with observations made by
Srinivasan [2002] who tried some preliminary transfer experiments with these
tasks assuming they were similar and found “that the data were about such
different sets of chemicals that this was not really the case”. The selection
of a support task is a form of expert provided bias and in the case of the
mutagenesis and carcinogenesis tasks neither provided appropriate biases tasks
for the other. The examination of the DFTs for the tasks provided some insight
into why these tasks were not appropriate for description-based transfer.

5.6. Summary and Conclusions

The experiments reported in this chapter provide evidence that the ap-
proach to inductive transfer implemented in Deft is an effective way to im-
prove the performance of clausal theories induced from small training sets.
The four environments used in the experiments showed that Deft can be
used under a variety of different circumstances with varying degrees of success.
Analysis of these successes and failures led to several discoveries regarding the
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practical application of Deft, how it differs to the theory, its strengths and
limitations, the configuration of its settings and the selection of support tasks.
The purpose of this final section is to summarise these discoveries and use
them to answer the three questions that were asked in the opening section of
this chapter: Does Deft work? Is it practical? And how does it compare to
other inductive transfer techniques?

5.6.1. Does it work? Of the four sets of tasks used to evaluate Deft two
sets - the Heart Disease and Molecular Biology environments - were derived
from naturally occurring data while the other two - the Reading Preferences
and Chess environments - were constructed artificially. In three of these four
task environments, Deft was able to successfully transfer bias between at least
one pair of tasks, leading to improved generalisation performance from limited
data compared to learning on the same task without inductive transfer.

The largest improvements were observed for transfer in the two artificial
environments. In the Reading Preferences environment of Section 5.2 Deft
was shown to induce near-perfect theories from a third as much data as would
normally be required without inductive transfer. Reductions in generalisation
performance were also observed in this environment when transfer took place
between the tasks that were intuitively dissimilar. Improvements over the
base-level learner were also observed on the Chess tasks of Section 5.3 with
Deft adding up to 10 percentage points to the baseline accuracy on datasets
containing less than a tenth of the examples required to induce a perfect theory
for King and Knight movement. The success of Deft in these environments
was not too surprising: the Chess tasks were known to be amenable to transfer
due to earlier research by Khan et al. [1998] and Datta and Kibler [1993] while
the Reading Preference tasks were designed to exhibit similarities that were
easily captured by the predicate and argument descriptor templates. Further-
more, the tasks were all “ideal” in these sense that they were noise-free and
generated from model theories.

Unlike the Reading Preferences and Chess tasks, there was no known ideal
theory for the learning tasks in the Heart Disease and Molecular Biology en-
vironments of Sections 5.4 and 5.5. The larger search spaces, lack of model
theories, and the presence of noise hampered both the learning of theories and
the construction of DFTs, as evidenced by the low generalisation performance
and low descriptor frequencies. Regardless of these problems, improvements
over single-task learning were observed when Deft was to transfer bias to
limited data tasks from the Heart Disease environment, though these were not
as significant as for the artificial environments. These results were consistent
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with the successful transfer reported by Silver [2000] using his multi-task learn-
ing system for neural networks. No improvements were observed when using
Deft to transfer bias between the mutagenesis and carcinogenesis tasks from
the Molecular Biology environment. An analysis of the descriptor powers and
DFTs for these two tasks revealed that they were less similar than initially
thought and an argument was made that these tasks are not related in the
sense required for Deft to successfully transfer bias between them. That is,
there is little in common between descriptions for the rules that perform well
on carcinogenesis and those that perform well on mutagenesis.

When improvements in generalisation performance due to Deft were ob-
served they were all for the same reason. The classification priors used by
Deft when evaluating rules created a preferential bias for rules with addi-
tional predicates that were not justified by the limited number of examples
available in the target tasks. This extra-evidential specialisation led to reduc-
tions in false positive and, surprisingly, false negative rates of theories induced
by Deft. This second effect was due to modified evaluation functions scoring
rules that generalised away from ground facts higher than simply asserting the
ground facts as part of the theory - a common occurrence when training data
is limited. Experiments on the Chess tasks showed that this preference for
specialised rules can lead to the superfluous addition of literals to rules. This
suggests that some kind of post-pruning might be useful to incorporate within
Deft.

Experiment RP-8 in the Reading Preferences environment confirmed that
the extra-evidential bias provided by Deft led to a reduction in CPM error
which meant that, on average, the true classification probabilities of rules in
that domain were being estimated better when using classification priors. The
actual reduction in CPM error was not, however, as large as that predicted by
the theory in Chapter 3 which suggests that the theory needs to be amended
to take into account the independence assumption made in order to decompose
descriptions and efficiently implement description-based transfer.

In summary, the experiments and analysis in this chapter show that Deft
does work. That is, with an appropriate choice of support task, the application
of Deft to a target task with limited training data results in theories with
higher generalisation performance than standard, single-task learning.

5.6.2. Is it practical? The practicality of Deft as a useful technique
for bias transfer depends on whether or not the cost of using it outweighs its
benefits outlined above. Compared to single-task learning using Aleph, using
Deft to perform inductive transfer requires more of the machine it is run on.
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It also requires more decision-making on behalf of the practitioner using it
in terms of the selection of support tasks and new parameters introduced by
Deft. Both of these aspects are considered below.

5.6.2.1. Parameter and Support Task Selection. The parameters which con-
trol the behaviour of Deft fall into two categories: those with an influence
over DFT construction (the sampling parameters, admissibility condition, and
choice of descriptor templates), and those which affect how the base-level
learner’s evaluation bias is modified (the number of virtual examples M and
the choice of DFT to use). While all of these parameters are important, the
Reading Preferences experiments of Section 5.2 showed that reasonable de-
faults can be used for most of them. In particular, good default settings were
found for the descriptor templates, admissibility condition and M parameter.
Experiment RP-7 and the analysis in Section 3.6.5 both suggest that choosing
M to be the square root of the number of training examples is a reasonable de-
fault. Experiment RP-5 showed that setting the admissibility condition to true
during DFT construction does not reduce the magnitude of any positive trans-
fer effects and, in the cases where the support and target tasks do not share
any common positive examples, can improve generalisation performance. The
ability to specify sets of descriptors through the templates mechanism makes
the configuration of this aspect of Deft quite easy. The user does not need
to know in advance which descriptors will be required for a given support task
as the templates construct them as required. Experiment RP-6 showed that
the has_pred and has_arg templates together contribute most to the positive
transfer effects in the Reading Preferences environment and so make for good
default choices. This is confirmed by the positive transfer results using these
templates on the other environments.

Choosing sampling parameters and selecting the support task for a given
problem requires more involvement on the part of an expert. As shown in Ex-
periment RP-4, the exs_sampled parameter controls a trade-off between the
running time of the BuildDFT algorithm and the positive influence of the
resulting DFT. Large values of this parameter lead to longer running times
but better descriptor frequency estimates. Finding an appropriate value for
this and the cls_sampled parameter will depend on the support task but some
guidance, in the form of a lower bound, is given by the analysis in Section 4.3.4.
As the experiments did not show any degradation in transfer when large num-
bers of rules were sampled, a practitioner would be advised to err on the side of
sampling a large number of rules if the computational resources are available.

The selection of an appropriate support task was shown to be the most
important decision in determining whether any positive benefit will be had



5.6. SUMMARY AND CONCLUSIONS 203

through using Deft. As discussed in the previous chapter, leaving this de-
cision to a domain expert was part of the original design criteria for Deft.
Given some knowledge of what the descriptor templates will be extracting
as rule features, the choice of a support task allows the expert to express a
bias for the target task at a high level. Arguably, the instances of successful
transfer in the Reading Preferences, Chess and Heart Disease environments
were all between tasks that an expert would deem similar given the has_pred

and has_arg templates. The use of the Chess and Heart Disease tasks for
the study of inductive transfer by other researchers suggests that they are
thought to be similar in some regard. The cases in the Reading Preferences
environment where the support and target tasks were intuitively dissimilar
led to Deft reporting worse performance than the base-level learner alone.
The only anomaly in this correspondence between expert opinion and results
was for the transfer between the mutagenesis and carcinogenesis tasks. In this
case, the belief that the mutagenesis and carcinogenesis tasks were related was
based on the similarity of the M0 and C0 sets of predicates and the opinion of
the author who is not a chemist or molecular biologist. This can be seen as an
argument for expert guidance in the selection of appropriate support tasks.

5.6.2.2. Computational Complexity. As analysed in Section 4.2.4 of the pre-
vious chapter, the computational cost of using Deft with the has_pred and
has_arg descriptor templates should only add some constant overhead to the
standard rule evaluation carried out by Aleph. This was found to be the case
in experiment RP-2 for the Reading Preferences environment. It was also the
case for the other environments, as shown in Table 5.29. This shows for both
Aleph and Deft the total time taken to induce a theory from typical target
tasks from each of the four environments as well as the total number of rules
evaluated during the search. The final row of the table shows the ratio of the
times and counts for Deft and Aleph. Typically, Deft must evaluate up to
2.6 times as many rules and spend roughly ten times as long evaluating each
rule. The increase in the number of rules evaluated is due to the weaker upper
bound for Deft evaluation when pruning the search performed by Aleph.
The roughly constant increase in evaluation time per rule is due to the extra
work that must be done to compute rule descriptions and prior probabilities.
Together, these increases can mean Deft takes between 12 and 39 times longer
to find a theory than Aleph. While this is quite large, it is not prohibitive
for the environments considered in this chapter.

The other additional computation overhead is the construction of DFTs
from support tasks. Table 5.30 compares the time and number of rules eval-
uated when constructing a DFT and performing a standard induction with
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Table 5.29. Average amount of time taken and number of rules
evaluated during a rule search using Aleph and Deft on each
of the four domains. The time values are given in seconds.

Reading Chess Heart Molecular
Time Rules Time Rules Time Rules Time Rules

Deft 0.75 34 3.0 1500 1.2 510 120 66000
Aleph 0.052 20 0.25 1200 0.031 140 5.3 25000

Deft : Aleph 14:1 1.7:1 12:1 1.2:1 39:1 3.6:1 23:1 2.6:1

Aleph on typical support tasks from each of the four environments examined
in this chapter. In all cases, the time taken to build a DFT was always larger
than the time taken to induce a theory from the same example set even when
fewer rules were evaluated, as in the Chess and Molecular Biology environ-
ments.

Strikingly, the average time taken per rule evaluation for the Chess en-
vironment was 260 times larger than the rule evaluation time during theory
construction. The main reason for this large difference is the complexity of
the legal rules for the Chess tasks. The maximum variable depth and max-
imum clause length for legal rules were, respectively, set to 3 and 6. While
Aleph searches the space of these clauses from least specific to most specific,
Deft samples rules uniformly from this space. This means the rule eval-
uations Deft must perform involve longer and more complex clauses than
Aleph, most likely around the computationally expensive “phase transition”
area [Giordana and Saitta, 2000]. In order to keep DFT construction times in
check, future implementations of Deft may resort to non-uniform sampling
techniques that focus on the areas in which the base-level learner will actually
be evaluating rules.

Even with these inefficiencies the time for DFT construction was, once
again, not prohibitive for the domains considered. Furthermore, DFT con-
struction time is a once-off cost and can be amortized over several repeated
uses of Deft with the same support task.

Overall, the extra overhead of DFT construction and the calculation of
classification priors during rule evaluation does not make the use of Deft
impractical with regards to computational resources. Also, the broad applica-
bility of default values for half of Deft’s parameters leaves only the selection
of an appropriate support task and sampling parameters to the user. Com-
pared to the technical knowledge required for other methods of bias selection,
it can be argued that these decisions are easier to make for a domain expert
unfamiliar with machine learning.
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Table 5.30. A comparison of DFT construction and theory
construction complexity on a support task from each of the four
experimental environments. Values in the “Time” columns are
in seconds and values in the “Rules” columns give the number of
rules evaluated during the runs.

Reading Chess Heart Molecular
Time Rules Time Rules Time Rules Time Rules

DFT 1.4 400 26 400 63 5000 179 5000
Theory 0.008 23 0.37 1440 1.4 3844 115 81850

DFT:Theory 175:1 17:1 73:1 0.28:1 45:1 1.3:1 1.6:1 0.06:1

5.6.3. How does Deft compare to other approaches? Other ap-
proaches to using extra examples from support tasks were considered as al-
ternatives to Deft in this chapter. One of the simplest of these is to use
the examples for the support task as though they were extra examples for the
target task. The analysis in Experiment RP-5 showed that that this approach
would not lead to improved performance since some pairs of tasks (e.g., tasks
B and C from the Reading Preferences environments and the King and Knight
movement tasks) had no positive examples in common even though their con-
cepts were similar. Combining examples in this case would be equivalent to
adding noisy data to the training set. Deft, however, was able to exploit
the concept similarity between tasks such as these and improve generalisation
performance.

Another simple approach to transfer, is called “theory reuse” or “direct
transfer”. In the case of the Reading Preference tasks which share no positive
examples, simply inducing a theory on a support task and using it for classifi-
cation on the target performs very poorly. Theory transfer was also explored
in the Heart Disease environment. For these tasks it was shown that this ap-
proach has some merit. However, there were pairs of tasks for which transfer
using Deft performed better than theory transfer. The Heart Disease envi-
ronment was also used to compare Deft with the results of experiments with
transfer using sub-symbolic methods. The tasks that Deft successfully trans-
fered bias between were the same as those Silver [2000] reported successful
transfer for using his ηMTL system.

One advantage of Deft over non-symbolic approaches to transfer is that
the DFTs produced from a support task are inspectable by the user. The pow-
ers and frequencies of these descriptors can give some insight into the task and
the rules that will perform well on it. Improvements could be made to improve
this method of analysis by reducing the number of superfluous descriptors that
appear in DFTs. This could be achieved by pruning those with low power
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and/or frequency. As exhibited in the Heart Disease and Molecular Biology
experiments, special care is required when predicates can contain numerical
arguments. Future work could also investigate descriptors that know more
about the semantics of the predicates such as those representing greater-than
and less-than and combine counts for their numeric arguments into ranges.

In the Chess environment, Deft was compared to an existing inductive
transfer technique, Repeat Learning. The combination of Deft’s evaluation-
based transfer and representation-based transfer of RL was shown to be a
promising one as the two approaches complemented each other. Deft was
able to compensate for a lack of negative training data on very small example
sets, forcing the base-level learner prefer specialised rules. On larger datasets,
the extra predicates added to the language by RL meant rules could express
internal disjuncts, generalising beyond the available positive examples. This
hybrid transfer system RL+Deft was shown to outperform either method
alone on the Chess movement tasks.

The experiments in this chapter have shown that Deft has advantages
over other techniques for exploiting information present in support tasks. In
particular, Deft is able to improve generalisation performance where simple
techniques like example and theory transfer fail. Deft was also successfully
combined with the Repeat Learning approach to inductive transfer.

5.6.4. Conclusions. Deft was intended to be a tool that allows a do-
main expert to modify the evaluation bias of the learning algorithm Aleph in
order to improve generalisation performance when faced with a target task with
limited training examples. This is achieved by allowing the expert to choose a
support task that has high quality rules that are believed to be similar to high
quality rules on the target task.

The experiments of this chapter have shown that Deft is a suitable and
practical tool for this purpose. Its relationship with other transfer techniques
was also examined and the transfer of evaluation bias by Deft was found to
complement the transfer of language bias. The empirical work also revealed
several short-comings of the system and theory. Ways in which these problems
may be overcome are the topic of the next chapter.



Hofstadter’s Law : It always takes longer than you expect,
even when you take into account Hofstadter’s Law

- Hofstadter [1999, pg. 152]





CHAPTER 6

Future Work and Conclusions

As the world around us becomes more complex we require inductive tools to
help us make sense of it by finding, summarising and communicating patterns
we would otherwise not detect. Like any tool, the quality of the results we
obtain from our learning algorithms depends on how appropriate they are for
the task at hand and how deftly they are wielded. If the cost, in terms of expert
time and effort, of adjusting an inductive algorithm for each task outweighs
the benefits of its results then it is no longer a useful tool.

This dissertation has presented theoretical and empirical evidence for the
efficacy of a novel approach for configuring concept learning tools. This ap-
proach, Deft, enables domain experts to tune the evaluation bias of a rule
learning system through the selection of support tasks they believe to be similar
to the task to be solved. This final chapter reviews the preceding work, points
out some of its weaknesses and suggests some directions for future research.

6.1. Review and Contributions

This thesis focused on the types of problems for which an interpretable
model was required to be induced from a small number of training examples
and where a domain expert was able to provide a bias in the form of related
learning tasks. Background to this problem was provided in Chapter 2 along
with a survey of systems applicable to this type of problem. Each of the
existing systems were analysed according to the type of bias it modified. This
revealed that existing systems capable of using inductive transfer in a rule
learning setting have only been able to transfer language or search biases.

To fill this gap a theoretical basis for the similarity-based transfer of evalua-
tion bias for rule learning was proposed in Chapter 3. The main contributions
of this theory are a novel definition of task similarity based on rule simi-
larity and a theorem that provides sufficient conditions for successful trans-
fer. A specific type of rule similarity, called description similarity, was also
introduced which allowed the prior classification probabilities to be decom-
posed and computed efficiently. Using this decomposition, an implementation
of description-based transfer called Deft was presented in Chapter 4. The
two main algorithms in this implementation allow for a sequential approach

209
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to transfer. During the consolidation phase this involves the construction of
a data structure called a Descriptor Frequency Table (DFT) which, during
the transfer phase, can be used to efficiently create classification priors when
evaluating rules. Central to these algorithms is the computation of rule de-
scriptions. An efficient method for the computation of rule descriptions was
presented which made use of a sparse description representation and descriptor
templates. The modifications required to incorporate these extra algorithms
into a rule learning system such as Aleph were minimal and, as their analysis
showed, reasonably efficient.

The implementation of Deft was tested on four different environments
and the results reported in Chapter 5. These results suggest that Deft is an
intuitive and effective way to transfer bias between tasks. The results were
also shown to be consistent with the theory and analysis of the preceding
chapters as well as results obtained by other researchers who had used the
same environments with other transfer systems. To the author’s knowledge,
this is the first comparative study of inductive transfer techniques for symbolic
learning. Deft was successfully combined with Repeat Learning, an existing
inductive transfer technique, and shown to outperform either approach when
used alone. The experiments also revealed that bias imparted through the use
of priors for classification probabilities meant rules could be specialised further
than the data alone would normally allow. This extra-evidential specialisation
was shown to be what led to the observed improvements in generalisation
performance.

6.2. Limitations and Future Work

The main intention of the research presented here was to propose and ex-
amine a new form of inductive transfer. Many decisions regarding its direction
were made to keep it focused and manageable. This included restricting its
application to rule learning algorithms. Many avenues of theoretical and exper-
imental investigation were therefore left unexplored and several improvements
to Deft were left unimplemented. The purpose of this section is to briefly
highlight some of the limitations of this work and examine some of the ways
in which it could be expanded upon in the future.

6.2.1. Implementation Improvements. Apart from the description-
based decomposition of classification priors and the use of descriptor tem-
plates to construct sparse rule descriptions there was little attempt made to
optimise the implementation of the BuildDFT and CalcPrior algorithms
within Deft. As observed in Section 5.6.2 of the previous chapter, the weak
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upper bound implemented by DbBound means Aleph’s rule search explores
more candidate rules than necessary. This bound could be easily improved
and would make the search slightly more efficient. Other efficiency gains could
be made by caching rule descriptions as rules are searched and incrementally
updating them as rules are refined.

As well as being made more efficient, the classification priors created by
Deft could be made more robust to chance occurrences during rule sampling.
Descriptor Frequency Tables constructed in the Heart Disease and Molecular
Biology environments exhibited descriptors with very low frequency and high
power. Whether due to noise or distributional properties of the domain these
descriptors have the potential to strongly and incorrectly bias a learner on a
target task. Future revisions of Deft may use some kind of pruning strategy to
eliminate extremely low probability descriptors to avoid this problem. Pruning
may also be used to eliminate descriptors with zero power from the DFT. Doing
so would have no impact on bias transfer and may lead to improved efficiency
in environments with large numbers of descriptors.

If Deft is truly meant to be a tool for people with little experience with
machine learning then further work also needs to be done in making it easier to
use. While good defaults exist for the descriptor templates and M parameters,
it is not always clear what value should be chosen for the sampling parameters.
One approach to this problem is to allow Deft to sample and evaluate rules
until the classification probability priors for each descriptor stabilise according
to some kind of statistical test. Further experimental work would be required
to determine the impact of this and the previously proposed improvements.

6.2.2. Beyond Predictive Rule Learning. One of the largest restric-
tions placed on the scope of this research was the decision to limit the inves-
tigation to inductive transfer for rule learning algorithms that use a covering
strategy to build theories. However, the core idea of description-based transfer
- improving classification estimates using priors based on syntactic features of
models - is potentially applicable to a much wider class of symbolic concept
learning algorithms.

The simplest extension to this work would be to see whether Deft has
any use in conjunction with associative, rather than predictive, rule learning.
Classification tables are used extensively in systems such as Tertius [Flach
and Lachiche, 2001] for relational association rule mining. Deft could be used
there to improve estimates for those tables based on other rule mining tasks.
This would make for an interesting alternative to the algorithms described
by Zhang and Zhang [2002] for association rule mining from small databases.
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Classification tables also play an important role in an alternative to ILP called
analogical prediction [Muggleton and Bain, 1999] so the Deft approach to
transfer may also be applicable to systems built upon that mode of inference.

Another straightforward extension to Deft would be to multi-class rule
learning [Fürnkranz, 1999]. Learning rules for k-class prediction would mean
using contingency tables of size k×k. The equation for computing the posterior
classification probabilities remains the same, namely p∗ = p + Mq. All of the
algorithms and data structures used by Deft can be trivially extended to
handle these larger matrices.

As well as rule sets, decision trees are another popular symbolic repre-
sentation for classifiers. Algorithms for learning decision trees such as C4.5
[Quinlan, 1993] use a gain heuristic to search the candidate space of decision
trees. Bensusan [1999] gives a number of decision tree features that could be
used as descriptors for a Deft-like approach to augmenting decision-split eval-
uation in a manner similar to that of Caruana’s multitask approach to decision
tree learning [Caruana, 1997].

6.2.3. Multiple Support Tasks. Another limitation of description-based
transfer as it currently stands is its restriction to single support tasks. This
restriction was made for the sake of simplicity and it would not be difficult
to extend Deft so as to take into account more than a single support task.
In essence, if multiple support tasks are available virtual contingency tables
can be constructed for each and combined to create a classification prior. The
simplest way to combine these priors is through a linear combination. If λi

are k positive numbers such that
∑k

i=1 λi = 1 then a posterior CPM can be
defined for k support tasks by

p∗ = p + M

k∑
i=1

λiqi

where qi is the prior CPM for the ith task. The terms λi determine how
much of an influence the corresponding support task will have on the learner’s
evaluation bias.

This construction and the use of the weighting terms λi is analogous to the
transfer rates Ri of Silver’s ηMTL system Silver [2000] or the task weights in
the TC system of Thrun and O’Sullivan [1996]. Both systems can automati-
cally determine good transfer weights by dynamically adjusting them during
learning. Determining good λi values for a given set of tasks using Deft would
require more research into practically computable estimates of task similarity.
Some directions for this research are discussed further below.
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6.2.4. Similarity: Theory and Practice. The theory of task similar-
ity proposed in Chapter 3 of this dissertation was motivated by a desire to
understand how the use of priors might improve estimates of classification
probabilities. As the construction and use of these priors were stated quite
generally - using an abstract similarity relation over candidate models - the
main transfer theorem was also framed in general terms. While this had the
advantage of focusing the theory on the key mechanisms of evaluation transfer
it also meant important details of actual learning systems were ignored. In
particular, the transfer theorem provides a bound on CPM error that is inde-
pendent of any evaluation function a real learning system may be using. This
makes it difficult to use the theory to draw any strong conclusions regarding
the empirical behaviour of Deft reported in Chapter 5. Future research may
focus on specific performance criteria such as generalisation accuracy and ex-
amining how the use of classification priors affects the performance of learners
that specifically aim to maximise this criteria.

The other disadvantage of the very general definition of task similarity
proposed in this work is that it is not practically computable since it requires
the evaluation of every candidate model against complete training sets for
the support and target tasks. This problem may be able to be overcome by
careful examination of how the CPM error bound is weakened when estimates
of classification probabilities are made using samples of the candidate and
example spaces. Ultimately, it would be desirable to have a theory that uses
estimates of task similarity derived from values found in descriptor frequency
tables rather than the current, unrealistic definition of similarity.

A quicker way to a practical measure of task similarity might be to start
with the approach used in the previous chapter. There, comparisons of the
powers and frequencies of descriptors derived from a task’s DFT were used
to make an intuitive appraisal of the differences between two tasks. It may
be possible to quantify this appraisal by defining some weighted sum of the
differences between descriptor powers appearing in the DFTs for two tasks.
Using a large number of tasks, an experiment could be run to see whether a
correlation exists between the change in performance when transferring bias
between two tasks and their estimated similarity. If found to be reliable, a
practical measure of task similarity could be used to set the task weights λi

(as described above) in an extension of Deft to multiple support tasks.
Although descriptions in this thesis were defined purely as syntactic fea-

tures, future work may investigate the feasibility of semantic descriptions of
rules. That is, descriptions and similarity based upon extensional definition
of a rule with respect to some background theory. This would require careful
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thought since determining whether or not two rules have the same extension
can be a computationally demanding task in general.

Finally, it would be instructive to find stronger ties between the theory of
similarity presented here and those put forward by Ben-David and Schuller
[2003] and more recently Juba [2006] as discussed in Chapter 3. Links with
Ben-David and Schuller’s work are especially tantalising since they also define
task similarity using partitions of the hypothesis space.

6.3. Conclusions

A good tool kit not only contains tools for the job at hand but also equip-
ment for the correct adjustment and maintenance of those tools. This thesis
has presented description-based inductive transfer as a new method for sharp-
ening rule learning tools. Through the selection of tasks similar to the primary
one, domain experts are able to express preferences for models to a learning
system at a high level, away from many of the system’s technical details. This
allows domain knowledge that may otherwise be difficult to express to be in-
corporated into a learning system enabling it to make better inferences from
fewer training instances.

While more work needs to be done, the research here has demonstrated
the potential of using priors for classification probabilities as a practical and
general way to incorporate preference biases into symbolic forms of learning
such as rule learning. For this reason, it is hoped the work presented here will
find a place in the inductive tool kits of the future.



Any problem in computer science can be solved with another
layer of indirection.

- David Wheeler
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APPENDIX A

Implementation of Describe

:- use_module(library(lists)).
% == Descriptor Template Predicates ==
% describe(+Clause, -Desc) - Get a sparse description for Clause
% default(?Desc, -DefValue) - Get the default value for Desc
% value(?Desc, +Clause, -Value) - Get value of Desc on Clause

describe(Clause, Desc) :- all([D,V], value(D, Clause, V), Desc).

% num_lits -- Returns the number of literals in the body of a clause.
default(num_lits, 0).
value(num_lits, Clause, Length) :-

body_lits(Clause, BodyLits), length(BodyLits, Length).

% has_pred(P/N) -- Tests whether a predicate P with arity N appears in a clause.
default(has_pred(_/_), false).
value(has_pred(PredName/Arity), Clause, true) :-

body_lits(Clause, BodyLits), member(Lit, BodyLits),
functor(Lit, PredName, Arity).

% has_arg(Pred,Index,Val) -- Test whether a predicate Pred is present in a clause
% and the argument indexed by Index in the predicate is equal to the value Val.
default(has_arg(_, _, _), false).
value(has_arg(PredName, ArgIndex, ArgValue), Clause, true) :-

body_lits(Clause, BodyLits),
member(Lit, BodyLits),
functor(Lit, PredName, Arity),
between(ArgIndex, 1, Arity),
arg(ArgIndex, Lit, ArgValue),
\+ var(ArgValue).

% -- between(?N, +Low, +High) -- True when Low <= N <= High
between(N,N,High).
between(N,Low,High) :- Low < High, Low1 is Low+1, between(N, Low1, High).

% -- body_lits(+Clause, -BodyLits) -- Get literals from the body of Clause.
body_lits((_:-(Lit,Lits)), [Lit|Rest]) :- body_lits((_:-Lits), Rest), !.
body_lits((_:-Lit), [Lit]).
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APPENDIX B

Reading Preferences Example

B.1. Mode and Type Settings

% Background knowledge for the example reading preferences learning tasks.
:- mode(1,like(+book)).
:- mode(*,size(+book, #size_val)).
:- mode(*,genre(+book, #genre_val)).
:- mode(*,nation(+book, #nation_val)).
:- mode(*,year(+book, #year_val)).

:- determination(like/1,size/2).
:- determination(like/1,genre/2).
:- determination(like/1,nation/2).
:- determination(like/1,year/2).

% Values
size_val(small).
size_val(medium).
size_val(large).

genre_val(scifi).
genre_val(romance).
genre_val(horror).

nation_val(aus).
nation_val(uk).
nation_val(usa).

year_val(’00s’).
year_val(’90s’).
year_val(’80s’).
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232 B. READING PREFERENCES EXAMPLE

B.2. Example DFT for Concept E

% DFT for the example reading preferences concept E.
total([[3976,1126],[16025,18873]]).
counts(has_arg(genre,2,scifi),true,[[1469,245],[7531,8755]]).
counts(has_arg(size,2,small),true,[[1258,175],[5442,6525]]).
counts(has_arg(nation,2,aus),true,[[1516,282],[7234,8468]]).
counts(has_pred(genre/2),true,[[1758,355],[10392,11795]]).
counts(has_pred(size/2),true,[[1917,374],[11183,12726]]).
counts(has_pred(nation/2),true,[[1891,307],[9259,10843]]).
counts(has_arg(year,2,’00s’),true,[[1501,103],[4549,5947]]).
counts(has_pred(year/2),true,[[1621,205],[5679,7095]]).
counts(has_arg(size,2,large),true,[[318,89],[2432,2661]]).
counts(has_arg(genre,2,romance),true,[[181,91],[1969,2059]]).
counts(has_arg(year,2,’80s’),true,[[26,45],[424,405]]).
counts(has_arg(nation,2,usa),true,[[375,25],[2025,2375]]).
counts(has_arg(size,2,medium),true,[[341,110],[3309,3540]]).
counts(has_arg(genre,2,horror),true,[[108,19],[892,981]]).
counts(has_arg(year,2,’90s’),true,[[94,57],[706,743]]).
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